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ABSTRACT

As a result of the numerical performance of finite-difference operators, reverse-time
migration (RTM) images are typically low frequency. This occurs because finite-difference
operators must be oversampled to control numerical dispersion. We consider a high-fidelity
time-stepping equation based on the Fourier transform, which is exact if an aliasing condi-
tion is met. The technique is adapted to variable velocity using a localized Fourier trans-
form (Gabor transform). The feasibility of using the time-stepping equation for RTM is
demonstrated by studying its stability properties, its impulse response, and by migrating a
synthetic example of a salt dome. We show that a high frequency wavefield can be time
stepped with no loss and with a much larger time step than commonly used.

INTRODUCTION

Reverse-time migration (RTM) is a very powerful depth migration algorithm. It is ca-
pable of imaging reflectors using overturned waves and multiples. However, especially for
large prestack 3D seismic processing, the computational time and input/output memory
costs can be prohibitively expensive. As a result, images usually contain only low fre-
quencies. An example of the impressive performance, yet low frequency response, of the
method is Jones et al. (2007).

McMechan (1983) describes a poststack RTM algorithm called "boundary value migra-
tion". The stacked recorded wavefield is treated as a time-dependent boundary condition at
the surface of the model. Migration is performed by pushing the recorded wavefield back-
wards in time into the subsurface with half the modelling velocity. The recorded wavefield
is propagated backwards to time t = 0. The specification of this time is referred to as
the the imaging condition, the time at which the reflection events occur. Independently,
Whitmore (1983) and Baysal et al. (1983) developed the same method, called backward-
time propagation and RTM, respectively. RTM can be thought of as the inverse operation
of forward modelling. The acoustic wave equation is symmetric about a reverse in the
time coordinate. This implies that the same finite-difference code that is used for forward
modelling can be used for inverse modelling.

RTM was adapted for prestack migrations by the development of an imaging condition
for acoustic waves (Chang and McMechan, 1986). This imaging condition is essentially
the same as that originally proposed by Claerbout (1971). In prestack RTM, typically,
a shot model is forward propagated by finite-differencing the wave equation, and the re-
ceiver field is similarly back propagated. The imaging condition is applied to the shot and
receiver fields to determine when a reflection event occurs. RTM is used when conven-
tional algorithms fail to resolve complex targets. This often occurs when attempting to
image structures like salt domes and highly faulted terrain (Whitmore and Lines, 1986).

Prestack RTM is a less commonly used migration algorithm because finite-difference
operators must be finely sampled in space and time. As a result of the sampling require-
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ments, processing 3D seismic surveys will either require harsh filtering to remove higher
frequency data or they will require unacceptably long run times even with a cluster of com-
puters. The fine sampling requirements occur because finite-difference operators propagate
high frequencies with an incorrect dispersion relation.

We propose an alternative time-stepping equation that does not use finite differences.
The equation can time-step a wavefield using a coarser time step because the spatial deriva-
tives in the wave equation are computed exactly in the Fourier domain and so do not suffer
from dispersion at high frequencies. As a result, the sampling requirements are better than
propagating with finite differences. The fundamental limitation on the time-step size in
our method arises from a temporal aliasing condition, which we derive. The accuracy and
stability properties are demonstrated by comparing solutions of the time-stepping equation
to finite-difference solutions.

TIME STEPPING BY A PHASE-SHIFT INTEGRAL

A time-stepping equation is formulated by phase-shifting the Fourier transform of the
wavefield by a cosine operator. The time-stepping equation is based on an exact solution
of the homogeneous (constant velocity) wave equation,

Uxx + Uzz =
1

c2
Utt, (1)

where U is the amplitude of the wave, x is the lateral coordinate, z is the depth coordinate,
t is the time coordinate, and c, a constant, is the speed of propagation. Assume (x, z) ∈ R2

and t ∈ R, where R denotes the real numbers.

The Fourier transform over the spatial dimensions ~x = (x, z) transforms equation (1)
into an ordinary differential equation,

−(k2
x + k2

z)Û =
1

c2
Ûtt, (2)

where

Û = Û(∆t,~k) =

∫
R2

U(∆t, x, z)ei~k·~xdxdz, (3)

and ~k = (kx, kz) are the wavenumbers which correspond to the coordinates ~x = (x, z).
When ~k 6= 0 equation (2) has the general solution,

Û(∆t,~k) = A(~k)e−i∆tω(~k) + B(~k)eiω(~k)t, (4)

where A(~k) and B(~k) are dependent on the initial conditions, and wavenumber dependent
frequency ω is determined from the dispersion relation

ω(~k) = c
√

k2
x + k2

z . (5)

After the functions A and B are specified, the space domain solution may be calculated by
taking an inverse Fourier transform. The space domain solution is then,

U(∆t, x, z) =
1

(2π)2

∫
R2

{A(~k)e−i∆tω + B(~k)ei∆tω}ei~k·~xdkxdkz. (6)
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Suppose the initial conditions U(0, x, z) = f(x, z), Ut(0, x, z) = g(x, z) hold for equation
(1). Let f̂ and ĝ be the Fourier transform of f and g, respectively. Solving equation (2) for
the initial conditions gives 2A(~k) = f̂(~k) + ĝ(~k)

iω(~k)
and 2B(~k) = f̂(~k) − ĝ(~k)

iω(k̂)
. Since it is

difficult to obtain an accurate estimate of the first derivative of the wavefield, we eliminate
g by considering the wavefield at two separate times. Then

2U(∆t, x, z) + 2U(−∆t, x, z) = 1
(2π)2

∫ (
f̂(~k) + ĝ(~k)

iω(~k)

)
e−i∆tωei~x·~kdkxdkz

+ 1
(2π)2

∫ (
f̂(~k)− ĝ(~k)

iω(~k)

)
ei∆tωei~x·~kdkxdkz

+ 1
(2π)2

∫ (
f̂(~k) + ĝ(~k)

iω(~k)

)
ei∆tωei~x·~kdkxdkz

+ 1
(2π)2

∫ (
f̂(~k)− ĝ(~k)

iω(~k)

)
e−i∆tωei~x·~kdkxdkz

= 1
(2π)2

∫
2f̂(~k)

(
ei∆tω + e−i∆tω

)
ei~x·~kdkxdkz

= 1
(2π)2

∫
4f̂(~k) cos(ω∆t)ei~x·~kdkxdkz.

(7)

Let FT and FT−1 represent the forward and inverse 2D Fourier transform, respectively.
Then equation (7) can be rearranged,

U(∆t, x, z) = −U(−∆t, x, z) + 2FT−1[cos(ω(~k)∆t)FT [U(0, x, z)]]. (8)

The time stepping equation, equation (8), is an exact solution to the constant velocity wave
equation. Equation (1) is independent of time; therefore, equation (8) can be used recur-
sively to calculate the wavefield at future times. For numerical computation, the Fourier
transform in equation (8) is implemented with a fast Fourier transform. This can be done
because the phase shift operator cos(ω(~k)∆t) is independent of the spatial coordinate ~x.

The second order time and second order space finite-difference solution of the wave
equation can be derived directly from equation (8). If the cos function is replaced by its
power series expansion, then

U(∆t, x, z) = −U(−∆t, x, z)+
+2FT−1[1− (c∆t)2(k2

x + k2
z + H. O. T.))FT [U(0, x, z)]]

= −U(−∆t, x, z) + 2U(0, x, z) + (c∆t)2(Uxx + Uzz) + H. O. T.,
(9)

where H. O. T. refers to higher order terms.

To demonstrate effectiveness of recursively using equation (8) for wavefield propaga-
tion, an impulse response and the response a minimum phase wavelet are stepped forward
in time.. The impulse and minimum phase wavelet are injected at the center point of the
model at the start of propagation. The exact solution is known for the impulse response,
and is the Green’s function solution to the 2-dimensional wave equation,

G(t, ~x; τ, ~y) =
H(t− τ − r)

2π
√

(t− τ)2 − r2
, (10)

where H is the Heaviside step function, r = ||~x − ~y|| and ||~x|| =
√

(x2
1 + x2

2) is the
Euclidean norm. Figure 1 is the impulse response. The finite-difference solution contains
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unacceptable high frequency noise arising from the dispersive propagation of the higher fre-
quencies of the impulse. The response of the phase-shift time-stepping equation shows no
dispersion and agrees with Green’s function much better (Figure 2). The impulse response
for finite-difference time stepper will never be good regardless of the time step because an
impulse will always contain higher frequencies that a finite-difference operator can propa-
gate. Figure 3 shows the propagation of an impulse using our Fourier time-stepper and also
with conventional second-order finite differencing.. In spite of a much smaller time step,
the finite-difference solution is still noisy.

The stability or aliasing condition constrains the temporal sampling of the wavefield.
Equation (8) takes the wavefield at two distinct times with spatial sampling rate ∆x and
generates a new wavefield at a future time. The wavenumber which corresponds to the
greatest frequency occurs when ~k = ( 1

2∆x
, 1

2∆x
), the Nyquist wavenumbers. By the dis-

persion relation shown in equation (5), this maximum wavenumber generates a frequency
ω = 1√

2∆x
. Since the wavefield is sampled in time at rate ∆t, to avoid aliasing the frequen-

cies generated from equation (5), the inequality ω < 1√
2∆t

must be satisfied, or equivalently

∆t c

∆x
<

1√
2
. (11)

The number r = ∆t c
∆x

is commonly referred to as the Courant number and is a quantity
that determines stability for a large number of finite-difference solvers. To demonstrate
the instability implied by equation (11), a minimum phase wavelet is injected into a model
at the center point and stepped forward in time using equation (8). The response can be
observed in Figure 4 with Courant numbers close to the stability threshold. When equation
(11) is satisfied the model is stable. When r is slightly greater than 1/

√
2, instability is

observed at high frequencies that are 45 degrees from the grid. When r is significantly
greater than 1/

√
2, instability is observed at all angles and at lower frequencies. While it

is probably more correct to call this effect aliasing, we have used the more standard term
"instability".

VARIABLE VELOCITY TIME STEPPING EQUATION

In RTM it is necessary to propagate a wavefield in a variable velocity medium. To
demonstrate how equation (8) can be adapted to a variable velocity model, we consider a
v(z) medium where the velocity only varies in the vertical direction. In principle, a similar
construction where the windowing functions depends in the x or lateral coordinate can be
used for a general velocity model. At present, our construction smooths the velocity model
and therefore is not capable of reflecting energy. This implies that it cannot account for
multiples. Consider the set of windowing functions {exp(− (z−an)2

2σ2 ), n = 1, ..., N}. This
set of functions can be normalized to form a partition of unity,

Ωn(z) =
e−

(z−an)2

2σ2∑N
n=1e

− (z−an)2

2σ2

, n = 1 . . . , N, (12)

where
∑N

n=1 Ωn(z) = 1 for 0 ≤ z ≤ zmax and 0 ≤ Ωn ≤ 1. The constants a, b, N, and
σ are chosen so that the partition of unity covers the interval [0, zmax]. Additionally each
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window Ωn is localized at the point z = a n. The partition of unity is used to window the
wavefield into regions. Each region is then propagated with a constant velocity vn. This
is done by multiplying the window by each vertical trace in the wavefield. A partition of
unity with 8 windows is displayed in Figure 6. The time stepper, equation (8), can then be
rewritten as

U(∆t, x, z) = −U(−∆t, x, z) +
N∑

n=1

2FT−1[cos(ωn(~k)∆t)FT [Ωn(~x)U(0, ~x)]], (13)

where ωn(~k) = vn

√
k2

x + k2
z and Ωn(~x) = Ωn(z).

EXAMPLE

Firstly, equation (13) is used to forward model the response to a minimum phase
wavelet in linear velocity medium. The wavelet is injected at 5 points marked with a
hash. Analytically, the wavefront is a circle whose center of radius moves down in depth
with time. Figure 5 is the image of response with velocity model v(z) = 1.5 z + 1000.
The response has good continuity and shows amplitude gradients along the wavefront as
expected from geometric spreading despite the fact that there were only 11 windows used
in the propagation.

Secondly, equation (13) is used for migrating a synthetic model of a salt dome by a
poststack RTM. For comparison, the model is also migrated by finite differencing the wave
equation. Poststack RTM is not expected to be useful migration algorithm because it cannot
overcome the crude approximation of stacking complex structures. However, it is theoreti-
cally simple and is an useful exercise in order to demonstrate the feasibility of using equa-
tion (13) to do a prestack RTM. To generate a synthetic model of the salt dome, an acoustic
finite-difference exploding reflector code was used. At time t = 0, all reflectors are si-
multaneously excited and the model is propagated forward using standard finite-difference
modelling. The reflectors are represented by discontinuities in the velocity model. The
wavefield is recorded at the surface of the model to produce a poststack seismic record.
The seismic record is displayed in Figure 8 for the velocity model in Figure 7. The high
constant velocity salt dome is on the right side of the velocity model. While on the left,
the velocity model has a nonzero constant gradient. Figure 9 contains an image of the
migrated synthetic model using finite differences. Figure 10 is the image of the migrated
salt dome using the phase-shift time stepping equation. Both methods have produced an
acceptable image of the salt dome although the finite-difference method required finer spa-
tial sampling and finer time-stepping. The finite difference code operated with the grid
spacing of ∆x = 2.5, and resampled the time increment to ∆t = 0.0002s, and the runtime
was 2 hours and 10 minutes. For the phase-shift time stepping equation, ∆x = 10m, the
time coordinate was resampled to ∆t = 0.004s, and the runtime was 14 minutes using 22
windows.

CONCLUSION

We proposed a Fourier domain time-stepping equation for RTM which is used to mi-
grate a poststack image of a salt dome. Our method multiplies the spatial Fourier transform
of the wavefield by a cosine whose argument depends on velocity and wavenumber. This
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can be interpreted as a spatial phase shift. For comparison the salt dome was migrated by
finite-difference time stepping the full wave equation. The two images were comparable in
quality and the phase-shift time-stepping equation was computed in a fraction of the time.
As a result of computing the phase shift time-stepping equation in the Fourier domain, a
much larger time step is possible then by using finite-differences. The phase-shift time-
stepping equation is an exact solution to the homogeneous wave equation. It was adapted
to the nonhomogeneous wave equation by windowing the wavefield and propagating within
each window as a homogeneous medium. This windowing process prevents the reflection
of energy at any interface in the velocity model and therefore it cannot be used to image
multiples directly. The phase-shift time stepping equation has practically no dip limitation
and therefore it can correctly propagate overturned waves. As a result of the larger time
step, the phase-shift time-stepping equation can, in principle, be used to make higher fi-
delity seismic images. A stability condition was derived based on an aliasing condition
between space and time domains. Numerical examples support the stability condition. The
impulse response of a delta function to the phase-shift time-stepping equation matches the
theoretical Green’s function almost exactly while the response to the finite-difference solu-
tion contained spurious noise.

FUTURE WORK

Future work will develop an optimal method of windowing the data. Current work in-
dicates that under a large choice of windows the output is similar. We windowed the data
before propagation but it is also possible to window after and/or before propagation. The
phase-shift equation cannot account for a velocity gradients without using finely spaced
windows or reflection interfaces. Therefore, future work will attempt to adjust the time-
stepping equation to account for these phenomena. Conceptually, there is no difference
between forward or backpropagating shot and receiver fields for prestack RTM versus back
propagating a stacked section. Hence, the phase-shift time-stepping equation is expected
to be directly applicable to prestack RTM. However, future work is required to evaluate
the phase-shift time stepping equation on acquired seismic data and more complicated syn-
thetic models for poststack and prestack RTM.
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(a) (b)
FIG. 1. (a) The impulse response for finite-differencing the wave equation with ∆t = 0.00005. (b)
The impulse response for the phase-shift time-stepping equation where ∆t = 0.001.
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FIG. 2. Cross Section of wavefields in Figure 1 (a) using finite differences, and (b) using the phase-
shift time-stepping equation. In (c) is shown the exact Green’s function.

FIG. 3. Cross Section through center of model of the response to a minimum phase wavelet injected
at the center the model. (a) using finite differences with ∆t = 0.0001. (b) using phase-shift time
stepping equation with ∆t = 0.001. The finite-difference time-stepper took 10 times as long to
execute.
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(a) (b)

(c) (d)
FIG. 4. Response to minimum phase wavelet injected at the center of a constant velocity model
and forward propagated for various values of the Courant number r. When r > 1 aliasing occurs
in the model and the model is unstable. (a) The Courant number r = 0.60 ≤ 0.71. The model is
correctly forward propagated. (b) The Courant number r = 0.80 6≤ 0.71. Instability is observed when
both wavenumbers are large. (c) The Courant number r = 1.00 6≤ 0.71. Any large wavenumber is
unstable. Noise occurs through out the model. (d) Cross sectional view in the horizontal direction.
Graphs from top to bottom correspond to Figures (a), (b), and (c).
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FIG. 5. Minimum phase wavelet injected at the center of the model with velocity v(z) = 1.5s−1 z +
1000m s−1. There were 11 windows used for propagation with ∆t = 0.0015s and ∆x = 10m.

FIG. 6. A set of Gaussian windowing functions. No windows appear at the end of the domain to act
as padding.
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FIG. 7. The Velocity Model of a Salt Dome. The velocity of the salt dome is 5000ms−1, and the
velocity of the region to the left of the saltdome is v(z) = 1500ms−1 + 0.8s−1z

FIG. 8. The Exploding Reflector Model of the Salt Dome
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FIG. 9. The Migrated Salt Dome using a finite-difference time stepper with ∆x = 2.5m and ∆t =
0.0002s

FIG. 10. The migrated salt dome using the phase shift timestepper with ∆x = 10m and ∆t = 0.004s.
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