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dipping TI media 
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ABSTRACT 
Thick anisotropic sequences of dipping sandstones and shales often overlie the 

reservoir in fold and thrust belts, such as in the Canadian Foothills. In these cases, such 
an assumption, when anisotropy is negligible or only anisotropy with vertical symmetry 
axis (VTI) is considered, may result in imaging problems and mispositioning errors. 
Three prestack migration algorithms based on totally different principles, Kirchhoff, 
Phase-shift-plus-interpolation (PSPI), and reverse-time, are extended and presented for 
dipping TI media. Derived from the isotropic Kirchhoff, PSPI, and reverse-time 
migration methods, these three algorithms possess their own characteristics in accuracy 
and efficiency aspects. The ray-tracing algorithm used in 2-D prestack Kirchhoff depth 
migration is modified to calculate the traveltime in the presence of TI media with a tilted 
symmetry axis.  

Based on an analytical solution of the quartic phase velocity equation for dipping TI 
media in the frequency-wavenumber domain, and an assumption for anisotropic 
parameters versus lateral velocities, the prestack anisotropic PSPI migration method can 
handle laterally variable anisotropic parameters and velocities. The prestack anisotropic 
reverse-time migration method employs the weak-anisotropy approximations to get the 
individual P-wave equation and implements depth migration with the pseudo-spectral 
method. Prestack anisotropic Kirchhoff depth migration still keeps its low cost isotropic 
algorithm advantage; however it suffers greatly from the difficulty of calculating the 
Green’s function in media with both vertical and lateral variations in the space. Prestack 
anisotropic PSPI makes a good balance between computation efficiency and accuracy, 
but lacks the flexibility to deal with rapid spatial variation in the Thomsen parameters 
unless the reference wavefield is calculated for each pair of anisotropic parameters. The 
prestack anisotropic reverse-time method retains the isotropic algorithm’s high cost 
character. The advantage of the method lies in the fact that it can handle arbitrary variable 
velocities and anisotropic parameters with excellent dipping angle imaging capability. 
Examples of migration on numerical and physical data with these three algorithms, shows 
imaging results can be improved by considering anisotropy parameters and the different 
characteristics of each method.  

INTRODUCTION 
Some hydrocarbon resource exploration and development projects are in areas 

containing dipping anisotropic sequences, such as in the Canadian Foothills (Isaac and 
Lawton, 1999). In these cases, depth migrations with either an isotropic migration 
algorithm or a vertical axis of symmetry (VTI) assumption will have imaging problems 
and positioning errors. Anisotropic depth migration is required to correctly locate images 
when dipping transversely isotropic (TI) strata are present. Many advanced migration 
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methods have been extended from isotropic to anisotropic media. Like isotropic methods, 
Anisotropic depth migration methods can be based on different equations and performed 
in different domains. These equations are related to the ray-tracing equation, the one-way 
wave equation, and the full wave equation. The domains include space-time, space-
frequency, wavenumber-time, or wavenumber-frequency. The prestack anisotropic 
Kirchhoff migration method discussed in this paper is based on the ray-tracing equation 
and implemented in the tx−  domain. Prestack anisotropic PSPI starts from the one-way 
wave equation and carries on wavefield extrapolation in the kf − domain. Prestack 
anisotropic reverse-time migration achieves recursive extrapolation backward in time 
with full wave equation in tx − domain. Three representative methods are chosen to 
demonstrate the accuracy and efficiency characteristics of Kirchhoff, PSPI and reverse-
time migration.  

Kirchhoff migration is still the most popular migration in industry due to its low cost. 
There is no variation between isotropic and anisotropic Kirchhoff depth migration 
algorithm, only changing the traveltime tables in the presence of TI media. Tong et al. 
(1998) implemented Kirchhoff true amplitude migration technique for anisotropy media 
using a ray-tracing algorithm to compute the first-arrival traveltime and amplitude. 
Vestrum et al. (1999) similarly adopted a ray-tracing algorithm to obtain the traveltime to 
image structures below dipping TI media. Kumar et al. (2004) developed a direct method 
of traveltime computation in dipping TI media for use in Kirchhoff anisotropic depth 
migration. The traveltime calculations extended the Kirchhoff method further to be more 
accurate and moe easily applicable to seismic imaging. 

In contrast to the Kirchhoff migration algorithm that is basically computationally 
unchanged in anisotropic media, the prestack anisotropic PSPI migration algorithm 
involves a more complicated phase-shift calculation. As a key to calculating the phase-
shift terms in prestack anisotropic PSPI algorithm for dipping TI media, Le Rousseau 
(1997) used a table-driven interpolation method to get the approximation solution of 
vertical wavenumber xk . Ferguson and Margrave (1999) presented an interpolation 
polynomial method to obtain the zk  approximately. Du et al. (2005) solved zk  
analytically from the quartic dispersion equation. The PSPI depth migration method 
incorporates adaptation to lateral velocity variation through the wavefield interpolation. 
However with anisotropy parameters also varying along the lateral direction, it is 
important to identify the relationship between anisotropic parameters and velocities to 
reduce calculation for reference wavefields. 

Reverse-time migration (McMechan, 1983; Wu et al., 1996; Yoon et al., 2003) is a 
very expensive method compared with the above two migration method. Reverse-time 
migration propagates the measured wavefield backward in time using a hyperbolic wave 
equation. The two-way hyperbolic wave equation does not suffer from dip limitation of 
the one-way downward continuation algorithms and handle multi-arrivals, steep dips, and 
overturned reflections. Du et al. (2005 a) computed solutions for the P- and SV-wave 
equations for the titled TI media and used them to implement a reverse-time migration. 
Although the algorithm is well adapted to the arbitrary variable velocities and parameters 
in spaces, it faces a new challenge in an increasing number of calculations.  
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In this paper, we will introduce the theory of three prestack anisotropic migration 
methods, and apply them to numerical and physical seismic data. In addition, we take 
into account the increase in calculation effort between each anisotropic migration 
algorithm and its isotropic case.  In addition, we focus our work on the accuracy and 
efficiency comparison among the three anisotropic migration methods. 

THEORY 
Prestack anisotropic Kirchhoff depth migration method, prestack anisotropic PSPI 

method and prestack anisotropic reverse-time migration method will be introduced. We 
demonstrate the algorithm characteristics and illustrate the computational differences to 
the isotropic cases. We emphasize the core techniques of each algorithm. 

Anisotropic Kirchhoff depth migration 
As we mentioned above, the difference between the Kirchhoff anisotropic and 

isotropic migration algorithms lies in the traveltime calculation requiring no change in the 
Kirchhoff algorithm itself. A ray-tracing method (Kirtland Grech, 2002) is adopted to 
obtain traveltime tables for Kirchhoff depth migration. We start using the phase velocity 
equation (Tsvankin, 1996) written as 
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where v  is phase velocity, as a function of phase angle θ , 0pv  is vertical quasi-P wave 

velocity, 0sv  is quasi-S wave velocity, 2
0
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parameters (Thomsen, 1986). Since we consider the depth migration algorithms for the P-
wave, with linear weak anisotropy approximation, the phase velocity of the P wave is 
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where g  is group velocity of P-wave, φ  is the angle between the group velocity and 
symmetry axis and θ  is the angle between the phase velocity and symmetry axis. 
Equation (4) gives the relationship between the magnitude of phase and group vectors. 
Equation (5) shows the relationship between the angles of the two vectors relative to the 
symmetry axis. For anisotropic ray-tracing, we ray trace across an interface with different 
anisotropy parameters according to Snell’s law. Figure 1 illustrates the relationship 
among phase angleθ , ray angleφ , incident phase angle β , and incident ray angleα . At 
the same time, it can be found that 

    γφα += , and γθβ += ,                                            (6) 

where γ  is the angle of the TI symmetry axis. From the source position, a set of rays is 
emitted from a source location. When different rays arrive at an interface, the phase 
angles will be obtained by a scanning and interpolation with Equation (5) for a range of 
phase angle from 00 to 900. Since the ray parameter p is constant for a given ray across an 
interface, which is calculated from 
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we use the same method to get the refracted phase angle. In each layer, the Equation (4) 
is used to obtain the group velocity. Consequently the traveltime is generated from the 
ray path length over the group velocity. Through the traveltime interpolation, we get the 
traveltime table for each grid in the space.  

 

FIG. 1. The relationship between the ray and phase angles with the TI axis. 

 



Evaluations of anisotropic migration methods 

 CREWES Research Report-- Volume 18 (2006) 5 

Anisotropic PSPI depth migration 
Extending an isotropic PSPI algorithm to an anisotropic PSPI algorithm requires two 

key techniques. One is the vertical wavenumber calculation, and the other is the 
assumption of reference wavefields.  

For the first problem, we start from the frequency-dispersion equation. Similarly to the 
isotropic case, we have the dispersion relationship in dipping TI media, 
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where ω  is the frequency, )(θv  is the angle-dependent velocity, θ  is the phase angle 
with the symmetry axis, and φ  in the following parts denotes the tilt angle of the TI 
symmetry axis. In the isotropic case, ω  and v are constant, so zk  can be readily 
computed from xk , ω  and v using the isotropic frequency dispersion equation. In 
anisotropic media, the angle-dependence of velocity makes the computation more 
complicated.  

Using Equation (8) as the starting point, Le Rousseau (1997) precomputed a table of 
)(θzk and )(θxk while considering the angular dependence of velocity for anisotropic 

parameters. This requires locating or interpolating a given input xk in the table, and 
finding the corresponding zk . The accuracy of this table-driven algorithm is directly 
related to the size of the table; the finer the increment in phase angle θ , the better the 
result. With a larger table, the search time increases. Ferguson and Margrave (1998) 
suggested using an interpolating polynomial to get approximate solutions of zk . They first 
estimated an empirical polynomial relationship between phase angle θ  and horizontal 
slowness p by a series of numerical experiments, and then used the θ  expression to 
calculation vertical slowness to get zk . It seems that experiments are cumbersome with 
difference anisotropic parameters. A difficulty presents itself when the axis of symmetry 
φ  of a TI medium is non-zero. The horizontal slowness versus phase angle for dipping TI 
medium shows that some values of p correspond to two values ofθ , so we have to turn to 
other methods for a remedy. In fact, we can solve zk  analytically from the quartic 
dispersion equation. With Equation (1), when we rotate the symmetry axis from vertical 
to a titled angleφ , the phase velocity in the direction measured from the vertical direction 
is: 
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Substituting Equation (9) into Equation (8), we can get a quartic equation  
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where ia  ( 3 ,2 ,1 ,0=i ) is related to xk , ε , δ , 0pv and φ . Two roots out of four of the 
quartic dispersion equation are chosen, one for down- and the other for upgoing-qP wave. 
Figure 2 shows a solution of the quartic dispersion equation for TI medium with a tilted 
angle of 30 degrees, 24.0=ε  and 1.0=δ . The solutions solved by the Le 
Rousseau(1997) method are also shown in this figure with cyan color. The two solutions 
exactly match together.  

As with the isotropic PSPI algorithm, several sets of reference parameters must be 
used for the migration. Ideally, reference wavefields would be generated for each set of 
reference parameters. Considering that we used four Thomsen parameters 0pv ,ε , δ  and 
φ , we would require 625 different sets of reference parameters. Han (2000) used the 
assumption that the anisotropy parameters are tied to reference values of the P-wave 
velocity. To make computation affordable, it is assumed that parameters 0pv , ε  and δ  
have related lateral variation. Since tilted angle φ  has a big effect on the wavefront dip 
direction, we take full account of the tilted angle.  
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FIG.  2. Dispersion relationship of P-wave for a TI medium with 300 dipping angle The black solid 
lines denote the real part of kz, the blue dashed lines the are imaginary part of kz and the cyan 
solid lines represent the analytical solutions for the real part of kz. 

Anisotropic reverse-time depth migration 

It is straight forward to implement isotropic reverse-time migration with the acoustic 
equation. However, for anisotropic reverse-time migration, we get the appropriate P-
wave equation first for dipping TI media. Du et al., (2005) discussed the individual P- 
and SV-wave equation for dipping TI media. Using Equation (1), with Thomsen 
approximation and the symmetrical axis rotated, the phase velocity of P-wave is 
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For plane waves traveling in the vertical (x, z)-plane, the phase angle is given by 
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Substituting equations (12) to Equation (11), multiplying it with the wavefields in the 
Fourier domain, and apply an inverse Fourier transform, we can obtain the P-wave 
equation for the tilted transverse isotropic media as 
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The implementation of prestack anisotropic reverse-time migration is same as the 
isotropic case. The procedure includes four parts:  

(1) Determine the excitation-time imaging condition by anisotropic ray tracing to 
obtain traveltime from source position as we address the traveltime calculation for 
anisotropic Kirchhoff depth migration; 

(2) Extrapolate the receiver wavefields backward in time using P-wave equation in 
anisotropic media shown in Figure 3; 

(3) Apply the cross-correlated imaging condition; 

(4) Sum the individual migrated shots to produce the final migration result. 

 

FIG.  3. The computation flow for implementing post-stack anisotropic reverse-time migration. 
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EXAMPLES 
To evaluate the three anisotropic migration algorithms, two examples are chosen: one 

is numerically modeled data and the other is physically modeled data. Dip angles in each 
model illustrate the accuracy of angle imaging ability among three anisotropic depth 
migration methods. 

Anisotropic imaging reflectors with different angles for variable velocity model 
A variable velocity model is shown in Figure 4 that consists of six dipping reflectors 

(0, 15, 30, 45, 60, 75, 90 degrees). The medium has anisotropic parameters 2.0=ε , 
1.0=δ and the tilt angle is 0. The velocity of the model is v(x, z) =1500+0.3z +0.1x (m/s). 

The zero-offset synthetic data is shown in Figure 5. Figure 6 is the isotropic migration 
result obtained from isotropic PSPI migration method. The result is undermigrated 
without considering anisotropic situation. Correct imaging results using anisotropic 
Kirchhoff, anisotropic PSPI and anisotropic RT migration algorithms with exact 
anisotropic parameters, are shown in Figures 7, 8 and 9. The energy for the 900 reflector 
is weak for anisotropic Kirchhoff and APSPI migration results while the one for ART is 
better. The energy for reflectors with 750 and 600 by ART are stronger than that by 
anisotropic Kirchhoff and APSPI method. So we concluded that ART shows excellent 
ability in dip imaging. The anisotropic Kirchhoff method requires 1 minute, APSPI 5 
minutes and ART 8 minutes for the computation. It seems that anisotropic Kirchhoff 
exhibits excellent computational efficiency, while APSPI makes a balance between the 
accuracy and efficiency. The overall comparison of computational cost is shown in 
Figure 10. It costs 1 minute, 4 minutes and 5 minutes for isotropic Kirchhoff, PSPI and 
RT. There isn’t any cost increase between isotropic and anisotropic Kirchhoff migration 
methods since only the traveltime computation deals with anisotropic parameters. In 
addition, when we compare the computer run-time between isotropic and anisotropic 
cases for PSPI and reverse-time migration algorithms, because homogenous anisotropic 
parameters case is designated, the computation increment is relatively limited.  

 

FIG.  4. A variable velocity model with homogenous anisotropic parameters that consits of six 
dipping reflectors. 
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FIG.  5. The synthetic data for six dipping reflectors in the model of Figure 4. 

 

 

FIG.  6. Migration result by isotropic PSPI method. 

 

 

FIG.  7. Migration result by anisotropic Kirchhoff method. 
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FIG.  8. Migration result by anisotropic PSPI method. 

 

FIG. 9. Migration result by anisotropic reverse-time method. 

 

FIG.  10. The efficiency comparison between different methods. 

Migration for TTI thrust sheet in an isotropic background 
The physical model is a flat reflector overlain by a TI thrust sheet embedded in an 

isotropic background. The model is shown in Figure 11. The thrust sheet is composed of 
four blocks in the model; each with a unique axis of symmetry. They have parameters of 
Vp0 = 2925m/s, 224.0=ε  and 100.0=δ . The isotropic background has a flat basement 
with Vp0 = 2740m/s. The prestack seismic dataset has 86 shot gathers acquired at 60m 
intervals along the line. Each source gather consists of 256 traces and 512 sample per 
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trace with 4ms sample rate. Figure 12 corresponds to the zero-offset seismic zone, where 
high velocity of the thrust structure overlying slow material causes the shadow zone 
between  2000m~3300m along the lateral direction. The shadow zone is the result of the 
zero-offset geometry in the recording. A normal incidence ray from the flat-lying 
reflectors beneath the thrust tends to strike the hanging wall at an angle greater than the 
critical angles, so that zero-offset reflections from the area beneath the steep thrust blocks 
are not possible for non-evanescent energy. Isotropic reverse-time migration produces a 
partially flat basement, however the basement beneath thrust sheets exhibits substantial 
pull up and the energy cannot be focused. Migration of the prestack data by anisotropic 
source-gather migration correctly positions the base reflector and fills the shadow zone 
due to the multiplicity of ray paths afforded by the prestack geometry.  

Migration results for prestack anisotropic Kirchhoff, PSPI and RT migration (Figure 
13, Figure 14, and Figure 15) show more accurate positioning of the reflectors and have 
nearly flattened the basement reflection, although the reflection event of the basement is 
not continuous. The migration result of prestack anisotropic reverse-time shows the 
stronger reflection energy for the dipping interfaces of the thrust structure. The imaging 
of the thrust structure is not as clear as we want since limited reference wavefields are 
applied. With respect to the computational efficiency, there is no increase (7 minutes)for 
prestack anisotropic Kirchhoff depth migration, as anisotropy only effects the traveltime 
calculation, which only amounts toa small part in the imaging process. However, due to a 
more complex physical model, the anisotropic wave equation algorithms greatly increase 
the computation effort. Isotropic PSPI uses 11 minutes whereas anisotropic PSPI takes 
almost 24 minutes. Similarly to the PSPI methods, isotropic reverse-time migration 
employs 15 minutes, but anisotropic reverse-time migration uses almost 60 minutes. The 
efficiency comparison is shown in Figure 17. Some noise exists in the APSPI migration 
result.  

 

FIG.  11. Model of an anisotropic thrust sheet embedded in an isotropic background with same 
anisotropy parameters and different dipping angles. 
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FIG.  12. The zero-offset seismic section sampled on thrust model. 

 

 

FIG.  13. Prestack migration result by isotropic reverse-time migration. 

 

 

 

FIG.  14. Prestack anisotropic Kirchhoff depth migration result. 
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FIG.  15. Prestack anisotropic PSPI depth migration result. 

 

FIG.  16. Prestack anisotropic reverse-time depth migration result. 

 

FIG.  17. Efficiency comparison among different isotropic and anisotropic migration algorithms. 
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CONCLUSIONS 
From the above analysis, it is apparent that anisotropy has a large influence on the 

accuracy of migrated images. Use of a migration algorithm that takes anisotropy into 
account, with correct velocity information, can substantially improve images when 
anisotropy is present. In this paper, the traveltime calculation in TTI media is presented 
for prestack Kirchhoff depth migration. The Kirchhoff migration method still keeps the 
efficiency advantage even for complicated anisotropic media since the anisotropy doesn’t 
affect the computation time of the migration algorithms itself. The theory for the 
anisotropic PSPI algorithm theory for TTI media is introduced and a new way to get an 
analytical solution for vertical wavenumber is presented. Prestack anisotropic reverse-
time migration theory is also reviewed here, and we present appropriate P- and S-wave 
equations to use in place of the isotropic acoustic wave equation employed in isotropic 
reverse-time migration. The pseudo-spectral method is used to solve these equations 
implementing reverse-time migration.  

Numerical and physical examples, give a practical comparison for the three algorithms, 
both isotropic and anisotropic, with respect to both accuracy and efficiency. We find 
prestack anisotropic Kirchhoff, PSPI and RT are both encouraging and promising. 
Anisotropic Kirchhoff migration retains the greatest advantage in computational costs. 
Anisotropic RT migration shows excellent capability in dip angle imaging, whereas 
anisotropic PSPI is a good balance between accuracy and efficiency. Anisotropic PSPI 
uses almost twice the computations as isotropic PSPI, while the computational cost of 
anisotropic RT is nearly five times as large as that of isotropic RT. However, with the 
rapid development of computer hardware, the two wave-propagation anisotropic depth 
migration algorithms will be widely used in seismic imaging. 
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