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Enhancing the FOCI extrapolation method by using a weighted 
least-squares approach 

Al-Saleh, S. M., Margrave, G. F.  

ABSTRACT 
The forward operator and conjugate inverse (FOCI) method of wavefield 

extrapolation uses Wiener filtering to design nearly stable wavefield extrapolators, dual 
operator tables for evanescent filtering, and spatial downsampling of the lower 
frequencies to increase operator accuracy and decrease run times.  In the current design 
of FOCI, the forward operator is simply a windowed version of the exact operator for a 
half step. The inverse operator is designed as a band-limited inverse of the first. The 
least-squares FOCI operator is formed as a convolution of the first operator with the 
conjugate of the second.  As a final step, the least-squares operator may either be used 
directly or shortened with a Hanning window.  The limitations of the first option are that 
the operator has to be long to ensure stability, and evanescent filtering can not be applied 
at every depth step where dual tables have to be used. On the other hand, while the 
second option gives short operators with evanescent filtering at every depth step where 
only one table is needed, short operators attenuate higher wavenumbers due to using a 
Hanning window. This limits its ability to handle deep steeply dipping events. In fact, 
most extrapolation methods can not design very short operators that can handle high 
angles of propagation and remain stable in a recursive scheme. 

We introduce some enhancements to the current design by using a weighted least-
squares approach. The weighted least-squares with transition band method changes the 
error criterion in a particular way to remove or reduce the overshoot at discontinuities 
separating the propagating and evanescent regions. This approach is used to obtain the 
forward operator instead of using a Hanning window, and to obtain the windowed 
operator, instead of the Hanning window, in an optimal way. With these enhancements to 
FOCI, it is possible to design operators as short as 9 points. The migration results 
obtained with these enhancements show that short operators can generate good images 
very efficiently.   

INTRODUCTION 
Wavefield extrapolation methods extend the exact constant-velocity phase-shift 

extrapolators in the wavenumber-frequency domain to approximate space-frequency 
domain extrapolators suitable for laterally varying velocities.  The major reason to 
express the algorithm in the space frequency domain is to obtain computational speed, 
and this requires developing a compactly supported (i.e. finite length) approximation to 
the theoretical response, which is infinitely long.  The design of a space-frequency 
operator from the theoretical wavenumber-frequency expression is often done using a 
Taylor series expansion, but least-squares optimizations have also been used. For 
example, Holberg (1988) uses non-linear least squares, Hale (1991) uses novel basis 
functions in the wavenumber domain, Soubaras (1996) uses the Remez exchange 
algorithm to achieve equiripple behavior in the wavenumber domain, Thorbecke et al. 
(2004) use weighted least-squares with a modified transition region, Margrave et al. 
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(2005) introduced the forward operator and conjugate inverse (FOCI) method that splits 
the operator into two parts using one to stabilize the other, and Al-Saleh et al. (2005) used 
a transition band for the transition region in the weighted least square design of wavefield 
extrapolators instead of a specific transition function as in Thorbecke et al. (2004).  

The Fourier transform of the ideal extrapolator has a discontinuous derivative at the 
boundary separating the propagating and evanescent regions. Thus, changing the ideal 
transform to remove these slope discontinuities makes the approximation easier and more 
accurate. Further, using a weight function puts more weight on the wavenumber band of 
interest to make the approximation a better match to the ideal in that region (Al-Saleh et 
al., 2005; Parks and Burrus, 1987). By using a transition band in the weighted least-
squares design, the new error criterion removes or reduces the overshoot at the 
evanescent boundary. This is achieved by removing a region from the optimization, 
which is called a transition band. 

In this report, we use weighted least-squares with a transition band (WLSTB) to 
enhance the FOCI algorithm. We begin with a short theoretical review of the FOCI 
algorithm followed by the theory of these enhancements. Then follows a series of 
examples and comparisons between the old and new designs beginning with operator 
amplitude and phase spectra, moving on to impulse responses, and finally to pre-stack 
depth migration. The full migrations are all done with the 2-D acoustic Marmousi model. 

THEORY 
Wavefield extrapolation in 2D can be done as a spatial convolution in the 

xω − (temporal frequency and lateral spatial coordinate) domain using (Margrave and 
Ferguson, 1999; Margrave et al., 2005; Al-Saleh et al., 2005) 

 ( ) ( ) ( )( )' ' ', , , , , ,x z z x z W x x k x z dxψ ω ψ ω
∞

−∞

+ ∆ = − ∆∫ , (1) 

where the xω −  wavefield extrapolator W is given by 

 ( )( ) ( )( ) ( )'' 1 ˆ, , , ,
2

xik x x
x xW x x k x z W k k x z e dk

π

∞ − −

−∞

− ∆ = ∆∫ . (2) 

ψ  is the pressure wavefield after taking its Fourier transformation over the temporal 
coordinate, Ŵ represents the symbol of W , ( ) ( )/k x v xω= , z is depth, z∆ is the depth 
increment, x is the transverse coordinate, ω is the temporal frequency, xk is the 
transverse wavenumber, x′ denotes the transverse coordinate at input, and x denotes the 
transverse coordinate at output. 

The convolution in equation 1 becomes non-stationary when the velocity varies with x, 
and stationary when the velocity is constant.  In our notation, velocity enters implicitly 
through /k vω= , and this is denoted as the second dependent variable for W.  The non-
stationary convolution operator, ( )( )' , ,W x x k x z− ∆ , handles lateral velocity variations 
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by using a different operator for each output point. In equation 2, ( )( )' , ,W x x k x z− ∆  is 

infinitely long; that is, it is not compactly supported. The FOCI algorithm can be used to 
find a nearly stable approximation to ( )( )' , ,W x x k x z− ∆  that has a compact support by 

which equation 1 can be approximated.  

Stability here means that after m repeated applications of applying W  (the 
approximated operator) in a recursive scheme in a homogeneous 

medium, ˆ 1 ~ 1
m mW mε ε≤ + + , where ‘^’ means the Fourier transform over the spatial 

coordinate. When 0ε = , then W  is perfectly stable and technically non-stable otherwise. 
However, if 1mε , then W  is practically stable. The region ( ) xk x k≥  is called the 

propagating region while the region ( ) xk x k< is called the evanescent region. In the 

propagating region, the Fourier transform of the ideal extrapolator yields ˆ 1W = , but 

gives ˆ 1W <  in the evanescent region. 

The FOCI algorithm uses two useful properties of Ŵ  

 ( )( ) ( ) ( )ˆ ˆ ˆ, , , , , ,
2 2x x x
z zW k k x z W k k x W k k x∆ ∆⎛ ⎞ ⎛ ⎞∆ = ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (3) 

and 

 ( ) ( ) ( )1ˆ ˆ, , , , , 
2 2x x x
z zW k k x W k k x k k x− ∗∆ ∆⎛ ⎞ ⎛ ⎞= <⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (4) 

where “*” indicates the complex conjugate. Next, let ( )/ 2W z∆  be a compactly 
supported approximation (where the functional dependence has been suppressed except 
for z∆ ) as in  

 ( ) ( ) ( )/ 2 / 2forW z n W z∆ = Ω ∆ , (5) 

where Ω  is a Hanning window of length forn . The FOCI algorithm then seeks another 

compactly supported operator IW  such that 

 ( ) ( )1 ˆ/ 2 / 2IW W z F W z
η− ⎡ ⎤• ∆ = ∆⎢ ⎥⎣ ⎦

, (6) 

where 1F −  symbolizes the inverse Fourier transform over xk , the bullet denotes spatial 
convolution, and 0 2η≤ <  is an adjustable parameter. The function of the right hand side 
of equation 6 is a zero-phase bandlimited approximation to a delta function. If 0η = , 
then the right hand side is truly a delta function and hence IW  will be an exact inverse of 
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( )/ 2W z∆ . On other hand, when 0η > , IW  will be a band-limited inverse of ( )/ 2W z∆ . 

Since ( )/ 2W z∆ has the half that phase of ( )W z∆ , and since IW  has the opposite phase of 

( )/ 2W z∆ , the FOCI approximation to ( )W z∆ is 

 ( ) ( ) ( )* / 2F IW z W W z W z∆ = • ∆ ≈ ∆  (7) 

which follows from the approximate inverse nature of  IW  and from equations 3 and 4. 
Equation 7 shows that the FOCI operator can be assembled from the convolution of an 
approximate forward operator with the conjugate of its bandlimited inverse: hence the 
acronym FOCI. Since both ( )/ 2W z∆  and IW  are compactly supported by design then so 

is ( )FW z∆ . 

In the current design of the FOCI extrapolator, the phase accuracy is limited by the 
initial estimate of the forward operator for a half step, ( )/ 2W z∆ . The bandlimited 
inverse obtained by solving equation (6) can, at best, negate this phase. The parameter η  
(equation 6) controls the degree of evanescent filtering in the final composite operator 

( )FW z∆  (equation 7). For 0η = , the resulting ( )FW z∆  is all-pass (no evanescent 

filtering), while for 2η = , ( )FW z∆  has strong evanescent filtering. Since evanescent 
filtering is not needed at every depth step, dual operator tables are used in depth 
migration, the first table with strong evanescent filtering and a second with very little 
(Margrave et al., 2005). This corresponds to the choice of two different η  values 
(equation 6) when constructing these tables. Then, for most extrapolation steps, the 
second table corresponding to a small η is used, but for every thj step, the first table with 
large η  is used. Moreover, the length of ( )FW z∆  in samples is given by 

1op for invn n n= + −  where forn = length of ( )/ 2W z∆  and invn = length of ( )/ 2IW z∆ . 
Further, a post-design shorter operator can be obtained by multiplying the final operator 
with a Hanning window as in  

 ( ) ( ) ( )H win FW z n W z∆ = Ω ∆ , (8) 

where winn  is the length of the post-design operator. Note that in the current design of 
FOCI, ( )/ 2W z∆  and ( )HW z∆  are obtained in a suboptimal way. To make optimal 
approximations and hence increase the stability of this method, we introduce the 
following enhancements: 

i) Weighted least-squares approach to approximate ( )/ 2W z∆ . 

ii) Weighted least-squares approach to obtain ( )HW z∆ . 
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Using a weighted least square approach for the forward operator 
Instead of using a Hanning window to truncate the forward operator (equation 5), 

which is suboptimal, we use weighted least-squares. The 1D discrete Fourier transform 
over the spatial coordinate of the forward operator is given by 

 ( ) ( )
( )

( )1 / 2

1 / 2

ˆ , , / 2 , , / 2 x

N
im k n x

x
n N

W m k z x W n x z eω ω
−

∆ ∆

=− −

∆ ∆ = ∆ ∆ ∆∑  (9) 

and 

 2
xk

M x
π∆ =
∆

, (10) 

where M is the number of samples of the Fourier transform, and N is the number of filter 
coefficients (Thorbecke et. al., 2004). The ideal extrapolation operator Ŵ  is symmetric 
with respect to xk , which implies that the complex-valued extrapolation filter coefficients 
of W  should be even.  This also means that 

 ( ) ( )n nW x W x−= , (11) 

This even-symmetry requirement suggests that N should be odd with the coefficient 
index, n, bounded by (Hale, 1991) 

   ( ) ( )1 / 2 1 / 2N n N− − ≤ ≤ − . (12) 

 To obtain a least-squares solution, M N> , so that there are more equations than 
unknowns. Equation 9 can also be expressed in matrix notation as  

 Ŵ FW= , (13) 

where F is the appropriate M by N subset of the Fourier transformation matrix. A 
weighted least-squares solution is given by (Parks and Burrus, 1987; Thorbecke, 2004) 

 
1 ˆH H

LSW F F F W
−

⎡ ⎤= ϒ ϒ⎣ ⎦ , (14) 

where the superscript H denotes the complex-conjugate transpose, ( )xkϒ  is a non-
negative error weighting function, and the subscript LS indicates the least-squares 
approximation. In this method of weighted least-squares, a transition band is used for the 
transition region so that the desired transform does not have discontinuities (Parks and 
Burrus, 1987; Selesnick et. al., 1996). In other words, the band of wavenumbers for the 
transition region is simply removed from the error definition, and the region is called the 
transition band or “don’t care” band. Moreover, the weight function puts much more 
weight on the propagating region than the evanescent region. The error function becomes 
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 ( ) ( ) ( )
2( 1) / 2

( 1) / 2

ˆˆ , , z/2 , , z/2
M

x x x
m M

E k W m k W m kω ω
−

=− −

= ϒ ∆ ∆ − ∆ ∆∑ , (15) 

where 

 ( )
1           

0             2       

           2   

x

x x

x

k k

k k k k k

k k k
x

α

α α

α
πε

⎧
⎪ ≤
⎪

ϒ = < < −⎨
⎪
⎪ − < <

∆⎩

, (16) 

such that  

 1ε , (17) 

where ( )sink kα α= and α is the maximum propagation angle , /k f v= , andε  is the 

weight for the evanescent regions. There is no constraint placed on ( )ˆ , , / 2xW k zω ∆ in the 
transition region. The forward extrapolator can be obtained using 

 
1 ˆH H

LSW F F F W
−

⎡ ⎤= ϒ ϒ⎣ ⎦ . (18) 

We then modify equation (6) to read  

 ( ) ( )1 ˆ/ 2 / 2ILS LSW W z F W z
η− ⎡ ⎤• ∆ = ∆⎢ ⎥⎣ ⎦

. (19) 

Once this is solved by standard (unweighted) least–squares for ILSW , the revised FOCI 
least-squares operator can be calculated using  

 ( ) ( ) ( )* / 2FLS ILS LSW z W W z W z∆ = • ∆ ≈ ∆  (20) 

Using a weighted least-squares approach for the post-design operator 
The same optimization can be carried in the same way to obtain the windowed 

operator, 

 
1 ˆH H

HLS FLSW F F F W
−

⎡ ⎤= ϒ ϒ⎣ ⎦ , (21) 

where ˆ
FLSW is the spatial Fourier transform of FLSW obtained from equation 20. This 

approach enables us to calculate very short operators that remain practically stable in a 
recursive scheme. 

ANALYSIS 

We will show the effect of these enhancements at three stages of the FOCI design  

i) The improvement on the approximate forward operator. 
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ii) The improvement on the FOCI least-squares operator. 

iii) The improvement on the post-design operator. 

Figure 1.a shows the difference between the current design of calculating the forward 
operator,W , and the effect of using weighted least-squares with transition band 
(WLSTB) where the desired response is shown for comparison. The amplitude of 

ˆ
LSW shows more stability than the amplitude ofŴ . This shows that using WLSTB can be 

more effective to in obtaining a better design for the forward operator. The phase spectra 

are shown in Figure 1.b where the phase of ˆ
LSW shows a better approximation to the 

phase of the desired transform than the phase ofŴ . Figure 2.a shows a comparison of the 
amplitudes of the desired transform, ˆ

FW (old FOCI design), and ˆ
FLSW (with WLSTB) and 

the phases are shown in Figure 2.b. The amplitude of ˆ
FLSW , the enhanced operator, shows 

greater stability than the old design which used weighted least-squares for the forward 
operator. The oscillatory behavior of the phase of ˆ

FLSW in Figure 2.b in the evanescent 
region is a direct result of using weighted least-squares where most of the weight is put 
on the wavelike region, and it can oscillate in the band that has lesser importance.  

Next, we will show some comparisons of FOCI and FOCI with WLSTB on poststack 
and prestack examples. Our post-stack algorithm is a standard exploding reflector depth 
migration. Our pre-stack algorithm uses the shot-record migration paradigm and the 
deconvolution imaging condition 

 ( ) ( ) ( )
( ) ( )

*

*

, ,
,

, ,
data shot

shot shot

x z x z
r x z

x z x z
ψ ψ

ψ ψ ξ
=

+
, (22) 

Where ( ),data x zψ is the downward extrapolated data to a depth z, ( )* ,shot x zψ is the 
forward modeled source, ‘*’ is the complex conjugated, and ξ is a small positive stability 
constant.  
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FIG. 1. (a) Amplitude spectra of the desired transform of the exact operator, Fourier transform of 
the forward operator that is obtained by a truncation with a Hanning window, Fourier transform of 
the forward operator obtained with weighted least square with a transition band (WLSTB). (b) 
Phase spectra of the Fourier transform of the exact operator, the forward operator obtained with a 
Hanning window, and the forward operator obtained with WLSTB. The parameters employed 
are 10mx z∆ = ∆ = , 40f = Hz, and 21fown = . 

 

(a) 

(b) 
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FIG. 2. (a) Amplitude spectra of the desired transform of the exact operator, Fourier transform of 
the final operator that is obtained by FOCI, Fourier transform of the final operator obtained with 
weighted least square with a transition band (WLSTB). (b) Phase spectra of the Fourier transform 
of the exact operator, the final operator, and the final operator obtained with WLSTB. The 
parameters employed are 10mx z∆ = ∆ = , 40f = Hz, 21fown = , 31ninvn = , 1η = , 

and 51opn = . 

 

 

 

 

(a) 

(b) 
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However, in the original design of FOCI, the calculated operator with η =1 is only 
used for evanescent filtering applied every 10 or 20 depth steps. The operator that is 
mostly used for extrapolation is obtained with small η such as 0.01. As a result, dual 
operator tables are needed for extrapolation and evanescent filtering (Margrave et al., 
2005). Moreover, spatial resampling that is used by FOCI helps to increase the stability 
of the operators where during the wavefield extrapolation process, the data is divided into 
frequency chunks that are optimally resampled in the spatial coordinates to enhance the 
performance of the extrapolation. As frequency decreases or velocity increases, the 
operators might have poor phase control as the operator wavenumbers will fall in the 
evanescent region. The full theory of spatial resampling is beyond the scope of this report 
and can be found in Margrave et al. (2005). However, we will show its importance using 
Figure 3. The amplitudes of the operators are shown in Figure 3.a compared with the 
desired transform. After spatial resampling, the operator is more stable than before. Also, 
the phases of the operators before and after spatial resampling are shown in Figure 3.b 
where the phase control better matches the phase of the desired transform. This example 
shows that operators corresponding to low frequencies or high velocities will have 
improved performance after spatial resampling. All these factors such as the dual tables 
and spatial resampling explain the good images that were obtained by FOCI with long 
operators.  

The other enhancement to FOCI is by using a WLSTB approach to obtain the post-
design operator. The current design uses a Hanning window to obtain a post-design short 
operator as in equation 8. 

Despite the good images of this operator on Marmousi data (Al-Saleh et al., 2005; 
Margrave et al., 2005); it required a long operator such as 51 points. When we use the 
same design to obtain a shorter operator such as 15 points, it decays for some 
wavenumbers (Figure 4.a) and it does not have an accurate phase (Figure 4.b). However, 
with the WLSTB enhancement, we can obtain short operators that remain stable in a 
recursive scheme. This operator can be designed using 

 
1 ˆH H

HLS FLSW F F F W
−

⎡ ⎤= ϒ ϒ⎣ ⎦ , (23) 

Figure 4.a shows a comparison between the amplitudes of ˆ
HW and ˆ

HLSW compared with 

the desired transform. The amplitude of ˆ
HLSW shows that it can migrate steeper dips than 

the old design. Further, it has much better phase control (Figure 4.b).  
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FIG. 3. The effect of spatial resampling on the stability and accuracy of (a) the amplitude and (b) 
the phase of the operator compared with the desired transforms. The parameters employed 
are 10m,  ' 70m, 10Hz, 21,  31,  =1, and 51fow ninv opx z x f n n nη∆ = ∆ = ∆ = = = = = where 

'x∆ is the new spacing after resampling. 

  

 

 

(a) 

(b) 
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FIG. 4. Post-design operators without and with WLSTB, where (a) shows the amplitude spectra 
and (b) shows the phase spectra. The parameters are 10mx z∆ = ∆ = , 40Hzf = , 21fown = , 

31ninvn = , 1η = , and 15winn = . 

 

 

 

(a) 

(b) 



Wavefield extrapolation 

 CREWES Research Report — Volume 17 (2005) 13 

IMPULSE RESPONSE EXAMPLES 
Figure 5 shows a comparison of the impulse responses of post-stack implementations 

of the phase-shift algorithm, the FOCI algorithm, and FOCI with the WLSTB 
enhancement. The input was a set of six impulses on the center trace, the velocity was 
4000 m/s, and the trace spacing and the depth step were both 10 m. The enhancement of 
FOCI with the weighted least-squares approach has improved the response over the old 
design of FOCI. The operator length of these results is 15 points obtained using equation 
23. The enhanced FOCI operator was more effective in handling the higher angles of 
propagation (Figure 5.b) than the operator that was obtained with a Hanning window 
(Figure 5.a). 

PRESTACK DEPTH MIGRATION OF MARMOUSI DATASET 
We have conducted a series of tests of the enhanced FOCI algorithm with the 

enhancement in imaging the Marmousi structure with pre-stack depth migration. The 
results are compared with the old design of FOCI. The 2-D acoustic Marmousi dataset 
was created at the Instut Francais du Petrole (IFP) (Bourgeois et al., 1991). With the 
presence of complex reflectors, steep dips and strong velocity gradients, it is widely 
recognized as an ideal synthetic dataset for testing migration algorithms. The dataset 
consists of 240 individual shot records of 96 traces each in a marine, towed streamer, 
configuration. The source and receiver intervals are 25 m and the highest coherent 
frequencies in the data are about 50 Hz. Prior to migration, we applied a wavelet shaping 
filter designed to whiten the signal spectrum and to remove an approximately 60 ms 
delay due to ghosting and water-bottom multiples. We also interpolated each shot to a 
receiver spacing of 8.3333 m. Figure 6.a shows an approximation to the Marmousi 
reflectivity. The reflectivity was calculated using  

( ) ( ) ( ), sgn ln , ln ,r x z v x z v x z
z

∂⎛ ⎞= − ∇⎜ ⎟∂⎝ ⎠
. The migration results of FOCI and FOCI with 

WLSTB are shown in Figures 6.b and 6.c. It is apparent that the image in Figure 6.c is in 
better agreement with the reflectivity in Figure 6.a. Figure 7.a shows a close-up of the 
central part of Figure 6.a and Figures 7.b and 7.c shows close-ups of Figures 6.b and 6.c. 
These demonstrate that we can see much more detail with FOCI using WLSTB with this 
short operator. The operator length is 15 points obtained from 

31,  21,  15inv for winn n n= = = for both results. This enhancement enables us to obtain even 
further short operators. Figure 8 shows the migration result 
with 31,  21,  9inv for winn n n= = = . Even with this short operator, a good image for 
Marmousi can be obtained. This enhancement shows that the FOCI algorithm can now 
generate good images with very short operators.  

Figure 9 shows different comparisons of FOCI versus FOCI with WLSTB with 
different operator lengths. For example, Figure 9.a shows close-ups of the best image 
obtained using FOCI with 51winn = , and Figure 9.b shows the same parts but obtained 
with the enhanced algorithm using the same operator length. They are similar but more 
detail is visible with the enhancement. As the operator length decreases to 15 points 
(Figure 9.c), we can still see good detail even with a 9-point operator (Figure 9.d). Figure 
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10 shows the runtimes of six migration results with six operator lengths. This figure 
shows that shorter operators are computationally more efficient than long operators. 

 

 

FIG. 5. Impulse responses of (a) phase shift migration, (b) FOCI, and (c) FOCI with WLSTB. The 
parameters are 10x z∆ =∆ = m, 0.004t∆ = ms, 101forn = , 121ninvn = , 1η = , 

and 15winn = . 

(a) 

(b) 

(c) 
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FIG. 6. Prestack depth migration results of Marmousi dataset where (a) shows the reflectivity, (b) 
shows the result with the current design of FOCI, and (c) shows the result of FOCI with the 
weighted least-squares enhancement. The parameters are 8.3333x z∆ = ∆ = m, 

0.004t∆ = ms, 21fown = , 31ninvn = , 1η = , and 15winn = . 

(a) 

(b) 

(c) 
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FIG. 7. Close-up views of the shallow central sections of Figures 6.a,  6.b, and 6.c. 

(c) 

(b) 

(a) 
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FIG. 8. Prestack migration result obtained with the enhanced FOCI algorithm with a 9 point 
operator. 

 

CONCLUSIONS 
The forward operator and conjugate inverse (FOCI) algorithm uses Wiener filtering 

and spatial resampling to design wavefield extrapolators that remain practically stable in 
a recursive scheme. The FOCI algorithm required long operators to generate good 
images. Enhancing the FOCI algorithm with weighted least-squares using a transition 
band for the transition region; enables one to design short operators that remained 
practically stable in a recursive scheme. In this approach of weighted least-squares, the 
region that connects the wavelike and evanescent regions is simply removed from the 
optimization by applying a zero-weight to it. This region, the transition band, contains the 
discontinuities, which are a potential source for instability.  

Enhancing FOCI with weighed least-squares eliminates the need for dual tables for 
evanescent filtering since the operator can attenuate the evanescent energy very 
effectively. With this enhancement, FOCI is now even more computationally efficient 
due to its ability to be designed with short operators.  
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FIG. 9. Comparisons of FOCI before and after the enhancement at zoomed sections with various 
operator lengths where (a) is obtained from FOCI (old design) with 51winn = , (b) is obtained 

from FOCI with WLSTB using 51winn = , (c) is obtained from FOCI with WLSTB using 

25winn = , and (d) is obtained from FOCI with WLSTB using 9winn = . 

 

(a) 

(b) 

(c) 

(d) 
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FIG. 10. Runtimes versus operator lengths where 12.5x z∆ = ∆ = m, and 0.004t∆ = ms. 

 

REFERENCES 
Al-Saleh, S. M., and Margrave, G. F., and Bancroft J.C., 2005, Using a transition band in the weighted least 

square design of wavefield extrapolators, This volume. 
Bourgeois, A., Bourget, M., Lailly, P., Poulet, M., Ricarte, P. and Versteeg, R., 1991, Marmousi, model 

and data: in Versteeg, R. and Grau, G. (editors), 1991, The Marmousi experience, Proceedings of 
the 1990 EAGE workshop on practical aspects of seismic data inversion, EAGE, p5-16. 

Hale, D., 1991, Stable explicit depth extrapolation of seismic wavefield, Geophysics, 56, 1770-1777. 
Holberg, O., 1988, Towards optimum one-way wave propagation, Geophys. Prosp., 36, 99-114. 
Margrave, G. F. and Ferguson, R. J., 1999, Wavefield extrapolation by nonstationary phase shift: 

Geophysics, 64, 1067-1078. 
Margrave, G.F., Geiger, H.D., Al-Saleh, S., and Lamoureux, M.P., 2005, Improving explicit depth 

migration with a stabilizing Wiener filter and spatial resampling: submitted to Geophysics 
Parks, T.W., and C.S. Burrus, 1987, Digital Filter Design, John Wiley & Sons, pp. 54-83. 
Selesnick, I.W., Lang, M., and Burrus, C.S., 1996, Constrained Least Squares Design of FIR Filters with 

Specified Transition Bands, IEEE, 44, 1879-1892. 
Soubaras, R., 1996, Explicit 3-D migration using equiripple polynomial expansion and Laplacian synthesis, 

Geophysics, 61, 1386-1393. 
Thorbecke, J., Wapenaar, K., and Swinnen, G., 2004, Design of one-way wavefield extrapolation operators, 

using smooth functions in WLSQ optimization, Geophysics, 69, 1037-1045. 

ACKNOWLEDGEMENTS  

We wish to thank the sponsors of the CREWES project and the POTSI project. We 
also specifically thank NSERC, MITACS, and PIMS for providing funding and other 
support. We would like also to thank Saudi Aramco Oil Company. We also thank Chuck 
Ursenbach for his comments and suggestions. 

 


