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Testing VSP-based Q-estimation with spherical wave models 

Arnim B. Haase and Robert R. Stewart 

ABSTRACT 
Q-estimation with VSP data from Alberta and Saskatchewan led to the conclusion that 

stratigraphic effects are a significant part of those estimates. As a first step toward a 
better understanding of stratigraphic attenuation, we investigate the response to spherical 
waves of a simple density step model. The Sommerfeld integral is utilized to compute 
synthetic VSP down-going waves by numerical integration. Q-factors are estimated from 
these down-going wave fields by applying the spectral ratio method, the analytical signal 
method, a misfit minimization method adapted from Toverud and Ursin (2005) as well as 
a modification of the spectral ratio method introduced by Taner and Treitel (2003). We 
find that at larger depths, away from density steps, all methods recover the model Q-
factor quite well. A departure of recovered Q from model Q at shallow depths is 
noticeable for all methods and is thought to be caused by near-field effects. Q-estimation 
errors for some methods are found to be considerable in the vicinity of single interfaces 
investigated. Q-estimates obtained by methods based on spectral ratios appear to be least 
sensitive to step changes in density values, at least in noise-free situations. 

INTRODUCTION 
In his introduction to the “special section – seismic quality factor” Best (2007) 

highlights the increased interest in recent years in seismic wave attenuation phenomena 
and seismic absorption (intrinsic attenuation). He writes, “It could be argued that 
understanding the physical processes giving rise to absorption is the last barrier to the full 
realization of the potential of seismic methods”. He also mentions the practical 
difficulties due to restricted bandwidth and poorly constrained multiple scattering as well 
as geometric spreading losses. The above very nicely sums up our motivation for 
undertaking the study presented here. Q-estimation utilizing VSP data from different 
locations on the Canadian Prairies (Haase and Stewart, 2006a; ibid, 2007) led to the 
conclusion that stratigraphic effects were significant in those estimates. This conclusion 
is supported by a well-log based 2D elastic wave equation modelling study implementing 
Virieux’s staggered grid finite difference method (Haase and Stewart, 2006b). Figure 1 
shows a synthetic VSP from that modelling study and Figure 2 gives a Q-estimate 
computed from the traces in Figure 1. The trend of this Q-estimate is similar to Q(z) 
computed from actual VSP data, but there is no intrinsic attenuation in the model. As a 
first step toward a better understanding of stratigraphic attenuation, we investigate a 
simple step model in this study. VSP measurements are commonly made with down-hole 
receivers and their first arrivals are considered to be multiple free. In fact, an entire time 
zone for upgoing waves following the first arrivals is said to be largely multiple free 
(after deconvolution) and corridor stacks are computed for this zone. However, 
transmission effects have modified the amplitude behaviour even of isolated down-going 
wave fields. What is the sensitivity of Q-factors estimated from first arrival amplitudes 
with respect to transmission coefficients? In a classic paper by O’Doherty and Anstey 
(1971) the point is made that forward scattering overpowers the true direct wave in 
seismic reflection measurements of a layered earth. Richards and Menke (1983) show by 
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FIG. 1. 2D Velocity-Stress Model VSP based on a Ross Lake well-log (399m offset, displayed is 
vertical particle velocity). 

 

FIG. 2. Quality factor (Q) as determined from Ross Lake VSP data and the model of Figure 1. 



VSP-based Q-estimation 

 CREWES Research Report — Volume 19 (2007) 3 

numerical experiments that scattering attenuation can be significant and should not be 
neglected.  Mateeva (2003) devotes an entire chapter to Distortions In VSP Spectral 
Ratios Caused By Thin Horizontal Layering. Plane wave analysis is used there to 
investigate the influence of geology on spectral ratios. By contrast, spherical waves are 
employed for this contribution. The Sommerfeld integral is utilized to compute synthetic 
VSP down-going waves by numerical integration. Q-factors are estimated from these 
down-going wave fields by applying the spectral ratio method, the analytical signal 
method, a misfit minimization method adapted from Toverud and Ursin (1999) as well as 
a modification of the spectral ratio method introduced by Taner and Treitel (2003). 

THEORY 
Johnston and Toksöz (1981) define intrinsic attenuation (Q) as  

 2
( / )

E WQ
dE dt W

ω π= − = −
Δ

, (1) 

where E is instantaneous energy, dE/dt is the rate of energy loss, W is the elastic   
energy stored at maximum stress and strain, and ΔW is the energy loss per cycle of a 
harmonic excitation. The energy E in a wave is proportional to the square of its amplitude 
or 

 2E A∼  (2) 

giving 

 2dE A
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and 
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Introducing Equation 4 into Equation 1 gives 
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Integrating both sides results in 
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and with 
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 0ln( )C A= −  (8) 

we obtain 
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(see also Aki and Richards, 1980) 

In deriving these equations, Q » 1 is assumed, so that the amplitude loss over one 
wavelength is small. For the developments below, we also assume that attenuation is a 
linear phenomenon and Fourier-methods can be applied. 

The derivation of Q-estimation methods is usually based on the definition of the 
quality factor Q. For the spectral ratio method (see for example Tonn, 1991) Equations 7 
and 8 are the starting point: 

 1
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When applied to VSP-data, t in Equation 10 is the travel time between the two depth 

stations where A0 and A1 are measured. Also present is spherical spreading, so we can 
write 
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The term ln[G1/G0] is a log-spreading ratio which represents a usually ignored 
intercept. The log-amplitude ratio is a linear function of frequency; Q is calculated from 
the slope of this curve. For a homogeneous medium, Equation 11 is accurate and Q-
factors can be recovered exactly (within numerical accuracy). A change in elastic 
parameters however, can modify transmitted waves (as well as cause reflections) and 
alter the frequency response which means spectral ratios are also modified. Aki and 
Richards (1980) give an equation for the transmitted potential of a two-layer acoustic 
case (Weyl/Sommerfeld integral approach). The generalization for a layered elastic earth 
(3D equation for a 1D earth, see for example Ewing et al., 1957) can be written as  
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where upp (ω)  is the P-wave displacement along the ray at the current receiver and  ω, 

          ω   is the frequency in radians, 
           t    is the time, 
           n   is the number of layers from the source down to the current receiver, 
           αj  is the P-wave velocity in layer j, 
           Tj(p) is the Zoeppritz  transmission coefficient from layer j-1 to layer j, 
           p   is the horizontal slowness, 
           ξn  is the vertical slowness of layer n, 
           J0 and J1 are zero and first order Bessel functions of the first kind, 
           r   is the range (horizontal offset between source and receivers), and 
           in  is the ray angle in layer n (at the current receiver). 

A number of frequency points are computed at every receiver location (depth z) 
according to the desired bandwidth/wavelet. The time-domain wavefield can then be 
obtained by inverse Fourier transforming.  

 Note that Equation 12 models transmitted waves only and, because of the Bessel 
functions, spherical spreading is included. Also modelled are near-field and far-field 
effects. 

FAR-FIELD VERSUS NEAR-FIELD IN A HOMOGENEOUS MEDIUM 
Zero-offset synthetic VSP traces computed with Equation 12 for a homogeneous 

situation are displayed in Figure 3. The parameters for this earth model are α=2000m/s, 
β=879.88m/s, ρ=2400kg/m3 and Qp=100. Amplitude decay with increasing depth is 
clearly visible. Also notice the phase rotation between shallower and deeper traces. As 
the near-field decays with 1/r2 (in contrast to 1/r for the far-field, see Aki and Richards, 
1980) its influence quickly disappears with increasing depth. At shallow depths, where 
the near-field predominates, we can expect time-domain Q-estimation methods to 
underestimate Q (overestimate attenuation) because of the 1/r2 amplitude decay. Figure 4 
shows far-field log magnitude spectra as generated with Equation 12 for depths from 
175m to1227m. The zero-phase (non-causal) Ormsby wavelet employed for these 
computations has the parameters 5/15-80\100 Hz. Q-factor recovery in this band is 
expected to be almost perfect because spectral ratio methods are derived for these 
circumstances with linear log ratio slopes. The deeper the receiver, the steeper the log 
magnitude curve. Note that all spectra in Figures 4 and 5 are normalized to the same zero 
dB maximum but the plotting scales differ between the Figures. The near-field equivalent 
to Figure 4, now for depths from 15.2m to 60.9m, is shown in Figure 5. For the near-field  
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FIG. 3. Zero offset synthetic VSP computed with Equation 12 for a zero-phase (non-causal) 5/15-
80\100Hz Ormsby wavelet. 

 

FIG. 4. Far-field magnitude spectrum for depth range from 175m to 1227m (0dB scaling). 
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FIG. 5. Near-field magnitude spectrum for depth range from 15.2m to 60.9m. The downgoing 
wavefield appears to be gaining (relative) high frequency strength with depth (0dB scaling). 

 

FIG. 6. Selected traces of half-density-step model. 
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the slopes show an opposite trend: the shallower the receiver, the steeper the log 
magnitude curve. The only exception can be seen for the deepest receivers (at 53.3m and 
60.9m depths) above 40Hz or 50Hz. Q-estimation leads to negative Q-factors near the 
source and large positive Q some distance away in the near-field where the slope trend is 
reversed but the log magnitude curves are still almost parallel. As far-field conditions are 
approached the estimated Q converges with the model Q. It is interesting to note that this 
kind of near-field behavior has also been observed when estimating Q from actual VSP 
data (Haase and Stewart, 2006a; ibid, 2007). Where does the near-field stop and the far-
field begin? Aki and Richards (1980) use the term “many wavelengths” when describing 
the distance from source points to where far-field approximations start to be accurate. 
Common practice is to assume “several wavelengths” are sufficient for far-field 
approximation accuracy (E. Krebes, personal communication). It would be interesting to 
compute the difference between “exact” and “far-field only” of the wavefield to obtain a 
near-field estimate, but that is a topic for a separate report. 

THE DENSITY CHANGE MODEL 

The parameters for this earth model are α=2000m/s, β=879.88m/s, ρ=2400kg/m3 and 
Qp=100. At approximately 580m depth an abrupt density change to A) 1200kg/m3 (half 
density step) and to B) 4800kg/m3 (twice density step) is introduced. The traces for the 
density step model of case A) (a density decrease) computed with Equation 12 are plotted 
in Figure 6 for the vicinity of the density step location at approximately 580m depth. A 
density decrease implies a decrease in acoustic impedance which leads to an increase in 
particle displacement. Indeed, close inspection of Figure 6 reveals an amplitude increase 
at depths exceeding the density step location at about 580m. Superimposed at all depths 
is the amplitude decay caused by spherical spreading. The move out between traces is 
linear (there is no variation with depth) because of constant velocities. Note the ringing 
typical for Ormsby wavelets. Figure 7 is the equivalent to Figure 6 computed for case B) 
(a density increase). A density increase results in an acoustic impedance increase which 
means particle displacement is decreased. As expected, maximum trace amplitudes in 
Figure 7 are decreasing at depths exceeding the density step location at about 580m. 
Amplitude decay because of spherical spreading is present but barely visible. Figures 6 
and 7 are plotted at different scales to highlight trace-to-trace amplitude changes. 

DENSITY CHANGE AND THE SPECTRAL RATIO METHOD 
Next, the spectral ratio method (SRM) given in Equation 11 is applied to the density 

change models introduced in the previous section. Figure 8 shows the Q-factors estimated 
from the computed model traces. These Q(z) curves depend on smoother lengths and 
depth intervals used for estimation with the spectral ratio method. In this case the 
amplitude spectra of three neighbouring traces are averaged and the estimation depth 
interval is Δz=38m. 

Away from the density step the model Q-factor of 100 is quite well recovered in 
Figure 8. The departure of recovered Q from model Q at depths shallower than 
approximately 200m in all Q(z) displays is thought to be caused by near-field effects as 
explained above (see Figure 5 for the slope behaviour of near-field log magnitude 
spectra). At the density step decrease in Figure 8 SRM is seen to firstly underestimate Q 
and then secondly overestimate Q as the analysis window slides across the discontinuity.  
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FIG. 7. Selected traces of twice-density-step model.  

 

FIG. 8. Q-estimate by spectral ratio method (density step model). 
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For a density step increase the situation is reversed: We see in Figure 8 that Q is 
overestimated first as the analysis window reaches the discontinuity and is followed 
secondly by an underestimate. Pulse width, pulse height and pulse separation of these 
error pulses are controlled by smoother lengths and analysis window size (depth interval 
Δz). Note that these error pulses represent only a few percent Q-estimation error for SRM 
even though the density change is much larger (50% down and 100% up). 

DENSITY CHANGE AND THE ANALYTICAL SIGNAL METHOD 

The analytical signal method (ASM) estimates the quality factor (Q) from the decay of 
instantaneous amplitudes with depth (see Tonn, 1991). Figure 9 shows an ASM Q-
estimate obtained from the homogeneous VSP model traces displayed in Figure 3. 
Because of the near-field decay with 1/r2, shallow depth Q-factors are underestimated as 
anticipated. The far-field Q-estimate approaches the model Q-factor of 100 nicely but the 
ripple visible in the Q(z) curve is puzzling at first glance. In Figure 10 the same curve is 
plotted at a larger scale. There is an obvious periodicity with depth which brings to mind 
the maximum instantaneous amplitude picking required for this ASM algorithm. Because 
of a finite time sampling rate there will not always be a sample right at the maximum 
amplitude of every trace and this off-maximum sampling could cause the observed trace-
to-trace periodicity. The sample interval of the traces in Figure 3 is 2ms. Decreasing this 
sample interval to 1ms as well as re-computing traces and Q(z) leads to the green curve in 
Figure 11. This appears to be a step in the right direction as the Q(z) curve ripple is 
approximately halved for a 1ms sample interval when compared to the 2ms equivalent. 
The blue curve in Figure 11 is obtained by frequency-domain interpolation of 1ms traces 
to a 1/8ms sample interval and Figure 12 shows those curves re-plotted at the original 
scale of Figure 9. A sample interval of 1/8ms appears acceptable for out purposes here. 

Next, the analytical signal method is applied to the density step-increase model 
introduced and utilized in previous sections. The Q(z)-ripple of the result in Figure 13 is 
not unexpected since the traces of this particular model are computed with a 2ms sample 
interval. However, what comes as a surprise is the size of the Q-estimation error at 
approximately -60% when the density is increased by 100%. The ASM-technique (time-
domain) is considerably more sensitive to amplitude disturbances than the SRM-approach 
(frequency-domain). Therefore, for further ASM-testing, we reduce the density step size 
to ±5% (and reduce the sample interval to 1/8ms). Q-estimates for model VSPs with a 
density step to 95% and a density step to 105% are shown in Figure 14. Note the density 
step location is at approximately 580m depth. For a decrease in density, Q is 
overestimated and vice versa. There is a Q-estimation error for the entire depth-range 
spanned by the combination of smoother length and analysis window. Even though the 
far-field Q-estimate closely approaches the model Q-factor of 100, the near-field 
influence on the Q-estimate extends further in depth for the ASM-algorithm than it does 
for the SRM-technique. 

DENSITY CHANGE AND THE METHOD BY TOVERUD AND URSIN 

Toverud and Ursin (2005) use a normalized misfit function to compare seismic 
attenuation models. Given an attenuation model, this misfit function can be minimized as 
part of an optimization loop searching for a “best-fit” Q-factor and a “best-fit” velocity. 
Thus amplitude and phase information are included in the Q-estimation. In deriving the  
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FIG. 9. ASM Q-estimate of 2ms homogeneous VSP model traces in Figure 3. 

 

FIG. 10. Same ASM Q-estimate as Figure 9 plotted at larger scale. 
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FIG. 11. Sample interval tests for analytical signal method. 

 

FIG. 12. ASM sample interval tests of Figure 11 re-plotted at scale of Figure 9. 
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FIG. 13. ASM Q-estimate of 2ms twice-density-step model. 

 

FIG. 14. ASM Q-estimate of +/- 5% density-step model (1/8ms). 



Haase and Stewart 

14 CREWES Research Report — Volume 19 (2007)  

misfit function it is assumed that, within a finite number of designated homogeneous 
layers, velocities and attenuation do not change. Squared error contributions are 
accumulated (summed) for all receivers within a layer as well as for all discrete 
frequencies in the data frequency band and then normalized (Toverud and Ursin, 2005): 
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P(zj,ω) is the date at the jth receiver of the current layer following a Fourier transform into 
the frequency domain. The modelled data as function of depth z and frequency ω is 
estimated by 
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where Δτ(z,ω) is the incremental travel time in the current layer, P(z0,ω) is the Fourier 
transformed data at the top of the current layer at z0, L(z0) is the approximated relative 
geometrical spreading down to the top of the current layer given by 
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and ΔL(z) is the incremental relative spreading in the current layer approximated by 

 0( ) ( )( )p rL z c z zωΔ = −  (16) 

with cp(ωr) representing phase velocity at a reference frequency ωr (constant within 
layers but depth dependent in the overburden). The frequency-dependent-velocity 
equation used here for the attenuation modelling step is taken from Aki and Richards 
(1980, page 182): 

  

     (17) 

  

Next we apply Toverud and Ursin’s misfit minimization method to the density step to 
95% model VSP and the density step to 105% model VSP as introduced previously for 
the ASM-tests. The estimated best-fit Q-factors are displayed in Figure 15. We see 
immediately that Q-estimation error size and sensitivity to density change are similar to  
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FIG. 15. Q-estimate by Toverud and Ursin’s method (density step model). 

 

FIG. 16. Magnitude spectrum of minimum phase wavelet for depth range from 76m to 1219m. 
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ASM-results (compare to Figure 14) with two notable differences: Firstly, the near-field 
responses of the Q-estimates shown in Figure 15 are more like SRM near-field Q-
estimates (Figure 8) that increase toward shallower depths. Secondly, the estimated Q in 
Figure 15 does not approach the model Q as closely as the other methods do when far-
field conditions are reached. Occasionally, optimization routines find a local minimum, a 
condition that can be tested by changing the starting values for the procedure. In this case 
the estimated Q(z) is independent of the starting value of Q. However, the far-field bias 
of Q and the Q-estimation error size at the density step are sensitive to the choice of 
reference frequency in Equation 17. Figure 15 is computed with the same value of ωr as 
is used to generate the synthetic VSP. The positive bias on far-field Q-estimates looks 
like an overcompensation of the spherical spreading correction. The approximations used 
for spherical spreading correction are given in Equations 15 and 16. Their dependence on 
the reference frequency ωr explains the sensitivity of the far-field Q-estimation bias to ωr. 

DENSITY CHANGE AND THE METHOD BY TANER AND TREITEL 

Taner and Treitel (2003) suggested a modification of the standard spectral ratio 
method (SRM) based on minimum phase wavelets estimated from designated data zones. 
Their method (TTM) proceeds by, firstly, computing auto-correlations for these zones. 
Secondly, a minimum phase inverse of each auto-correlation is calculated by applying 
Levinson’s recursion. Thirdly, the inverse of step 2 is computed which is a stable 
operation because of the minimum phase character. Lastly, Q is estimated from two 
minimum phase wavelets with the approach of the standard spectral ratio method. 
According to Taner and Treitel (2003) their method is less prone to the influence of zeros 
on or near the unit circle in the Z-plane (notches) because minimum phase wavelets 
cannot have zeros on the unit circle. Figure 16 displays magnitude spectra of minimum 
phase wavelets computed from first arrivals of the synthetic VSP (Figure 3). We no 
longer have the straight lines of Figure 4 (standard SRM) but neither do Taner and Treitel 
(2003). Their Figure 5 shows similar “ripples” of spectral ratios. As required for the 
standard SRM, we calculate log spectral ratios next. Figure 17 shows log spectral ratios 
computed from magnitude spectra displayed in Figure 16. Not unexpectedly so, 
magnitude spectra noise “ripples” are propagated to the log ratios. This fact does not 
prevent us from straight line fitting, however, even for the shallowest ratio at 76m depth 
which we reject out of hand as “near-field contaminated”. Q(z) estimated from the fitted 
straight lines (according to Equation 11) is plotted in Figure 18 for the same density step 
VSP-model cases as investigated with standard SRM techniques (Figure 8). When 
comparing Figures 8 and 18 we notice general agreement between SRM and TTM Q(z). 
This is expected because we did not model any spectral notches with our synthetic VSP. 
Looking at the details, however, reveals an increase of Q-estimation errors of up to 
several percent for the Taner and Treitel technique. For a real VSP data comparison 
between TTM and SRM see Haase and Stewart (2007). 
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FIG. 17. Log spectral ratios computed from minimum phase wavelets (Taner and Treitel). 

 

FIG. 18. Q-estimate by Taner and Treitel’s method (density step model). 
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CONCLUSIONS 
Away from density steps, at larger depths, all methods recover the model Q-factor of 

100 quite well. The largest departure is observed for the “Q-estimation through misfit 
minimization” method (Toverud and Ursin, 2005) which we think is caused by using only 
reference velocities for computing the incremental relative geometrical spreading 
(Equation 16). 

The departure of the recovered Q from the model Q at shallow depths is noticeable for 
all methods and is thought to be caused by near-field effects. Where the near-field 
predominates we can expect time-domain Q-estimation methods to underestimate Q 
because of the 1/r2 amplitude decay. The specific slope behaviour of magnitude spectra 
observed for decreasing depths leads to overestimated Q for spectral ratio methods and 
even to negative Q near the source. When estimating Q from actual VSP data (Haase and 
Stewart, 2006a; ibid, 2007) the same kind of near-field behaviour is observed. 

Q-estimates obtained by methods based on spectral ratios appear to be least sensitive 
to step changes in density values, at least in noise-free situations. For the analytical signal 
method and the misfit function minimization technique density-step responses of Q(z) are 
somewhat smeared out because of depth averaging. 

If velocities and densities are known, we expect transmission loss compensation to 
reduce far-field Q-estimation errors. We anticipate a modelling approach is required to 
reduce near-field transmission errors. 
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