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Snell’s law in transversely isotropic media using linearized 
group velocities and related quantities 

P.F. Daley 

ABSTRACT 

Using a linearized approximation for the quasi-compressional phase velocity, ( )qP kv n  
in a transversely isotropic (TI) medium, which is a subset of the related quasi-
compressional (qP) wave propagation in an orthorhombic medium, a linearized 
compressional group velocity, ( )qP kV N , is derived as a function of group angles only. In 
addition, analytic expressions for the components of the slowness vector in terms of 
group velocities and angles are also obtained. These expressions are used here to set up 
the generally nonlinear equations that are required to be solved for the reflected and 
transmitted rays due to an incident ray, at a plane interface between two transversely 
isotropic media, when the axes of anisotropy, in both media, are, in general, not aligned 
with the interface. The total medium is assumed to be composed of finite elements, 
specifically Delauney triangles, which are used to account for vertical and lateral 
inhomogeneities as well as anisotropy with arbitrary orientation. 

INTRODUCTION 
In the geophysical literature related to wave propagation in anisotropic media, 

specifically quasi-compressional (qP) waves in a medium displaying orthorhombic 
symmetry, a linearized approach to get an approximate phase velocity expression for 
quasi-compressional (qP) wave propagation has been presented in Backus (1965). This 
and other methods, such a perturbation theory, have been employed to extract expressions 
for the qP case as well as for the two shear wave modes, 1qS  and 2qS , for the general 21 
parameter anisotropic medium (Every, 1980, Every and Sachse., 1992, Jech. and Pšenčík, 
1989, Pšenčík and Gajewski, 1998, Song, Every, and Wright, 2001, Pšenčík. and Farra, 
2005). Once phase velocity approximations have been obtained, eikonals with similar 
accuracy may be written. From these, using the method of characteristics, (Courant and 
Hilbert, 1962) the formulae for the vector components of group velocity may be derived 

Employing other methods of approximation, Daley and Krebes (2005) derived an 
expression for the qP group velocity obtained in terms of group angles. This formula was 
originally presented in Song and Every (2000) where the results were" … not established 
… by rigorous derivation but we were lead to [them] by plausibility arguments that are 
backed up by the numerical results …" .  

It is shown in Daley and Krebes (2005) that, for a weakly anellipsoidal anisotropic 
medium, the average deviation of this approximation from the exact expression for the qP 
group velocity, in medium with orthorhombic symmetry, over a range of polar angles 
( )0 2π≤ Θ <  for a number of azimuths, Φ , was of the order of 1%. For this reason it 
was chosen for use in a number of procedures where speed was essential in ray tracing in 
two and three dimensions. Specifically, Born-Kirchhoff type migration, in a tessellated 
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FIG. 1. Relationship between local and rotated coordinate systems. The angle φ  is measured 
positive clockwise from the local coordinate system. 

2D medium, was of interest. The anisotropic parameters and orientation of anisotropy are 
assumed constant within any triangle. What is required to be determined is an analogue 
of Snell’s Law at the plane interface between two adjacent triangles. This will be treated 
in what follows for a transversely isotropic (TI) type medium as an initial step in the 
more complex 3D problem, where there is yet to appear an algorithm of any 
sophistication to produce a quality tetrahedral discretization. 

Before proceeding further, a mathematically informal explanation of the duality of the 
ray or group velocity space and slowness space will be given. The informality is 
attributable to the weakly anelliptic assumption used here, specifically, both surfaces are 
assumed to be convex, which implies that there are no triplication points on the ray 
surface. Thus, given a point on the ray (group velocity) surface, the vector starting at the 
origin of this surface and normal to the tangent at the point at which the ray touches the 
ray surface is equal in direction to the corresponding vector in slowness space and its 
magnitude in slowness space is equal to the inverse of its magnitude in ray space. The 
dual of this is that in slowness space, for some arbitrary slowness vector, the vector 
beginning at the origin of the slowness surface that is normal to the tangent to the point at 
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which the slowness vector impinges on the slowness surface, is equal in direction to the 
corresponding ray vector and has a magnitude that is the inverse of the length of tfining 
the vector in slowness space. In what follows, all figures will reference slowness space 
only, with Figure 1 defining the local and rotated coordinate systems in this space. 

A SIMPLE EXAMPLE 

It will be assumed that the horizontal component of the slowness vector, 1p , is known 
in the incident (upper) medium, and it is required to determine the ray angle and 
magnitude for both the reflected ray in the upper medium and the transmitted ray in the 
lower medium, in the special instance where the axes of anisotropy in both media are 
aligned with the intervening interface, i.e., the rotated and model axes are aligned, with 
the incident ray angle known. (Figures 2 and 3.) 

The linearized quasi-compressional phase velocity, ( )qP kv n , in a TI medium may be 
written as 

 ( )2 2 2 2 2
11 1 33 3 13 1 3qP kv n A n A n E n n= + +  (1) 

with the anelliptic term defined as 

 ( ) ( )13 13 55 11 332 2E A A A A= + − + . (2) 

This expression should be compared to that given for a mildly anisotropic medium as 
presented in Gassmann (1964) as an indication of how the linearization simplifies the 
phase velocity expression. 

The 2D phase velocity propagation vector direction is defined as the unit vector 

 ( ) ( )1 3, sin ,cosn n θ θ= =n . (3) 

Thus the slowness vector has the form 

 ( ) ( ) ( )
1 2

1 3, ,
qP k qP k

n np p
v n v n

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

p . (4) 

It was shown by Daley and Hron (1979) that the slowness vector for the qP elliptical 
(degenerate) case may be written exactly in terms of the group velocity quantities, angle, 
Θ , and velocity, ( )qP kV N , as 

 ( )
( )[ ] ( )[ ]1 3. .

1 3
11 33

, ,
qP k qP kellip ellipN V N N V N

p p
A A

⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
p  (5) 

where 

 ( ) ( )1 3, sin ,cosN N= = Θ ΘN  (6) 

and the group velocity for the elliptical case is given by 
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( )

22 2 2
31

2
11 33 11 33.

1 sin cos

qP k ellip

NN
V N A A A A
⎡ ⎤ Θ Θ= + = +⎢ ⎥
⎢ ⎥⎣ ⎦

. (7) 

The general group velocity expression is obtained by using the elliptical case as a trial 
solution with the additional assumption that the polarization vector components, kg , may 
be approximated as 1 3 1 3g g N N≈ . This is not an unreasonable assumption, as in the 
original linearization process the polarization vector components were approximated by 

kn , i.e., 1 3 1 3g g n n≈ . The resultant group velocity expression for a qP ray in a TI medium 
is 

 
( )

2 2 2 2 22 2 2
3 13 1 3 131

2
11 33 11 33 11 33 11 33

sin cos1 sin cos

qP k

N E N N EN
V N A A A A A A A A

Θ ΘΘ Θ= + − = + −  . (8) 

As it has been assumed that the axes of anisotropy, in both the incident (upper) and 
transmitted (lower) layer, were aligned with the intervening interface, the reflected ray 
would have the same magnitude and acute angle with the normal at the point of incidence 
as the incident ray. It is to be remembered that the approximate expressions employed 
here are for weakly anelliptic anisotropy, and it will be assumed that a user will not 
seriously violate this constraint. This is shown graphically in Figure 2 where the reflected 
ray vector is equal in magnitude to the incident ray vector, and both vectors have the 
same acute angle with respect to the normal to the interface as do the corresponding 
slowness vectors. 

The sine of the group angle in the medium of transmission ( )sinx = Θ  will be used as 
the parameter to be determined using Newton’s Method. In the elliptical case it may be 
determined analytically as 

 
( )

1 11
1 22

33 11 33 1

p Ax
A A A p

=
⎡ ⎤+ −⎣ ⎦

 (9) 

Since Snell’s Law in the elliptical case requires the equivalence of the horizontal 
components of the slowness vector, 

 
( ) ( ) ( )1

1
11 11 11

sinqP k qP qPN V N V xV x
p

A A A
Θ Θ

= = = . (10) 

The equation to be solved numerically in an iterative manner is 

 ( ) ( )1 11 0qPF x p A xV x= − = . (11) 

The derivative of ( )F x  with respect to x is  

 ( ) ( ) ( )qP
qP

dV xdF x V x x
dx dx

= − −  (12) 

where 
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FIG. 2. Incident and reflected slowness vectors and inverse group (ray) velocity vectors for the 
case where the rotated and local coordinate systems align. 

 
( ) ( )2

13

11 33 11 33

1 21 1qP x EdV x
x

dx A A A A
−⎡ ⎤= − −⎢ ⎥

⎣ ⎦
, (13) 

so that with 1kx + , being a refinement of the iterated solution, kx , Newton’s Method has the 
standard formulation 

 ( )
( )1

k
k k

k

F xx x
dF x dx+ = −  (14) 

with 0x  given by equation (8). Once sinx = Θ  has been determined, the group velocity, 
and as a result, the components of the slowness vector in the lower medium, may be 
determined employing a generalization of equation (5). 
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FIG. 3. Incident and transmitted slowness vectors and inverse group (ray) velocity vectors for the 
case where the rotated and local coordinate systems align. 

REFLECTION AT A PLANE INTERFACE WITH THE AXES OF ANISOTROPY 
NOT ALIGNED WITH THE INTERFACE IN THE INCIDENT MEDUM 

For this problem, it is assumed that the incident group velocity is known at the 
interface, in the rotated coordinate system. That is, its magnitude is known in both the 
rotated and local Cartesian system, but the incident angle is known only in the rotated 
system. This coordinate system is oriented at an acute angle φ , measured positive 
clockwise from the normal to the interface, into the incident medium, defining the local 
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coordinate system. If 0φ = , as would be expected, the magnitudes of the incident and 
reflected qP  group velocities are equal as are the acute angles iΘ  and rΘ , measured 
from the normal to the interface, the subscripts " "i  and " "r  referring to incident and 
reflected, respectively. 

Given that φ  is known, the angle i i φ′Θ = Θ −  is easily determined, the primed angle 
indicating that it is measured in the rotated coordinate system. What is required to be 
solved for is the reflected angle and magnitude of the qP  group velocity in this system. 
The horizontal component of the slowness vector p in the primed system may be 
obtained, with ( )sinx φ′ = Θ −  

 ( ) ( )1 1 11 0qPF p p A x V x′ ′ ′ ′= − =  (15) 

 
( )

1
11

qPx V x
p

A
′ ′

′ =  (16) 

In a similar manner, the vertical component of the slowness vector in the rotated system 
is obtained from 

 ( ) ( ) ( )
1 22

3 3 33 1 0qPG p p A x V x′ ′ ′ ′⎡ ⎤= − − =⎣ ⎦  (17) 

 
( ) ( )

1 22

3
33

1 qPx V x
p

A
′ ′⎡ ⎤−⎣ ⎦′ =  (18) 

As the rotation of the primed system relative to the local system is orthonormal, the 
slowness vector p, in local coordinates, may be obtained as 

 1 1

3 3

cos sin
sin cos

p p
p p

φ φ
φ φ

′−⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (19) 

Using the methods of the previous section the reflected group velocity and angle may 
be obtained. The orientation of the local vertical axis in both slowness space and ray 
space must be taken in the proper sense as a reflected and transmitted ray and slowness 
vertical component of each individual vector have different signs. 

TRANSMISSION AT A PLANE INTERFACE WITH THE AXES OF 
ANISOTROPY NOT ALIGNED WITH THE INTERFACE 

In the previous section showed how to determine the horizontal component of 
slowness in the incident medium if the axis of anisotropy was not aligned within that 
medium. Here it will be assumed that this quantity is known, and what is required to be 
established are the slowness vector and group velocity magnitude, and angle with respect 
to the vertical component of the slowness vector which is known as the angle of rotation 
φ  of the rotated (primed) system in the transmitted medium in both the local and rotated 
coordinate system. This case is depicted in Figure 4 
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FIG. 4. Transmission at an interface where the local and rotated coordinate systems are not 
aligned. 

In a similar manner as in the previous section where ( )1 3,p p=p  was obtained in local 
coordinates, the vector ( )1 3,p p′ ′ ′=p  in the rotated system is obtained in the lower 
medium through the orthonormal transformation 

 1 1

3 3

cos sin
sin cos

p p
p p

φ φ
φ φ

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
. (20) 

As in the first section of this report with sinx =  being replaced by ( )sinx φ′ = Θ −  the 
following equation, which also must be solved numerically, is obtained 

 ( ) ( )1 11 0qPF x p A x V x′ ′ ′ ′= − = . (21) 

The ancillary formulae for accomplishing this are given in equations (9) – (14). The 
vertical component of displacement, 3p′  is obtained from equation (18), and the slowness 
vector may be put in terms of the local coordinate system using equation (20), while the 
group velocity magnitude, ( )V Θ , is obtained from the sequence 1sin x−′ ′Θ = , 

φ′Θ = Θ − , ( ) ( )V V φ′Θ = Θ − . 
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As the value of φ  in all probability takes on a different value, say φ̂ , the value of 
( )1 3,p p=p  in this new local coordinate system is obtained from the results of solving 

equation (21), so that 

 1 1

3 3

ˆ ˆcos sin
ˆ ˆsin cos

p p
p p

φ φ
φ φ

⎡ ⎤ ′−⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
 (22) 

This updated specification of the slowness vector components is used as input, either for 
a reflected or transmitted ray at the edge between the current triangle of propagation and 
the next adjacent triangle. 

CONCLUSIONS AND FUTURE WORK 
The basic formulae and solution method for tracing rays in a tessellated transversely 

isotropic medium have been presented. Linearized forms of the phase and group 
velocities were used in the development. Numerical experimentation with a more 
complex media type, an orthorhombic medium, for arbitrary azimuthal angles has been 
shown to provide acceptable results using these weakly anelliptic approximations for 
phase and group velocities. In a symmetry plane, which amounts to a transversely 
isotropic medium, more accurate results are expected than in some arbitrary azimuthal 
plane. It is to be remembered that the formulae used are for weakly anelliptic media and 
contravention of this constraint will lead to a degradation of results. For a medium that 
satisfies this constraint, the average deviation from the exact solution over the polar angle 
range of 0 2π≤ Θ <  was of the order of 0.05%. In a medium, with the alternate 
specification of anisotropic parameters of 0.2 , 0.7ε δ≈ ≈ , the average deviation, when 
compared to the exact solution over the total polar range, was of the order of 1.5%. 

What remains to be done is to determine how to best specify the anisotropic 
parameters within a triangle, using either their centroid values or a weighted average on 
each element edge, or a combination. Further, it is required to determine if some type of 
smoothing needs to be done. This may not be required if an appropriate manner of 
anisotropic parameterization is employed. 
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