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An efficient method for calculating spherical-wave reflection 
coefficients 

Charles P. Ursenbach and Arnim B. Haase 

ABSTRACT 
A method is presented for efficiently calculating the spherical-wave generalization of 

the Zoeppritz PP reflection coefficients. The main restriction is in choosing a particular 
form of wavelet that allows for analytic integration over frequencies. This, combined 
with calculating only one time point instead of the entire time trace, results in 
calculations sufficiently rapid to be carried out interactively on the computer. The method 
is implemented both in MATLAB and as an interactive Java applet, and results are shown 
for an AVO Class I model. It is also shown that the calculation of spherical-wave 
reflection coefficients can, in practice, be cast as a weighted integral of a relatively small 
set of plane-wave reflection coefficients, which may allow one to achieve still more 
efficient calculations. 

INTRODUCTION 
This paper is concerned with the calculation of reflection coefficients for spherical 

waves in a two-layer elastic model, illustrated in the diagram below: 

 

 

 

 

 

The plane-wave reflection coefficient for this system is the well-known Zoeppritz 
expression, RPP(p;α1,β1,ρ1;α2,β2,ρ2), where p is a ray parameter (the horizontal P-wave 

slowness), α, β, and ρ are P-wave velocity, S-wave velocity, and density, and subscripts 1 
and 2 refer to upper and lower media. The generalized reflection coefficient associated 
with spherical waves, which includes contributions from both reflected and head waves, 
is given as an integral over RPP(p). The fundamental theory is well-established. It is given 
in detail, for example, by Aki and Richards (1980). They express the frequency-
dependent potential as a weighted integral over all ray parameters of cylindrical waves 
times plane-wave reflection coefficients. In analogy with their Eq. (6.30) for free surface 
reflections, we can write the pertinent expression for the solid-solid interface as 
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Here A is a scaling factor, ω is the frequency, t is time, ξ is the vertical P-wave slowness 
in the upper layer, J0 is the zero-order Bessel function, r is the horizontal receiver 
coordinate (with the horizontal source position equal to zero), h is the vertical source 
position, and z is the vertical receiver coordinate. 

The displacement is obtained by applying a gradient in the receiver position to the 
above potential. Weighting by the wavelet and applying an inverse Fourier transform 
yields the time trace observed at the receiver. AVO information can be extracted from 
maxima in the trace envelope. The above method was implemented in numerical 
calculations by Haase (2002, 2003, 2004a). He has also carried out this procedure for 
converted waves (Haase, 2004a) and with viscoelasticity (Haase, 2004b). 

The above calculations are time-consuming, and most work prior to Haase has 
employed monochromatic wavelets (e.g., Macdonald et al., 1987). Even then it has been 
tempting to look for approximations. For instance, Krail and Brysk (1983) developed an 
approximation to Eq. (1) consisting of a series expansion in (1/kr), where k is the 
wavenumber and r is the radius. In addition RPP and J0 are replaced by Taylor series 
expansions. Furlong et al. (1994) developed a somewhat different approximation that 
consists of assuming that the reflected and transmitted waves are spherical (or dipolar for 
converted waves). The reflection coefficients are then obtained by matching boundary 
conditions across the interface, analogous to the Zoeppritz coefficient derivation.  

The effect of approximations in these earlier works is not well understood, particularly 
in the vicinity of critical points. Furthermore, when methods assume a monochromatic 
wavelet, it becomes difficult to assess their implications for practical AVO inversion. 
Haase’s numerical evaluation of exact expressions provides benchmark results for 
realistic seismic wavelets and confirms that spherical-wave reflections differ significantly 
from plane waves near critical points. This is important, for instance, when using AVO 
inversion to extract density information for Class I interfaces. Still, the exact calculations 
may be too time-consuming to apply easily to AVO problems. The method proposed in 
this paper leaves the theoretical framework intact, and imposes restrictions only on the 
form of the wavelet. Results below indicate that this approximation leaves the general 
behavior of the reflection coefficient unchanged. 

THEORETICAL DEVELOPMENT 

Integration over ω 

Beginning with Eq. (1), let us define an integrated potential as 
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In this expression f(ω) is the wavelet and we will define it to be of the following form: 
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We can interchange the order of p and ω integrations1, as shown here: 
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In the last step we define IR(p) as a result of integration over ω. It is advantageous to 

change the lower bound of the ω-integration to zero. This will lead us directly to the 
analytic or complex trace, whose real part is proportional to the original integral. We 
shall require the analytic trace later, so it is convenient to obtain it in this way. Effectively 
we replace IR(p) in Eq. (4) with I(p) = ½ [IR(p) + i II(p)], where IR(p) and II(p) are real 
functions. Changing the lower bound to zero also gives the integral the form of a Laplace 
transform, and an analytic solution is available (Erdelyi, 1954): 
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where Pn(x) is a Legendre polynomial. 

Calculation of the gradient 
Next one takes the gradient with respect to receiver position so that the final reflection 

coefficient will be for displacements. If we assume that displacement is in the direction of 
propagation of the reflected wave, then we can begin by substituting z = R cos(θi) − h and 

r = R sin(θi), which effectively defines θi as the angle of incidence and R as the distance 
traveled by the wave. The desired derivative is then obtained by taking a simple 
derivative with respect to R. This yields 

                                                
1 Bortfeld (1962) justifies changing the order of integration for this integral. He develops a method in 
which a sinc function wavelet is employed for the integration over frequency, and the actual seismic 
wavelet is introduced at the end of the procedure by convolution. His method is therefore more general than 
the present approach, but also more computationally intensive. 
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We should bear in mind that the assumption regarding the direction of displacement of 
the reflected wave may not be valid in the vicinity of the critical point, where it cannot be 
distinguished from the head wave. However, the directional difference in this region is 
small, and results shown below suggest that it is a reasonable assumption. 

Simplifications 
Eq. (6) is a function of time, t. Let us assume that the signal of interest will arrive at 

the receiver at time R/α. (The discussion regarding the direction-of-displacement 

assumption probably applies here as well.) Let us set t = R/α (this can only be done after 

applying the gradient), and let us further set p = sinθ / α and ξ = cosθ / α. It will also be 

convenient to define S ≡ sα /R, as a quantity indicating the importance of spherical 
effects. These steps allow us to produce reasonably simple explicit expressions for 
particular values of n, which will be suitable for computer programming. In particular, 
the quantities T and τ which appear on the right-hand sides in Eq. (6) can be written as 
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We note that for a wavelet of the form of Eq. (3), the maximum amplitude, ωmax, occurs 
at n/s. For a monochromatic wavelet, the quantity controlling the size of spherical effects 
is α /(R ω), which in our notation is S/n for ωmax (n ≠ 0). It is therefore reasonable that the 
quantity S arises naturally in this theory. 

Changing the variable of integration 
Collecting the above results together, we can formally write our spherical-wave 

reflection displacement amplitude as 

 ( ) ( )sph
PP 1 1 1 2 2 2 PP 1 1 1 2 2 20
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For the numerical implementation to follow, a change of variables will be used to replace 
p with cosθ as the integration variable, where cosθ = √(1−α2p2). From the relation p2 + ξ2 

= 1/α2 we derive the differential relation (p/ξ)dp = −dξ = −d(cosθ)/α. Also, let us divide 
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the integration range into two parts: 
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We see from Eq. (9) that (i/α)(∂I / ∂R) acts as a weighting function in cosθ to transform 

RPP(θ) to RPP
sph(θi). 

Normalization 
Spherical waves decrease in amplitude with distance traveled, while planes waves do 

not. This complicates comparison of reflection coefficients. It is desirable to remove the 
spherical divergence and near-field effects and to thus isolate the effect on amplitude of 
reflection alone. One simple approach is to normalize the spherical-wave result by the 
result that would be obtained if the reflection coefficient were set to unity. Setting RPP = 1 
in Eq. (1) allows the integral over p (the Sommerfeld integral) to be done analytically, 
recovering the simpler potential of the spherical wave, 

 exp .A Ri t
R

ω
α

  − −    
 (10) 

Taking the derivative with respect to R, setting t = R/α, and then weighting by the 
wavelet and integrating over frequency yields the analytic trace result 

 1 2 2

! ( 1)! .n n

n nA i
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 (11) 

Dividing Eq. (9) by Eq. (11) gives a normalized reflection coefficient suitable for 
comparison with the plane wave result. If Eq. (11) is incorporated earlier, by dividing it 

into the weighting function, i I
Rα

∂
∂

, then a normalized weighting function results, the real 

part integrating to one, and the imaginary part to zero. We will denote this 
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We can then write the ratio of Eq. (9) and Eq. (11) formally as 
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The n = 0 case 

This is the simplest case, but exp(−|sω|) is not a very realistic wavelet from a seismic 
point of view. However we include it as it is instructive on a few points. We can evaluate 
the above expressions to obtain the normalized weighting function,  
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This function depends explicitly only on θ, θi, and S = sα/R. The sin terms appear as 

squares, so all θ and θi dependence can be expressed in terms of cosθ and cosθi. This is 

obviously convenient for integration over cosθ. Quantities (other than θi) which affect the 
magnitude of spherical effects are combined in the dimensionless quantity S. Spherical 
effects increase with increasing velocity in the overburden (α↑), decreasing distance 
traveled by the wavelet (R ↓), and increasing width of the wavelet (s↑). Thus increasing S 
corresponds to increasing spherical effects. 

In the limit of decreasing S the envelope of W0 yields 
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lim lim .
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W S
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This will vanish for all values of θ except for θ = θi, at which point it may diverge. The 
real and imaginary components of W0 are bounded by the envelope. Thus, because the 
real part is normalized to 1, it will act as a delta function in this limit, reducing the 
spherical-wave reflection coefficient down to the plane wave Zoeppritz coefficient. 
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The corresponding expressions for n > 0 are more complicated, but possess the same 
properties as described here for n = 0. They have been obtained using a symbolic 
mathematics program (MAPLE) and implemented for numerical computation (MATLAB 
and Java). We present results below for n = 4, as this can be used to approximately model 
the frequency content of a seismic wavelet. 

APPLICATION 

Description of model 
We construct an application intended for comparison with results from Haase (2004a). 

Consider a two-layer model with earth parameters specified in Table I. This constitutes a 
Class I AVO system, and it possesses a critical point at ∼  43°.  

Table I. Earth parameters for a two-layer, Class I AVO model. 

  Upper 
Layer 

Lower 
Layer 

VP (m/s) 2000 2933.33 

VS (m/s) 879.88 1882.29 

ρ (kg/m3) 2400 2000 

 

Haase (2004a) employs an Ormsby wavelet, 5/15-80/100 Hz. We have approximated 
this by a wavelet of the form of Eq. (3), where n = 4, and s = (0.173 s)/(2π). The two 
wavelets are displayed together in Figure 1 below. Clearly there is no sort of quantitative 
matching, and one can only hope to reproduce the general frequency range of a given 
wavelet by a function of the form of Eq. (3). In this case we have attempted primarily to 
reproduce the lower frequencies, as these are presumably more important in reproducing 
spherical-wave effects.  
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FIG. 1. Comparison of 5/15-80/100 Ormsby wavelet (solid red line) with a wavelet of the form of 
Eq. (3) with n = 4, s = (.173 s)/(2π) (dashed blue line). Emphasis has been given to matching the 
lower frequencies. 

Following Haase we also employ a depth of z = h = 500m, and an overburden P-wave 
velocity of α = 2000 m/s (see Table I above). This, together with s, specifies S, which 
completely determines the deviation from plane wave behavior for this wavelet. 

Details of implementation 

To calculate the normalized spherical reflection coefficients we must implement Eq. 
(14) as an algorithm. The integrand is a product of two factors:  

•  The plane wave reflection coefficient, RPP, which depends on velocities and 
densities of the two earth layers, and on the integration variable; 

•  The normalized weighting function, Wn, which depends on the angle of incidence, 
θi, on the wavelet parameters, n and S, and on the integration variable.  

It is convenient to replace S = sα/R with S/cosθi, where Sz = sα/(z+h). S depends on the 
angle of incidence, while Sz depends only on the model and the wavelet, and depends 
unambiguously on a particular z. Our inputs therefore consist of 1) earth parameters, 2) 
angle of incidence, 3) n, s, α, and z, and 4) parameters controlling the numerical 
integration. The latter consists of two numbers, one to determine the grid width, and one 
to determine the upper cutoff for the second integral (which formally is i × ∞). In the 
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calculations below we have chosen |∆(cosθ)| = 0.001 and (cosθ)max = 0.1i. For plotting 
we have repeated the above calculation for incidence angles from 0° to 85° at 1° 
intervals. Neither decreasing the grid width nor increasing the cutoff produces any visible 
change to the plots. All of the calculations required for a plot can be performed in 
approximately 8.5 seconds of CPU time in MATLAB on a typical desktop PC. With a 
compiled code this time is somewhat less. 

Results of calculation 
We now present the result of calculations for this model. In Figure 2 we show 

spherical-wave results compared with plane wave results.  

 

FIG. 2. Comparison of plane wave and spherical-wave reflection coefficients for the AVO Class I 
parameters of Table I. The wavelet is of the form of Eq. (3), with n = 4, s = (.173 s)/(2π) [see 
Figure 1]. Note that significant spherical-wave effects are observed in the vicinity of the critical 
point. 
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It is clear that there are significant amplitude deviations in the region of the critical point, 
as noted by Haase (2004a). There are visible phase deviations at lower angles as well, but 
larger differences again near the critical point. In Figures 3a and 3b we compare the 
results of Figure 2 with calculation using the same wavelet, but by the method of Haase 
(2004a). We see excellent agreement throughout, although it is clear that the largest 
difference is just after the critical point. This likely arises from our assumptions regarding 
direction of propagation and arrival time. The smallness of even these differences though 
justifies the use of these assumptions for practical applications.  

In Figure 3c we compare spherical-wave amplitudes for the two different wavelets shown 
in Figure 1. The exponential wavelet result in Figure 3 appears to give a stronger 
spherical effect than the Ormsby wavelet result. The Ormsby wavelet displays some 
oscillatory character just past the critical point. This is likely a Gibb’s-type phenomenon 
related to the slope discontinuities in the Ormsby wavelet. Both wavelets yield a 
qualitatively similar deviation from the plane wave result, so that spherical effects are 
only mildly dependent on the precise shape of wavelet. Thus the specialized wavelets 
used in this study will be useful for at least qualitative investigation of spherical AVO 
effects. 
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FIG. 3. Part a) shows a comparison of spherical-wave reflection coefficients calculated by both 
the present semi-analytic method and the fully numerical method of Haase (2004a). Both 
calculations employ the exponential wavelet of Figure 1. Part b) displays the difference of the two 
lines from part a). The largest difference occurs just after the critical point, which is at ∼ 43°. Part 
c) compares spherical-wave reflection coefficients calculated for the two wavelets displayed in 
Figure 1. The Ormsby wavelet calculation uses the method of Haase (2004a) and the exponential 
wavelet calculation uses the present method. The plane-wave reflection coefficient is also 
included for comparison.  

 

a) b) 

c) 
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Implementation in a Java applet 
Eq. (14) has also been implemented in a Java applet routine which may be executed 

interactively in a Java-enabled browser. A screen capture of the display for the same 
parameters used above is shown in Figure 4. In this software, changing the value of s, z, 
α1, or n causes the program to recalculate Wn, which requires a few seconds. When 
changing other earth parameters however, a stored version of Wn is used, and the 
integration is rapid enough, that it can be recalculated and displayed several times a 
second, allowing for the effect of changing earth parameters to be investigated using a 
slider bar on the control panel. This is a useful tool for exploring the potential importance 
of spherical AVO effects for a given system of interest. 

 
FIG. 4. Screen capture of the CREWES Spherical Zoeppritz Explorer, a Java applet 
implementation of Eq. (14). The parameters employed are the same as for Figure 2. Note that the 
parameter S in the control panel corresponds to s/(2π) in the present study. 

DISCUSSION 
Haase (2004a) has also carried out calculations for a Class III AVO model and found 

that, in the absence of a critical point, the spherical-wave coefficients are very similar to 
the corresponding plane wave coefficients. To investigate this point, we display in Figure 
5 some of the weighting functions, i.e., 
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which were employed in calculating the reflection coefficients of Figures 2 and 3. The 
weighting functions are displayed for particular values of θi, the angle of incidence. The 
weighting functions have both real and imaginary components. Integrating over the real 
components alone yields 1, and integrating over the imaginary components alone yields 
0. Both components peak near the angle of incidence, and decay rapidly away from it. 
This explains why spherical effects are important near critical points. Away from the 
critical point, RPP changes slowly, and can be viewed as roughly constant over the range 
of non-negligible weighting. Near the critical point however RPP changes rapidly and the 
weighting function samples a considerable and non-linear range of values.  

The nature of the weighting function has implications for practical calculations. It should 
be possible to carry out calculations more efficiently than has been done here, as it is only 
necessary to carry out numerical integrations within a compact range of the weighting 
function. In fact, the full spherical-wave coefficients are only necessary within a certain 
region of the critical point. Furthermore, the weighting functions are independent of all of 
the earth parameters (except the overburden P-wave velocity), so that in an AVO analysis 
it should only be necessary to calculate the weighting functions once in the course of an 
inversion. These and other measures may allow us to develop practical spherical-wave 
AVO inversion methods. 
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FIG. 5. Some of the weighting functions [i.e., Eq. (17)] used in calculating points in the plots of 
Figure 2. The weighting functions shown here are for incidence angles of a) 0°, b) 15°, c) 45°, 
and d) 85°. In each case both the real and imaginary components of the function are peaked near 
the angle of incidence. 

In Figure 6 we have repeated the results of Figure 5, except that we have chosen a 
depth of 2000 m instead of 500 m. Spherical-wave effects are expected to decrease 
somewhat. In the weighting functions this translates into narrower peaks, which sample 
over a more restricted range of RPP. For values of S or Sz decreasing to zero, the real 
component will approach a δ-function, as noted in the discussion following Eq. (16). 
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FIG. 6. This display is the same as Figure 5 but with z = h = 2000 m instead of z = h = 500 m. 
Comparing the two figures shows that as spherical effects decrease, the weighting functions 
become more sharply peaked. 

 

    We also observe in Figures 5 and 6 that spherical effects decrease with θi. This is 

reasonable, since the actual path length increases with θi at fixed depth, z. To investigate 

these matters more carefully, |W4| was calculated as a function of θ for several values of θi 

and Sz. The width of the peak was defined as the difference between two values of θ at 
which the function equals 1/100th of the maximum peak height. The peak width is plotted 
in Figure 7a against θi, for three values of Sz. We have found that plotting against Szcosθi 
(= S) causes results for different Sz values to lie along the same line, and furthermore, 
plotting against √(Szcosθi) causes the plot to be roughly linear, as shown in Figure 7b. 
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This is of great practical value, as it provides a simple method for limiting the range of 
integration in Eq. (14) to a relatively small θ-interval. 

 

FIG. 7. The width of the peak of W4(θ;θi,Sz) when plotted as a function of θ, and its variation with θi 

and Sz [=sα/(z+h)]. The width is shown to be linearly related to (Szcos θi)1/2. This is useful in 
reducing the range of numerical integrations in Eq. (14). 

CONCLUSIONS 
We have shown that, for a particular form of wavelet, one can reduce computation 

times for spherical-wave reflection coefficients. These show characteristics of behavior 
that are similar to more traditional wavelets. The efficiencies of this method also make it 
feasible to implement spherical-wave reflection coefficient calculations in an interactive 
Java applet. These calculations are nearly exact, with the main restriction being the form 
of the wavelet. 

It has been shown how a spherical wave samples the plane wave reflection coefficients 
within a compact range around the angle of incidence. A quantitative description of this 
range may allow for even more efficient spherical-wave reflection coefficient 
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calculations in the future. Such developments considerably improve the prospects for 
practical spherical-wave AVO inversions. 
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