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Anisotropic reverse-time migration for tilted TI media 

Xiang Du, John C. Bancroft, and Larry R. Lines 

ABSTRACT 
Seismic anisotropy in dipping shales results in imaging and positioning problems for 

underlying structures. We develop an anisotropic reverse-time depth migration approach 
for P-wave and SV-wave seismic data in transversely isotropic (TI) media with a tilted 
axis of symmetry normal to bedding. Based on an accurate phase velocity formula and 
dispersion relationships for weak anisotropy, we derive the wave equation for P-wave and 
SV-wave propagation in tilted transversely isotropic (TTI) media. The accuracy of the P-
wave equation and the SV-wave equation is analyzed and compared with other acoustic 
wave equations for TTI media. Using this analysis and the pseudo-spectral method, we 
apply reverse-time migration to numerical and physical-model data. According to the 
comparison between the isotropic and anisotropic migration results, the anisotropic 
reverse-time depth migration offers significant improvements in positioning and reflector 
continuity over those obtained using isotropic algorithms. 

INTRODUCTION 
Much hydrocarbon resource exploration and development involves classic dipping 

anisotropic sequences, and thick anisotropic sequences of dipping sandstones and shales 
often overlie the reservoir in fold and thrust belts, such as in the Canadian Foothills (Isaac 
and Lawton, 1999). In these cases, during data processing – particularly depth migration, 
with either an isotropic migration algorithm or a VTI assumption – there will be imaging 
problems and mispositioning errors. Anisotropic depth migration is required to correctly 
locate images when TTI strata are present. Alkhalifah (1995) proposed Gaussian beam 
depth migration for VTI media. Vestrum et al. (1999) adopted a ray-tracing algorithm to 
image structures below dipping TI media. Several methods have been proposed based on 
the operator used for wavefield extrapolation in laterally varying VTI media. Ferguson 
and Margrave (1999) addressed nonstationary phase-shift for TI media. Zhang et al. 
(2001) proposed short spatial convolution operators to extrapolate the wavefields 
recursively in space-frequency domain for both qP and qSV-waves in tilted TI media. 
Baumstein and Andersonet (2003) combined the phase-shift and explicit correction 
operators to solve the cost problem by using a shorter explicit correction operator. As a 
wave equation technique using a two-way hyperbolic wave equation, reverse-time 
migration (McMechan, 1983; Wu et al., 1996; Yoon et al., 2003) can handle not only 
multi-arrivals but also steep dips and overturned reflections. It propagates the measured 
wavefield backward in time using a hyperbolic wave equation and does not suffer from 
dip limitation of one-way downward continuation algorithms. Although numerical 
computation of the wave equation is expensive, rapid development of computer hardware 
enables reverse-time migration to be widely used in production image problems (Yoon et 
al., 2003). In this paper, we present an anisotropic reverse-time migration for tilted 
transversely isotropic media. We derive the P-wave equation and SV-wave equation for 
TTI media from Thomsen’s (1986) phase velocity formula. We also analyze the accuracy 
of these equations. Examples of numerical and physical models are shown to demonstrate 
the effectiveness of reverse-time migration in dipping media. 
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THEORY 

Simplified P and SV wave equation for TTI media 
To simulate acoustic-wave propagation in a medium with a vertical axis of symmetry 

(VTI), Alkhalifah (2000) proposed an acoustic wave equation by simply setting the shear 
wave velocity to zero. He showed that the new acoustic VTI wave equation yields a 
kinematically good approximation of P-wave propagation as compared to the full elastic 
solution in VTI media. Zhang et al. (2003) extended the acoustic wave equation for VTI 
media to one for TTI media. In fact, contrary to the conventional wisdom that setting Vs0 
equal to 0 eliminates shear waves, the acoustic wave equation introduces diamond-shape 
artifacts, which means that it does not eliminate the shear wave phase velocity in other 
directions. Klie and Toro (2001) used a weak anisotropy approximation to successfully 
suppress these “artifacts”. Grechka et al. (2004) gave a detailed discussion about the 
shear waves in acoustic anisotropic media. Alkhalifah (2000) proposed placing a thin 
isotropic layer between the source and the first anisotropic medium, but this imposes 
limitations to his formulation not only for modeling anisotropic cases, but also for 
possible extensions to other seismic processing and imaging stages. Strong shear waves 
will contaminate P-wave data produced by any full waveform modeling code (Grechka et 
al., 2004). Moreover, imaging techniques such as reverse-time migration will have 
artifacts due to the shear waves. To implement the P and SV wave reverse-time migration 
in TTI media, we need to get the individual P wave and SV wave equations. We start with 
the VTI phase-velocity equation (Tsvankin, 1996) written as 
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When we rotate the symmetry axis from vertical to a tilt angle φ , the phase velocity in 
the direction measured from the vertical direction is:  
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velocity respectively. ε and δ  are Thomsen parameters (Thomsen, 1986), which are 
defined as: 
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where ijc  are elastic moduli. Noting that anisotropic reverse-time migration is expensive 
and weak anisotropy is a reasonable assumption in many real systems (Thomsen, 1986), 
we make the assumption of weak anisotropy, which saves computational effort while 
retaining computational accuracy. This allows us to transform the phase-velocity 
expression of Equation (2). Expanding the radical in a Taylor series and dropping 
quadratic terms in the anisotropy parameters ε and δ , we can obtain the P-wave and SV-
wave phase velocity formula as: 
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To obtain Alkhalifah’s acoustic wave equation for anisotropic VTI media, Alkhalifah 
(2000) simply set 00 =sV , which makes 1=f . Then from Equation (2), the acoustic 
wave equation can be written as 
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By rotating the symmetry axis from vertical to a tilt angle φ , we can get the phase 
velocity for P and SV waves in the direction measured from the vertical direction. The P 
and SV wave phase velocity formulas are shown as follows:  
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Using a similar approach, we can write the Alkhalifah acoustic wave equation for tilt 
angle φ  as 
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If we try to keep higher accuracy for weak anisotropy, we also can expand the radical in 
Equation (2) in a Taylor series and retain the quadratic terms in ε and δ . After tedious 
derivation, we obtain 
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For plane waves travel in the vertical (x, z)-plane, the phase angle is given by  
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When we multiply equations (7) and (8) with the wavefield in the Fourier 
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time-wavenumber domain for TTI media. The P-wave equation for tilted transversely 
isotropic media is 
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The SV-wave equation for tilted transversely isotropic media is 
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In anisotropic seismic modeling and migration, we can use equations (13) and (14) to 
obtain separate P and SV wavefields. Daley and Lines (2004) advocate the formalism for 
Equation (14), which use ( σ , ε ) as parameters rather than ( δ , ε ). 

Discussion of the Simplified P and SV wave equation for TTI media 
To analyze the accuracy of the wave equations, the relationship between phase 

velocity and phase angle is discussed. We compare the difference among the weak 
anisotropy formula, the Alkhalifah acoustic wave formula and the exact P-wave phase 
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velocity formula for TTI media. Figure 1 shows the P-wave phase velocity and phase 
angle curves with 0, 30, 60, and 90 degree dipping angles and 25.0=ε , 1.0=δ . There is 
only a slight difference among them for weakly anisotropic media. Figure 2 corresponds 
to the SV case comparison between phase velocities for weak anisotropy with linear 
approximation, moderate anisotropy with quadratic approximation, and the exact SV-
wave solution for TTI media. There is some difference for the linear solution; however, if 
Equation (8) is modified by retaining the quadratic terms in ε and δ  from the exact SV 
phase velocity formula, the accuracy is greatly improved. This of course requires 
increasing the computational cost. 

We also display the relationship between P-wave and SV-wave phase velocities of 
Figure 1 and 2 in polar coordinates as shown in Figure 3. This reflects the wavefield 
snapshot to some extent, where the red curve denotes velocity based on the simplified 
Thomsen formula, whereas the blue curve is the exact phase velocity. The upper graphs 
show P-wave phase velocity curves with 0, 30, 60, and 90 degree dipping angles. The 
lower graphs correspond to the SV-wave phase velocity curves with same dipping angles. 
In the case of P-waves, there is hardly any difference between the simplified and exact 
formulas. Some differences exist in the SV wave curves, but the shapes are fairly 
consistent. 

In Figure 3, we can observe a maximum difference the true and the liner 
approximation phase velocities that we refer to as the maximum velocity difference. The 
parameters ε  and δ  were varying from 0 to 0.25 with an increment of 0.01 to estimate a 
distribution of absolute maximum velocity difference. The absolute maximum velocity 
difference is plotted as a histogram in Figure 4 that shows the absolute maximum velocity 
difference values are mainly distributed within a 20m/s range that implies minimal 
variance. Consequently the simplified formula can be accurately used in seismic 
modeling and processing in the tilted transversely isotropic media.  

Numerical solution method for P and SV wave equations for TTI media 

The P-wave and SV-wave equations (Equation 13 and 14) can also be written in the 
time-space domain. However, space and time are coupled in the terms 224 / txu ∂∂∂  and 

224 / tzu ∂∂∂ , and these cause computational difficulty in difference schemes, whereas the 
equations are easily solved in the time-wavenumber domain. Therefore the 
pseudospectral method is selected in reverse-time migration (RTM). The pseudospectral 
method (Fornberg, 1987) is a higher accuracy method that needs fewer grid points per 
wavelength to obtain any desired accuracy. It successfully solves the frequency 
dispersion problem which results from a limited difference operator in reverse-time 
migration. In the numerical computation we apply the phase shift in the frequency 
domain, change the velocity and anisotropic parameters ( ε , σ , φ  ) in the spatial domain, 
and transform into the frequency domain again in time steps. 

NUMERICAL EXAMPLES 
To verify the anisotropic reverse-time migration’s effectiveness and accuracy, two 

numerical models are chosen, including P-wave and SV-wave impulse responses, and an 
anisotropic depth migration with a variable velocity model. The P- and SV-wave impulse 
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responses show excellent dipping angle imaging ability compared with the phase-shift 
wave extrapolation shown in (Zhang, et al., 2001). The variable velocity model is 
designed to exhibit the accurate imaging ability of anisotropic reverse-time migration in 
TTI media. 

P and SV wave migration impulse response  

Figure 5 shows the P-wave impulse response in a tilted TI medium with tilt angles of 
0, 30, 60, and 90 degrees. Figure 6 corresponds to the SV-wave impulse response. The 
vertical velocity of the P-wave is 3500m/s and that of the SV-wave is 1500m/s. The 
homogenous medium has Thomsen anisotropy parameters 25.0=ε and 1.0=δ . As an 
illustration of the advantage of reverse-time migration mentioned above, the migration 
results have clear energy for dipping angles up to 90 degrees. With tilt angles being 
changed, the symmetric axis changes accordingly. Considering the anisotropy effect, the 
wavefronts of P-waves and SV-waves differ from the circular ones of an isotropic 
medium and are consistent with those shown in Figure 3.  

Anisotropic depth migration for variable velocity model 
A variable velocity model is shown in Figure 7 that consists of one reflector with three 

horizontal and three dipping segments. The medium has anisotropic parameters 2.0=ε , 
1.0=δ and the tilt angle is 0. Since the tilt angle is zero, the medium is actually VTI. The 

vertical velocity of the model is v(x, z) =1500+0.3z +0.1x (m/s). Figure 8 shows a 
synthetic zero offset section for this model. It was generated by an SU (Seismic Unix 
software available from Center for Wave Phenomena, Colorado School of Mines) 
anisotropic modeling code that treats transversely isotropic media. Figure 9 is the 
isotropic migration result obtained from isotropic reverse-time migration method of the 
6th order accuracy. Figure 10 shows migration of the anisotropic data in Figure 8 using 
anisotropic reverse-time migration for TTI media. The correct medium parameters and 
velocity value are used in the anisotropic RTM. We find that the migration result is an 
excellent match with the exact model interface. Clearly the image in Figure 10 is superior 
to that in Figure 9. The image from the isotropic migration (Figure 9) not only is 
undermigrated but also is placed at a shallow depth. Thus anisotropic RTM gives a 
substantially better image than the corresponding isotropic RTM. However, the overall 
runtime of anisotropic RTM is approximately five-times as long as the isotropic case.  

PHYSICAL MODEL EXAMPLES 

Two scaled physical models, an isotropic reef with a TTI overburden and a TTI thrust 
sheet in an isotropic background, were constructed by the University of Calgary Foothills 
Research Project (FRP). These models were used to investigate the magnitudes of 
imaging error incurred by the use of isotropic processing code when there is seismic 
velocity anisotropy present in the dipping overburden. The transducer dimensions of the 
modeling equipment prevented the acquisition of true zero offset; however, we can 
assume that if the near-offset is close enough to zero, it will be consider zero-offset. 
Migrations of the collected seismic data exhibit the accurate image positioning of 
reverse-time anisotropic migration while isotropic migration gives considerable errors in 
physical position and energy focus. 
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Depth migration for isotropic reef with a TTI overburden 
Seismic data from an anisotropic physical model described by Isaac and Lawton 

(1999) were used to test the migration algorithm. The cross-section of this model is 
shown in Figure 11; it includes a TTI overburden layer, 1500m thick, with the axis of 
symmetry dipping at 450. The layer has parameters Vp0 = 2950m/s, 241.0=ε , and 

100.0=δ . An isotropic layer that contains a simulated reef edge with Vp0 = 2740m/s 
underlies this anisotropic overburden. Figure 12 shows a zero-offset seismic section with 
the surface wave muted. To make the first interface of the model migrate to the correct 
position in the isotropic migration, we consider that the dipping angle is 450 and adopt 
V45 for the upper layer. Migration of the zero-offset section by isotropic reverse-time 
migration yields an image of the reef edge which is displaced by about 350m to the left of 
its true position (Figure 13). Migration by anisotropic reverse-time migration correctly 
positions the edge of the reef, as shown in Figure 14. In this case, the input to the 
migration consisted of a grid containing values of 0pV , ε , δ , and tilt of the symmetry axis 
at each node. Although there are some artifacts caused by interface reflections, these do 
not affect the basement. The reef is imaged to its true position. 

Migration for TTI thrust sheet in an isotropic background 
The second physical model is that of a flat reflector overlain by a TI thrust sheet 

embedded in an isotropic background. The model is shown in Figure 15. The thrust sheet 
is composed of four blocks in the model; each with a unique axis of symmetry. They have 
parameters of Vp0 = 2925m/s, 224.0=ε  and 100.0=δ . The isotropic background has a 
flat basement with Vp0 = 2740m/s. The zero-offset seismic section is given in Figure 16. 
Figures 17 and 18 correspond to isotropic and anisotropic reverse-time migration results. 
The blue lines in the two figures denote the true location of the thrust sheet interfaces.  

With the velocity Vp0 = 2925m/s for the thrust sheet, the isotropic reverse-time 
migration result (Figure 17) produces a partial flat basement, whereas the basement 
beneath thrust sheets exhibits substantial pull up and the energy cannot be focused. The 
interface between the block with 60 degrees tilted angle and the block with 51 degrees 
tilted angle is incorrectly positioned since the black solid line does not match with the 
migration event.  

Migration by anisotropic reverse-time migration (Figure 18) leads to more accurate 
positioning of the reflectors and has nearly flattened the basement reflection, although the 
reflection event is not continuous. The interfering energy pattern at the base reflector 
between 2000m and 3300m is believed to indicate a shadow zone caused by the high-
velocity thrust sheet overlying slower material. The shadow zone is a result of the zero-
offset geometry of the recording. In fact, migration of the prestack data by source-gather 
migration will fill in the shadow zone due to the multiplicity of ray paths afforded by the 
prestack geometry (Kumar et al., 2004). 

CONCLUSIONS  

From the above analysis, it is obvious that anisotropy has a large influence on the 
accuracy of migrated images. Use of a migration algorithm that takes anisotropy into 
account, with correct velocity information, can substantially improve images when 



Du, Bancroft, and Lines 

8 CREWES Research Report — Volume 17 (2005)  

anisotropy is present. In this paper, to implement the reverse-time migration in tilted TI 
media, we first obtained an appropriate P-wave equation to use in place of the isotropic 
acoustic wave equation employed in isotropic reverse-time migration. With Thomson’s 
weak anisotropy assumption, the wave equation for weakly anisotropic P-waves and SV-
waves in tilted transversely isotropic media is derived. Furthermore, the accuracy of the 
P-wave equation and the SV-wave equation is analyzed and compared with other acoustic 
wave equations for TTI media. The pseudo-spectral method is easily used to solve these 
equations, implementing reverse-time migration. According to the migration results from 
numerical and physical-model seismic data, anisotropic reverse-time migration yields 
high accuracy for TTI media. The method is encouraging and promising. The 
computation is still expensive when compared with Kirchhoff migration, and even 
isotropic reverse-time migration. The computational cost of anisotropic RTM is nearly 
five times as large as that of isotropic RTM. The reason for this can be seen from an 
examination of the details of Equation (13). However, with the rapid development of 
computer hardware, computational cost is no longer the handicap that it has been 
historically.  
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 FIGURES 

        

       

FIG. 1. P-wave phase velocity. The black line corresponds to the Alkhalifah formula, the red one 
to the weak anisotropy formula, and the solid one to the exact formula. 
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FIG. 2. SV-wave phase velocity. The red curves correspond to the weak anisotropy formula with 
linear approximation, the green curves denote weak anisotropy with quadratic approximation and 
the blue curves the exact formula. 

    

 

FIG. 3. P and SV-wave phase velocity. The red curves correspond to the weak anisotropy formula 
and the solid line to the exact formula. The upper four graphs correspond to the P-wave and the 
bottom four to the SV-wave. The graphs from left to right denote the results with tilted angle 00, 
300, 600, and 900. 
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FIG. 4. Absolute maximum difference distribution between simplified P-wave velocity formula and 
exact formula. 

       

       a)               b) 

      

     c)              d) 
FIG. 5. P- wave impulse response. (a), (b),(c) and (d) correspond to the result of a tilt angle of 0, 
30, 60, and 90 degrees as indicated by the arrows. 
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      a)                 b) 

   
c)           d) 

FIG. 6. SV-wave impulse response. (a), (b), (c) and (d) correspond to the result of a tilt angle of 0, 
30, 60, and 90 degrees. 

 
FIG. 7. Variable velocity model. 
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FIG. 8. Synthetic zero-offset seismogram obtained using an SU code from Center for Wave 
Phenomena (CWP) for the structural model of Figure 7 for TI media. 

 

FIG. 9. Migration result by the isotropic reverse-time migration method. 

      

FIG. 10. Migration result from the anisotropic reverse-time migration method. 
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FIG. 11. Isotropic reef with a TTI overburden. 

 

 

FIG. 12. Zero-offset seismic section of reef model. 

 

 

FIG. 13. Isotropic reverse-time migration result of the 6th order accuracy for reef model. 
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FIG. 14. Anisotropic migration result of reef model. 

 

FIG. 15. TTI thrust model. 

 

FIG. 16. Zero-offset seismic section of TTI thrust model. 
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FIG. 17. Isotropic reverse-time migration result of TTI thrust model. 

 

FIG. 18. Anisotropic reverse-time migration result of TTI thrust model. 
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