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ABSTRACT

Adaptive windowing algorithms are critical for improving imaging speed with the Ga-
bor wavefield extrapolator. These algorithms help to reduce redundancy of computation
while keeping a certain level of imaging accuracy. We propose and test a new adaptive
windowing algorithm for the Gabor depth imaging. The new algorithm uses a phase error
criterion in the Gabor extrapolation algorithm to determine a set of spatially variable win-
dows that sum to unity. The new windowing algorithm incorporates an important physical
constraint because the phase is one of the basic quantities used to describe propagating
wavefields. The phase error windowing algorithm is indirectly dependent upon both veloc-
ity and wavenumber since the phase is a function of both variables. Comparisons between
the new algorithm and a previously published method using velocity alone as a criterion
are presented.

INTRODUCTION

The Gabor wavefield extrapolation uses the Gabor transform, also known as the win-
dowed Fourier transform, to deal with lateral velocity variations (Margrave and Lamoureux,
2001). This method is related to the ‘phase-screen propagator’ method (Wu and Huang,
1992; Roberts et al., 1997; Jin et al., 2002) imaging strong lateral velocity variations. Win-
dows are chosen to localize wavefields in regions (spatially) and correspondingly the wave-
field extrapolation problem is also localized. In each window, we calculate a local mean
velocity from the migration velocity model and refer to these localized velocities as refer-
ence velocities and use them to calculate the Gabor extrapolators. The Gabor extrapolator
is an approximation to the locally homogeneous extrapolator such as the generalized phase
shift plus interpolation (GPSPI) extrapolator (Margrave and Ferguson, 1999).

The Gabor transform usually uses a set of uniform windows, where each window is a
spatially translated (shifted) copy of a mother window, which in this paper is a Gaussian.
We choose our set of translated Gaussian windows such that they satisfy a partition of unity
(POU) (Margrave and Lamoureux, 2001), meaning that their sum is precisely unity over
the real line. In the Gabor wavefield extrapolation, we use these localize velocities to cal-
culate the locally homogeneous extrapolators and use them to extrapolate wavefields. If the
width of Gaussian windows is very narrow, then it can be shown that the Gabor wavefield
extrapolation algorithm approaches the same result as GPSPI. In practice, this is not use-
ful because computation time will be overwhelming. For a practical algorithm, the window
width must relate to the velocity variation, and since this is a function of position, it follows
that we need to vary the window width with position. For example, in a laterally homo-
geneous velocity profile, there is no velocity variation in the lateral dimensions. In this
case, only one reference velocity and one Fourier transform are required. For slowly vary-
ing velocity structures, more windows are required to achieve an accurate extrapolation. In
abrupt velocity structures, we use many windows to get the approximate wavefield extrapo-
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lators accurate enough according to a certain accuracy criterion. Thus, we need an adaptive
windowing algorithm to determine the minimum number of windows such that the Gabor
extrapolation operator satisfies an accuracy criterion in wavefield extrapolations. Gross-
man et al. (2002) gave an adaptive windowing algorithm utilizing velocity gradients in the
lateral dimensions to decide where windows are needed. The algorithm has been used in
a Marmousi imaging with the Gabor wavefield extrapolator (Ma and Margrave, 2005) and
has shown good imaging results. We introduce the new phase-error adaptive windowing al-
gorithm, which considers velocity variations indirectly, by directly using phase error as the
windowing criterion. The new algorithm gives a better adaptive windowing scheme than
the Grossman et al. (2002) algorithm 1 does in some aspects, resulting in more physically
controlled windowing in the Gabor imaging.

THE PHASE-ERROR ADAPTIVE WINDOWING ALGORITHM

The Gabor extrapolator in our depth imaging applications is used as an approximation
of the GPSPI extrapolator2. A GPSPI extrapolation is an ‘locally homogeneous’ wave-
field extrapolation method, which can be written as (after Margrave and Ferguson, 1999;
Margrave et al., 2004).

ψP (xT , z + ∆z) =

∫
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ψ̂(kT , z)Ŵ (kT , xT ,∆z) exp (−ikTxT )dkT , (1)

where
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where ∆z is the step size in z (vertical) direction for the wavefield extrapolation, ω 3 is
temporal frequency and v(xT ) denotes velocity as a function of lateral position along a thin
layer with thickness of ∆z. Equation (1) extrapolates wavefields at depth z to depth z+∆z
in the frequency-wavenumber domain.

In the Gabor wavefield extrapolation, we use the Gabor extrapolator in windows to
replace the exact extrapolators in equation (1) (defined by (2) and (3)). i.e., we use

1We will call it the velocity gradient adaptive windowing (VGAW) algorithm in the following sections.
2We treat it as a so-called ‘exact’ extrapolator.
3All the wavefields that we mentioned and will talk about are in the temporal Fourier domain. i.e., they

have a temporal frequency (ω) dependency, which we haven’t expressed explicitly.
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Ŵ (kT , xT ,∆z) ≈
∑

j∈Z

Ωj(xT )Sj(xT )Ŵj(kT ,∆z) (4)

to calculate the approximation of the exact wavefield extrapolator Ŵ described in equa-
tions (2) and (3), where Ωj is a family of windows composing a partition of unity (POU)
(Margrave and Lamoureux, 2001), Sj(xT ) is a split-step Fourier correction, Ŵj(kT ,∆z)
is an approximate wavefield extrapolator calculated with a kz defined by a similar formula
to (3) using reference velocity vj instead of vT in the formula (see also equation (6)). The
symbols in (4) are defined as

Sj(xT ) = exp

(

iω∆z

(

1

v(xT )
−

1

vj

))

, (5)

Ŵj(kT ,∆z) = exp (ikz∆z) (6)

and

vj =

∫

R
Ωj(xT )v(xT )dxT
∫

R
Ωj(xT )dxT

. (7)

The Ŵj(kT ,∆z) in equation (6) has a dependency on the reference velocity vj inside
window Ωj(xT ), which is defined in (7), and makes Ŵj(kT ,∆z) implicitly depend on xT

within window Ωj(xT ).

Using (4) in (1) and rearranging gives

ψP (xT , z + ∆z) ≈
∑

j∈Z

Sj(xT )Ωj(xT )

∫

R

ψ̂(kT , z)Ŵj(kT ,∆z) exp (−ikTxT )dkT , (8)

which is the wavefield extrapolation formula used in the Gabor wavefield extrapolation.

An appropriate interpretation of equation (8) should be the Gabor wavefield extrap-
olation with a split-step Fourier correction; in (8), a local wavefield ψ̂(kT , z) has been
extrapolated with a local wavefield extrapolator 4 Wj(kT ,∆z) related to a constant velocity
only locally valid, spatially transformed with the inverse Fourier transform, applied with a
split-step correction Sj and localized by a window Ωj(xT ). After all these processes, we
get the extrapolated wavefield ψP (xT , z + ∆z) at depth z + ∆z from the one at depth z.

4We call it the Gabor extrapolator.
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Since wavefield extrapolator is directly related to the accuracy of wavefield extrapo-
lation, the error between the locally homogeneous wavefield extrapolator Ŵ (kT , xT ,∆z)

and its approximation
∑

j∈Z

Ωj(xT )Sj(xT )Ŵj(kT ,∆z) can be set as a criterion to control

accuracy in the Gabor wavefield extrapolation. That is,

ε =
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, (9)

where ε is the phase error in terms of arguments of the wavefield extrapolators, arg denotes
arguments of complex numbers defined in a form of

arg(x+ iy) = tan−1(
y

x
), (10)

where x, y are real numbers, ‖‖ is an appropriate norm. Notice that ε depends on the
temporal frequency ω, the transverse wavenumber kT and the transverse coordinate xT .

In this paper, we select L-1 norm for the phase error estimation (9), which is
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(11)

For convenience, we will discuss the phase error related to one of these windows. From
equation (11), we can write a similar formula to estimate the phase error corresponding to
a specific window Ωj . We have
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∥

∥

∥
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1

j, k ∈ Z, (12)

where εj is the total phase error within the jth window Ωj , Ŵ (kT , xT ,∆z) and its approx-
imation have been windowed by Ωj , the reference velocity used to calculate the Gabor
extrapolator equals to the jth reference velocity vj . There are methods for phase error esti-
mations (Ferguson and Margrave, 2005). We select a fractional phase error estimation for
this paper, which is

4 CREWES Research Report — Volume 17 (2005)



A new adaptive windowing algorithm
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where εjr is defined as a fractional or relative phase error with respect to the phase of the
exact extrapolator in the jth window.

Notice that in equation (13), the calculation of the exact and approximate wavefield
extrapolators is involved in three domains, i.e., they are functions of three variables, xT ,
kT and ω. For kT in phase error estimation formula (13), we use the first part of equation
(3) to calculate kz in the propagation regime. kz used in the calculation of the exact extrap-
olator is a function of xT via v(xT ). Using (13) and a threshold for phase errors, we can
control phase errors for the Gabor wavefield extrapolator, thus the accuracy of propagating
seismic wavefields. Since phase errors are related to the temporal frequency, we expect that
the PEAW windowing results vary with wavefields at different frequencies, and its depen-
dency on the lateral wavenumber kT indicates that wavefields propagating in all directions
will be counted in the PEAW windowing algorithm. The VGAW algorithm and the PEAW
algorithm both use the lateral velocity variations to determine the number of windows.
However, the PEAW use more physical parameters such as frequency and wavenumber.
Therefore, the PEAW algorithm is a better windowing algorithm than the VGAW algo-
rithm, in which wavefields with various frequencies and propagation directions are treated
in the same way as each other.

Equation (13) is the formula used for the phase error estimation in a single window. To
get the total phase error of the Gabor extrapolators from all the windows, we can sum up
all the phase errors given by equation (13).

We give a brief description on how the phase error adaptive windowing (PEAW) algo-
rithm works. In a 2D wavefield extrapolation, for example, given a velocity profile (1D),
we start with one single window across the whole velocity profile. Using equation (13) and
a relative phase error limit, say 10%, the algorithm can tell if the current window needs
splitting or not. If εjr > 10%, the current window will be split in the middle; otherwise,
leave it alone. If εjr < 10% and this is the first and the only window and it has not been
split before, we know that this is the case of an approximately laterally homogeneous ve-
locity model, which does not cause the phase error εjr to exceed the limit 10%. If it is not
the first and the only one, we will move into the next window and repeat the process until
the last one. This process is called ‘sweeping’. The algorithm starts ‘sweeping’ over and
over until the phase error criterion is satisfied in all windows. Following this the algorithm
begins another process called ‘combining’.

Though all individual windows are not splittable by themselves, there is the possibility
that some neighbouring windows may have the same (or very close) reference velocity as
each other now, which means that the combined window with them may also satisfies the
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phase error criterion. This was not the case before because they were combined with other
windows containing fairly different velocities and violated the phase error criterion. The
algorithm goes back and inspects if this is true for each pair of neighbouring windows. The
‘combining’ process will merge them depending on the phase error in the newly combined
window. The ‘combining’ process is also recursively executed until the phase error criterion
does not hold for a combined window from any pair of neighbouring windows. In this
way, we may reduce the number of windows and eliminate some redundancy in wavefield
extrapolations.

APPLICATION OF THE ADAPTIVE WINDOWING ALGORITHMS

We design some velocity profiles such as a homogeneous model, a step velocity model
and a combined velocity model recreated from Grossman et al. (2002).

Windowing with simple velocity profiles
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FIG. 1. Windowing with a Homogeneous Velocity Model
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In the velocity gradient adaptive windowing (VGAW) algorithm, we use a parameter
‘factor’ to control the number of windows according to the lateral velocity variations. The
larger the ‘factor’ is, the more windows are used; the smaller the ‘factor’ is, the fewer win-
dows are used. For more discussion on parameter ‘factor’, see Ma and Margrave (2005). In
the phase error adaptive windowing (PEAW) algorithm, we set a threshold as the percentage
of the phase of the exact extrapolator, the relative phase errors of the Gabor extrapolators
will be compared to this threshold to determine the number of windows. If the threshold
is set small, the PEAW algorithm gives more windows. Otherwise, fewer windows will be
created. For constant velocity profiles, we can predict that either of the adaptive algorithms
should give one uniform window across a given velocity profile no matter what thresholds
are used (see in Figure 1).
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FIG. 2. Windowing with a Step Velocity Model

The adaptive windowing results with both algorithms on a step velocity profile are
shown in Figure 2. We can see that the VGAW algorithm gives different number of win-
dows with different thresholds; for factor=5, we have 2 windows, and for factor=20, we
have 4 windows. For the PEAW algorithm, if the phase error threshold is set large (50%),
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then fewer windows are used; if the threshold is small, more windows are used (compare
Figure 2 (c) and (d)). We also can see that when we change the controlling parameters in
the both adaptive windowing algorithms, the number of windows varies in different ways.
For the VGAW algorithm, windows are added in regions with velocity gradients. For the
PEAW algorithm, windows are split according to the phase errors due to velocity variations.

Windowing with complicated velocity profiles
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FIG. 3. Windowing with a Complicated Velocity Model

We use a velocity model recreated from Grossman et al. (2002), which includes lateral
velocity structures of a few kinds. Such structures as homogeneous, random, step, steep-
ingly varying velocity models are combined together. The results shown in Figure 3 are
used to demonstrate the PEAW algorithm while changing the temporal frequency. A result
using the VGAW algorithm is shown in Figure 3 (a) for comparison. Since the phase er-
ror of the Gabor wavefield extrapolator is related to the number of windows, we think the
accuracy of the Gabor wavefield extrapolation can be directly related to the number of win-
dows (without proof). As a result, we can compare the VGAW windowing (Figure 3 (a))
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to the PEAW windowing (Figure 3 (b)) because they have almost the same set of windows,
which means that they create Gabor extrapolators with comparable accuracies. Based on
these, we conclude that with a factor of 5 used in the VGAW method, we can only get a
comparable accuracy given by the PEAW with a relative phase error of 5% for wavefields
with a frequency of about 3 Hz. If we increase the frequency, then we can not extrapolate
wavefields with the same set of windows (for 3 Hz) at frequencies beyond 3 Hz and keep
phase errors below 5%.

In Figure 3 (b), (c) and (d), we can see that the number of windows rises very quickly
with the increment of the frequency, which indicates that more windows are needed in order
to keep phase errors below the threshold 5% even the velocity profile remains unchanged.
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FIG. 4. Windowing with a Complicated Velocity Model

We have seen the windowing results varying with velocity models, showing how win-
dows adapt to the lateral velocity structures. We have also observed that the temporal
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frequency has influence on the number of windows in the PEAW (see Figure 3). Figure 4
shows the windowing results using the PEAW when we employ different numbers of the
transverse wavenumber kT .

In Figure 4, we use the same the velocity model and the frequency (30 Hz). When
we use more kT ’s, the PEAW gives fewer windows to meet the phase error criterion (5%
relative phase error). We explain this phenomenon in the way that wavefields propagating
in various directions (corresponding to kT ) tend to average out phase errors. We can use
many kT ’s to make the redundency of windows as less as possible. In this way, efficient
calculations in the Gabor extrapolation is expected if we use this property of the PEAW.

When we turn to the VGAW, we can only use the information on velocity variations.
With the PEAW algorithm, the number of windows is controlled by three parameters, all of
which are related to the physical properties of the wavefields and the Gabor extrapolator.
In the VGAW, we can not relate the accuracy of wavefield extrapolations to the physical
parameter such as the temporal (ω) and spatial frequencies (kT ). Therefore, we are not
sure about phase errors to wavefields at various frequencies and propagating in directions.
The VGAW may help us to get accurate phases for a certain wavefield but not all possible
wavefields. The PEAW is one of the best windowing algorithms for the Gabor wavefield
extrapolation.

CONCLUSIONS

The phase error adaptive windowing (PEAW) algorithm is a way better than the velocity
gradient adaptive windowing (VGAW) method. The PEAW algorithm considers phase
errors as criteria for window choosing, which gives a physically related windowing scheme
and a possibility to get better and reliable imaging with the Gabor extrapolator.
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