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Quasi-compressional group velocity approximation in a weakly 
general 21 parameter anisotropic medium 

P.F. Daley and E.S. Krebes 

ABSTRACT 

Using a linearized approximation of the phase velocity related to quasi-compressional 
(qP) wave propagation in a weakly general 21 parameter anisotropic medium, an 
approximate eikonal equation is constructed. The corresponding expression for the 
related group velocity is then derived. The degenerate (ellipsoidal) case of (qP) wave 
propagation in an anisotropic medium is explored and an exact group velocity expression 
obtained, together with the exact expressions for the slowness vector components, for this 
reduced case. This ellipsoidal group velocity is taken as the reference or background 
velocity surface. Slowness vector components are in terms of the group velocity vector 
angles. This result is employed as a trial solution in the approximate eikonal equation, 
where the related group velocity surface is taken to be a perturbed ellipsoid. The group 
velocity expressions, both approximate and exact, are numerically compared for an 
anisotropic model that may be classified as weakly anisotropic or, possibly more 
accurately, weakly anellipsoidal, as the background group velocity surface used is an 
ellipsoid.  

INTRODUCTION 

In the recent literature on wave propagation in anisotropic media a number of 
approximate techniques, usually based on perturbation theory, have been used to advance 
the understanding of wave propagation in these complex anisotropic structures. The 
motivation for this is that the exact analytical expressions for quantities such as eikonal 
equations, phase and group velocities and polarization vectors are so complex that they 
usually reveal inadequate information when attempting to determine their significance. 
The general linearized anisotropic problem is considered in Jech and Pšenčík (1989), 
Pšenčík and Gajewski (1998) and Every and Sachse (1992) and other cited references.  

Explicit expressions for qP ray tracing, yielding linearized group velocity 
approximations, in the general, as well as subset media types, may be found in Pšenčík 
and Farra (2005). In that paper, an isotropic background medium is assumed. However, 
as the exact solution for a reduced linearized problem may be determined for an ellipsoid, 
it is this that will be used initially as a reference velocity surface or background medium. 
This follows from a statement in Mensch and Farra (1999): ”Examples obtained in 
homogeneous orthorhombic medium show that a reference media with ellipsoidal 
anisotropy is a better choice to develop the perturbation approach than an isotropic 
reference medium.” The extension to a more general anisotropic medium follows from 
this, as a sphere is point wise topologically equivalent to an ellipsoid, it is that surface 
type that will be used here as a reference surface. What is presented is an extension of the 
theory of a previous work (Daley and Krebes, 2006) where a similar problem for an 
orthorhombic medium was investigated. 
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To establish the accuracy of the approximations, characteristic theory is used to obtain 
the exact expressions for the group velocity vector components in a general orthorhombic 
medium, employing the exact qP phase velocity expression and hence eikonal (Every, 
1980 and Schoenberg and Helbig, 1997). These exact formulae are not included, as they 
are cumbersome, and freely available software such as the series of programs, the latest 
being ANRAY95, (Gajewski and Psencik, 1989) may be used for these computations. 
For simplicity, but without much loss of generality, the medium of propagation is 
assumed to be homogeneous, i.e., the anisotropic elastic parameters are independent of 
the spatial coordinates.  

THEORETICAL PRELIMINARIES  

The linearization process presented by Backus (1965) results in an equation for the 
phase velocity in a general 21 parameter anisotropic medium (see also, Every and Sache, 
1992). This approach is a result of approximating the components of the unit quasi – 
compressional, qP, polarization vector, qPg , by those of the unit phase vector, 

( )1 2 3, ,n n n=n , to obtain a linearization qP phase velocity of the form 
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 (1) 

with 

 ( ) ( )1 2 3, , sin cos ,sin sin ,cosn n n θ φ θ φ θ= =n  (2) 

where θ  is the polar angle measured from the positive 3x  (vertical) axis ( )0 θ π≤ <  and 
φ  the azimuthal angle measured in a positive sense from the 1x  axis ( )0 2φ π≤ < . 

To put equation (1) in a form that has been found to be more useful and instructive, 
add to and subtract from it the quantity (Daley and Krebes, 2006) 

 ( ) ( ) ( )2 2 2 2 2 2
1 2 11 22 1 3 11 33 2 3 22 33n n A A n n A A n n A A+ + + + + . (3) 

The following formula results from equation (2) results, after some reorganization of 
the second and third group of terms, for the linearized qP  phase velocity in a general 
anisotropic medium as 
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This equation is shown to be composed of three groups of terms: those specifying an 
ellipsoid, anellipsoidal deviation terms, and another term composed of the remaining 12 
possible anisotropic parameters that describes an anisotropic medium for qP  wave 
propagation The anellipsoidal deviation parameters, ( )ij kE x , and the parameters, 

( ),k k kH x n  are defined by the formulae 

 ( ) ( ) ( )12 12 66 11 222 2kE x A A A A= + − +  (6) 

 ( ) ( ) ( )13 13 55 11 332 2kE x A A A A= + − +  (7) 

 ( ) ( ) ( )23 23 44 22 332 2kE x A A A A= + − + . (8) 

 ( ) ( ) ( )1 14 56 2 3 16 2 15 3 1, 2k kH x n A A n n A n A n n= + + +  (9) 

 ( ) ( ) ( )2 25 46 1 3 26 1 24 3 2, 2k kH x n A A n n A n A n n= + + +  (10) 

 ( ) ( ) ( )3 36 45 1 2 35 1 34 2 3, 2k kH x n A A n n A n A n n= + + +  (11) 

It should be noted that the expressions ( ),k k kH x n  could have been written in a number 
of other ways. However, numerical experimentation with the formulae obtained in a later 
section indicates that the above arrangement produces the best results when compared to 
the exact solution. Also the arrangement of the terms within the ( ),j k kH x n  expressions 
are consistent with those of Every and Sache (1992). 

The components of the slowness vector are defined in terms of the qP  wave front 
normal vector and phase velocity as 

 ( ) ( )[ ] ( )1
1 2 3 1 2 3, , , ,qP kp p p v n n n n−= =p  (12) 

so that the specification of a pseudo eikonal equation is given by 
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In the above equation the ( ),k k kH x n  may be inferred from the definitions, equations (9)-
(11), for the ( ),k k kH x n  and the equal signs have to be taken within the context that an 
approximation is being considered. The above equation can be put in a form that is only a 
function of ( ),k kx p  with the introduction of the identities, 2 2 2

1 2 3 1n n n+ + =  and 

( ) ( )2 2, , 1qP k k qP k kv x n v x n = . The resulting linearized qP  eikonal equation, obtained after 
minor rearrangement is 
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 (14) 

The method of characteristics (Courant and Hilbert, 1962 and its equivalent, Červený, 
2001) is often used to determine the rays, along which the energy traverses between one 
point in the medium and another. For a formulae equivalent to equation (14), but using an 
alternative notation and a spherical background velocity, Pšenčík and Farra (2006) 
derived formulae for the linearized vector components of the qP  ray velocity in terms of 
phase vector components. They have named this method First Order Ray Tracing 
(FORT). Their derivation will not be repeated here, using equation (14), as the intent of 
this work is to obtain a scalar equation for the qP  group velocity in terms of group 
angles. 

In the degenerate ellipsoidal case, where the 3 symmetry plane correction coefficients 

( )ij kE x  as well as the functions are ( ),k k kH x n  identically zero the qP  eikonal becomes 

 ( ) 2 2 2
11 1 22 2 33 3, 1qP k kG x p A p A p A p= = + + . (15) 

The ray (group) velocity vector and corresponding slowness vector components are given 
generally in terms of some eikonal equation, ( ),k kG x p , by 
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( ) ( ), ,1 1and
2 2

k k k ki i

i i

G x p G x pdx dp
dt p dt x

∂ ∂
= = −

∂ ∂  (16) 

An initial value problem is fully specified, given some initial conditions ( )0t0x = x  and 

( )0t0p = p  at a reference time 0t . The progression of the ray in 3D Cartesian space as 
well as the magnitude and direction of the slowness vector at these points may be 
determined. In what follows the elastic anisotropic parameters are assumed to be spatially 
independent, so that, 0idp dt = , and the initial conditions on p  require that 

( ) ( )0t t=0p = p p  equals some constant for all t . The group velocity in terms of its 
components may then be given as 

 
( )1 2 3

11 1 22 21 33 3, , , ,d dx dx dx A p A p A p
dt dt dt dt

⎛ ⎞= =⎜ ⎟
⎝ ⎠

x

 (17) 

with magnitude 

 

1 22 2 2
1 22 2 2 2 2 21 2 2

11 1 22 2 33 3
d dx dx dx A p A p A p
dt dt dt dt

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎡ ⎤= + + = + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

x

. (18) 

It is convenient to introduce the group velocity angles, that is, the azimuthal and polar 
angles at which the ray propagates. The group azimuthal angle, Φ , 0 2π≤ Φ <  may be 
determined from 

 

2 2 22 2 22

1 1 11 1 11

tan tandx dx dt A p A
dx dx dt A p A

φ
⎡ ⎤ ⎡ ⎤

Φ = = = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ . (19) 

Defining the projection of the 3D group velocity vector onto the ( )1 2,x x  plane as 

 

1 22 2
1 22 2 2 21 2

11 1 22 2
dr dx dx A p A p
dt dt dt

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤= + = +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦  (20) 

the group polar angle, Θ  ( )0 π≤ Θ ≤  is given by 
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( )

1 22 2 2 2
11 1 22 2

3 3 33 3

1 22 2
11 22 11

33

tan

tan cos 1 tan
.

A p A pdr dr dt
dx dx dt A p

A A A

A

θ φ φ

⎡ ⎤+⎡ ⎤ ⎡ ⎤ ⎣ ⎦Θ = = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤+⎣ ⎦=
 (21) 

After a moderate amount of algebra involving basic trigonometric manipulations, first 
solving equation (19) for Φ , and then substituting the result into equation (21) to obtain 
Θ , expressions for the components of the slowness vector, p, may be obtained in terms 
of the group rather than the phase angles and velocity. Defining a unit vector in the 
direction of ray propagation as 

 ( ) ( )1 2 2, , sin cos , sin sin , cosN N N= = Θ Φ Θ Φ ΘN , (22) 

the magnitude of the qP group velocity for the reduced (ellipsoidal) medium is 

 ( )
2 2 2

1 2 3
2

11 22 33

1
,qP

N N N
A A AV

= + +
Θ Φ . (23) 

From the above relations the phase slowness vector in this special case ( )qP eV V=  may be 
written completely in terms of group velocity and angles as 

 
( ) ( ) ( ) ( )1 2 3

1 2 3
11 22 33

, , ,, , , ,e e eV N V N V Np p p
A A A

Θ Φ Θ Φ Θ Φ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

p
. (24) 

This solution will be used as an initial approximation, or trial solution, in the 
approximate eikonal, equation (13), to determine the quasi- compressional (qP) group 
velocity, in terms of group angles, for the more general case of a general weakly 
anellipsoidal anisotropic medium  

GROUP VELOCITY APPROXIMATION 

In this section a qP group velocity estimate using a linearized approximation to the 
exact eikonal equation will be derived using the result obtained in the previous section as 
a trial solution. The ellipsoidal phase velocity is 

 
( )2 2 2 2

11 1 22 2 33 3,qP k k e
v x p A n A n A n⎡ ⎤ = + +⎣ ⎦  (25) 

and the general linearized phase velocity may be recovered from equation (13) as 
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2
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+ + + +

+ + + +
+ + +

(26) 

where the subscript " "e  denotes ellipsoidal and the constraint that the kn  have the 
ellipsoidal angular values has been removed. In an equivalent manner the general 
linearized group velocity may be written as 

 ( ) ( )[ ] ( ) ( ){ }2 2
1 2

1 1
1 , , , ,qP k qP k jk k k jk k ke

V N V N f E N p f A N p
=

+ +  (27) 

Rewriting equation (27) using the approximation, ( ) ( )11 1a a−+ ≈ −  for the { }i  term in 
the denominator, introducing the definitions of kp  presented in equation (24), and as in 
the phase velocity case, relaxing the ellipsoidal constraints on kN , results in 

 ( )
( ) ( ){ }

( )[ ]
1 2

2 2

1 , , , ,1 jk k k jk k k

qP k qP k e

f E N p f A N p
V N V N

− −
≈

 (28) 

The quantities ( )1 , ,jk k kf E N p  and ( )2 , ,jk k kf A N p  may be inferred from equation 
(26). From this it follows that 

 ( )
( )

( )[ ]
( )

( )[ ]
2 2 2

1 21 2 3
2

11 22 33

, , , ,1 jk k k jk k k

qP k qP k qP ke e

f E N p f A N pN N N
A A AV N V N V N

⎧ ⎫≈ + + − −⎨ ⎬
⎩ ⎭  (29) 

The substitutions i j i jn n N N≈  and 2 2
i in N≈  have been introduced, where required, into 

the above result. The rationale for this is that in the initial linearization process the phase 
vector components were used to approximate the components of the polarization vector, 
which in general is not aligned with either the phase or group unit vectors. At that point, 
the group vector components could have been used as they would serve just as well in 
approximating the polarization vector component. However, the use of the phase vector 
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components was more convenient in the initial stages of the problem, being the only 
known quantities. Introducing this approximation into equation (29) yields the following 
approximation for the qP group velocity in a general 21 parameter medium as a function 
of the related ray vector angles 

 

( )

( ){
( )

2 2 2
1 2 3

2
11 22 33

2 2 2 2 2 2
12 1 2 13 1 3 23 2 3

11 22 11 33 22 33

14 56 2 3 16 1 2 15 1 3 2
1

22 33 11 22 11 33

25 46 1 3 24 2 3 26 1 2
2

11 33 22 33 11 22

1

+

24

2

qP k

N N N
A A AV N

E N N E N N E N N
A A A A A A

A A N N A N N A N N N
A A A A A A

A A N N A N N A N N N
A A A A A A

⎧ ⎫≈ + + −⎨ ⎬
⎩ ⎭

⎧ ⎫+ −⎨ ⎬
⎩ ⎭

+⎡ ⎤+ + +⎢ ⎥⎣ ⎦
+⎡ ⎤+ +⎢ ⎥⎣ ⎦

( ) }
2

36 45 1 2 35 1 3 34 2 3 2
3

11 22 11 33 22 33

2A A N N A N N A N N N
A A A A A A

+

+⎡ ⎤+ +⎢ ⎥⎣ ⎦

. (30) 

The perturbed velocity derivation above results from the fact that in ray propagation 
space, for some given ray, the vector beginning at the origin of the ray surface and 
normal to the tangent plane associated with the point at which the ray touches the ray 
surface is the phase velocity vector, ( )qP knv . Equivalently, in slowness space, 

( )( )1

qP kn
=

⎡ ⎤= ⎣ ⎦p v , for an arbitrary slowness vector, the vector originating at the slowness 

surface origin and normal to the tangent plane at the point at which the slowness vector 
contacts the slowness surface is the group velocity vector inverse, ( ) 1

qP kn
−

⎡ ⎤⎣ ⎦V . More 
formally, slowness space and group velocity space are dual spaces. The advantage of the 
expression derived above for the qP group velocity is that it is in terms of group (ray) 
angles rather than wave front normal vector components or equivalently phase velocity 
angles.  

NUMERICAL RESULTS 

The model that will be considered is the weakly anellipsoidal material where the 12 
parameters beyond an orthorhombic medium are quite small. The anisotropic properties 
are similar in degree of anisotropy to an orthorhombic medium clay-shale associated with 
hydrocarbon deposits The orthorhombic bases for this model is taken from Pšenčík and 
Farra (2005) (their model ORTHO). The extra parameters are fairly arbitrary being scaled 
values from a dry sandstone model used in the paper of Pšenčík and Gajewski (1998). 
These additional anisotropic parameters are italicized in the figure defining the model. 
The model is defined by the density normalized anisotropic parameters, ijA , which have 

the dimensions of velocity squared ( )2km s  and given in Figure 1.  
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9.80 3.60 2.25 9.80 3.60 2.25
8.84 2.28 8.84 2.28

5.94 5.94
2.00 2.00

1.65 1.65
2.18 2.18

0.00 0.00 0.00 0.14 0.11 0.08
0.00 0.00 0.00 0.02 -0.02 -0.06
0.00 0.00 0.00 0.00 -0.05 -0.10

0.00 0.00 0.00 0.02
0.00 0.00

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎣ ⎦ ⎣

( )ORTHO ORTHO Modified

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

 

FIG. 1. Density normalized anisotropic parameter specification of the modified model ORTHO. 

The ijA  have the units of ( )2km s . The origin of these models is described in the text. 

The group velocities for the model are computed at azimuthal angles of φ =  0, 30, 45 
and 60 degrees, which do not, in general correspond to group angles of Φ =  0, 30, 45 and 
60 degrees. The variation of Φ  with φ  is related to the degree of anisotropy. These 
angles are measured from the positive 1x  axis. The inclusion of the results, 0φ = , is to 
provide a reference comparison from which to determine the quality of fit in the non-zero 
azimuthal plane examples. The group velocity approximation at 0φ =  is the least 
affected by the inclusion of the additional 12 possible anisotropic parameters when 
compared to the orthorhombic problem. The approximate ( )aV  and exact ( )eV  group 
velocities are compared in Figure 2 for a polar angle range of 0 to 180 degrees for the 
model described above at the azimuthal phase angles previously specified. The curves in 
the plots on all panels are plotted such that the exact group velocity is black and the 
approximation is red. The group angle inputs for the approximation are obtained from 
those angles, computed numerically, and resulting from the phase angle input of the exact 
solution.  

The plotting of the group velocity curves is not done in polar plots but rather in a 
manner that enhances the differences between exact and approximate group velocity 
computations. The polar angle Θ  is measured from the vertical, 3x , axis. It is quite 
evident upon viewing the figures that for weakly anisotropic media, the match between 
the approximations and the exact solution is quite reasonable, which could be a subjective 
observation as the fit required might possibly problem specific. 

The numerical measure of deviation, pD , given in Table 1, is the a average deviation 

of the approximate group velocity expression ( )aV  from the exact value ( )eV  over a 180 
degree polar angle range at N  equally spaced points obtained using the formula 
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 1

1 100%
N

e a
P

j e

V VD
N V=

−⎡ ⎤= ×⎢ ⎥
⎣ ⎦
∑

. (33) 

CONCLUSIONS 

A quasi-compressional (qP) group velocity approximation for elastic wave 
propagation in a general 21 parameter anisotropic medium has been presented. The 
solution method was facilitated by modifying the standard form of the linearized eikonal 
equation that is found in the literature for this medium and wave type. The eikonal 
equation is first put in a form such that the background slowness surface, and hence the 
group velocity surface, is an ellipsoid with anellipsoidal correction terms in each of the 
three symmetry planes, and followed by a term containing the remaining 12 anisotropic 
parameters. This rewriting of the eikonal equation has the effect of allowing the group 
velocity and slowness vector components for the degenerate (ellipsoidal) case to be 
determined analytically, using the method of characteristics, and as functions of group 
rather than phase angles. In this approximation, the exact solution for this degenerate case 
was then used as a trial solution to obtain the group velocity approximation for the 
general anisotropic case. As the approximation has an analytic solution when the 
anellipsoidal terms, ijE , and other terms, kH , are zero, they have been referred to as 
"weakly anellipsoidal"  rather than "weakly anisotropic".  

Comparison of the approximation, at phase azimuthal angles of 0, 30, 45 and 60 
degrees, with the exact group velocity expression for a possible realistic geological model 
was carried out with good matches in all instances. As with any approximate method, 
care must be taken not to violate the original assumptions used in its development. The 
model used in the previous section was selected such that it lies within the set which 
could be designated as "weakly anellipsoidal" . In geophysical applications, this 
assumption is infrequently contravened to a large degree in actual geological models. 
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Percentage Deviation from the Exact Solution for ORTHO and ORTHO (Modified) 
Models 
Table 1. Average percentage deviation for the model described in the text over a 180D  polar 
angular, Θ , range, equally sampled in this angle, for azimuths of phase angles φ = 0, 30, 45 and 
60 degrees. Both models ORTHO and ORTHO (Modified) are considered. 

   0 Degrees   30 Degrees   45 Degrees    60 Degrees 

ORTHO       0.2579         0.2344         0.2223         0.2697 

ORTHO(MOD)       0.2806         0.3089         0.2303         0.2503 
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FIG. 2. ORTHO (Modified) model from Pšenčík and Farra (2006). The exact group velocity (black 
curve) is compared to the approximation (grey curve) for the for the polar ( )Θ angle range 0 to 
180 degrees and shown at four different (phase) azimuth angles. The azimuth of 0 degrees which 
coincides with the 1 3x x  symmetry plane The other panels are at phase azimuthal angles of 30, 45 
and 60 degrees, respectively. 


