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ABSTRACT

Green’s functions are obtained for depth migration in heterogeneous media through
estimation of subsurface scattering-potentialV . Multiple vertical-seismic profiles (VSPs)
are used to computeV , and elastic variation and density variation estimated independently
are used to perturbV to represent all surface / subsurface scattering potentials. Then,V for
all points in the image space are converted to Green’s functions for use in depth imaging.

In the absence of prior knowledge of elastic variation and density variation, perturba-
tion of V is computed for common-offset, common-azimuth gathers under the assumption
of smooth variation in velocity where density is constant. These assumptions are consis-
tent with conventional moveout velocity, so perturbation of V from moveout analysis is
developed.

INTRODUCTION

Seismic images are 3-dimensional grids where seismic reflection strength (reflectiv-
ity) is mapped onto each grid node. The value of reflectivity at a grid node represents
the lithologic contrast local to that node. Central to this mapping are numerical Green’s
functions∗ that cause wave propagation from source grid-points to reflection grid-points.
Green’s functions are normally calculated using a velocitymodel that is inferred from anal-
ysis of recorded reflections. Many assumptions are made using this approach and the most
important assumption is scalar wave-propagation. This assumption simplifies calculation,
but it excludes a large class of non- Fermat waves like multiples and multi-path arrivals,
and other modes that are recorded. Significant effort, therefore, is spent in approximation
to wave propagation to adapt conventional Green’s functionbased imaging to more and
more complex geology.

Recently, there is growing interest in direct Green’s function estimation to reduce de-
pendence on model building to capture significantly more of the propagating wavefields.
For example, in Brandesberg-Dahl et al. (2007), vertical-seismic profile (VSP) Green’s
functions are used to migrate surface data. Central to this method is the use of a single
VSP, plus the assumption that the medium is homogeneous laterally. A Kirchhoff inte-
gral is then used to compute the image away from the VSP. Such methods rely on in-situ
measurements in that the recorded wavefield in the subsurface is the Green’s function as-
sociated with the source. The data/Green’s function is thenused as the imaging Green’s
function that maps reflectivity to image grid-locations local to the in-situ receiver.

For elastic media, Fishmann (2004) simulates wave-propagation analytically through
a Fourier-integral operator. This approach is based on foreknowledge of the heterogene-
ity and anisotropy of the geology of interest. Rather than compute a two-way Green’s

∗In this paper, my usage ofGreen’s rather thanGreen follows the usage of Morse and Feshbach (1953).
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function for the Fourier-integral operator, however, I seea natural relationship between
Green’s function estimation from recorded wavefields and simulation of wave propagation
by Fourier-integral operator.

Because in-situ measurements are rarely distributed evenlywithin the image grid, in
fact they are usually localized to well locations in the formof vertical seismic profiles
(VSPs), the direct Green’s function methods suffer decreased accuracy with distance from
in-situ measurements. Inaccuracy becomes even more serious in heterogeneous/anisotropic
settings. Seismic velocity analysis is routine, however, and because the resulting velocity
model traverses the entire range of the imaging grid, it is natural to adapt scattering theory
such that measured Green’s functions may be extrapolated further away from the in-situ
locations with greater accuracy.

Direct perturbation of measured Green’s functions based onthe velocity model is, of
course, possible, but for mathematical tractability, direct perturbation would be based on
the approximate, analytic Green’s functions of conventional imaging. This approach, there-
fore, would impose the same limited range of propagating modes that the conventional
approach suffers from. Instead, to model full-wave behaviour, I propose to estimate scat-
tering potentialV from in-situ measurements and then, with out loss of generality, deduce
the required Green’s functions. Then, for points far from the in-Stu locations, perturbation
of the known Green’s functions occurs as a result of perturbation of the scattering potential,
and no assumption about propagating mode is required.

Because, however, prior knowledge of elasticity and densityis usually sparse or un-
available, a constant-density assumption is invoked, and an approximate perturbation ap-
proached is presented. Then, because S-wave velocity is rarely obtained on a wide scale,
the ratio of P- and S-wave velocity is assumed constant, and afurther approximation to the
perturbation approach is presented based on P-wave velocity alone.

Theory

For point sourceδ (xs − x), where coordinatesx ∈ ℜ3 are associated with points of
observation, andxs ∈ ℜ3 are source points, Green’s functionG (x|xs) (Morse and Fesh-
bach (1953) p.g. 493) convertsδ into observed, monochromatic wavefieldψ (x) according
to

ψ (x) = [G (x|xs) S δ (xs − x)] (x) , (1)

whereS is a monochromatic scalar associated with the source. Givena monochromatic
wavefield, from a VSP for example, and givenS for the source,G may be deduced fol-
lowing Brandesberg-Dahl et al. (2007).G, then, can be used to modelψ (x) exactly. For
wavefieldψ (y) at observation pointy 6= x, G (y|xs) may be deduced also. Given two
referenceGs, then, we depart the method of Brandesberg-Dahl et al. (2007) and turn to the
Lippmann-Schwinger equation

G = Gr +Gr V G, (2)

whereG is desired (found on both sides of equation 2),Gr is known (conventionally, an
approximate operator (Clayton and Stolt, 1981)), andV is scattering-potential according
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to

V = ω2

(

1

κ
− 1

κr

)

+ ∇ ·
(

1

ρ
− 1

ρr

)

∇, (3)

where∇ and∇· are the gradient operator and divergence operators of 3-space respec-
tively (Clayton and Stolt, 1981). Variablesκr andρr are bulk-modulus and density at the
reference point, andω is the frequency of the monochromatic source. Variablesκ andρ
correspond to bulk modulus and density at the point of desired G. Rather than estimate
G, as is the conventional use of Lippmann-Schwinger (Clayton and Stolt, 1981), and given
G (x|xs) andG (y|xs), then according to equation 2, we may deduce instead scattering-
potentialV for the region betweenx andy. Modify equation 2 so that

G (x|xs) = G (y|xs) +G (y|xs) V (x, y|xs) G (x|xs) , (4)

whereG (x|xs) is associated with locationx due to a source atxs, G (y|xs) is associated,
similarly, with locationy ∈ ℜ3 and sourcexs, andV is the scattering potential betweenx
andy associated with sourcexs. SolutionṼ ≈ V for equation 4 is the scattering potential
of the region betweenx andy for a source that is an appropriate distance fromxs.

For any desiredG (z|xs), wherex ≤ z ≤ y, z ∈ ℜ3, we employṼ according to

Gx (z|xs) = G (x|xs) +G (x|xs) Ṽ (x, y|xs) G (z|xs)x , (5)

where subscriptx Gx (z|xs) based onG (x|xs). Alternatively, basedG (y|xs), we have

Gy (z|xs) = G (y|xs) +G (y|xs) Ṽ (x, y|xs) Gy (y|xs) . (6)

Of course, combinations of equation 6 can be contemplated tohelp improveG (z|xs). A
weighted average of equations (5) and (6), for example, is appropriate according to

Gxy (z|xs) = ε (x|y) [ϕ (x|y) Gx (z|xs) +Gy (z|xs)] , (7)

whereϕ is a weight function that depends on wherez lies relative tox andy, andε is a
function that normalizes the result.

Based on equations 5, 6, or 7,Gx (z|xs), from equation 5 for example, is available to
model wavefieldψ (z) for source pointS δ (xs − z) according to

ψ (z) = [Gx (z|xs) S δ (xs − x)] (z) . (8)

Modelling is demonstrated schematically in Figures 1a, b, c, and d. Here, a seismic ex-
periment is designed such that a source (black dot labelledxs Figure 1a) and two VSP
locations (red circles labelledx andy Figure 1a) are selected over a region of interest.
Figure 1b shows the survey geometry in depth (the VSP receivers are red circles connected
with a black line). In Figures 1a and b, the green circles represent locations of desiredGs
(locationsz andz′), and the green dot represents a virtual source associated with receiver
locationz. The source atxs is detonated, and wavefields are recorded at VSP locationsx
andy as shown in Figure 1c.

The VSP wavefields, interpreted asG (x|xs) andG (y|xs), are input to equation 4,
and scattering potential̃V (x|y) is computed. Scattering potentialṼ (x|y) represents the
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scattering potential betweenx andy for a source atxs. For pointz intermediate tox andy,
computeGx (z|xz,s) for virtual source locationxz,s using wavefieldG (x|xs) = ψ (x, xs)
and equation 5 (or equation 6, or equation 7). The computedG for z is shown schematically
in Figure 1 (right side). Locationz is inline withxs, x andy, and distancesxs x = xz,s z,
so it is natural to assume thatṼ will mapG (x|xs) → Gx (z|xs) according to equation 4.

For locationz′, however, though distancesxs x = xs z′, azimuthsφx,xs
6= φz′,xs

, and,
if the geology is variable and anisotropic,Ṽ is a very approximate estimate of the true
scattering potential.Gx (z′|xs) (Figure 1d, left side), in this basic form, is inaccurate for
geology that is heterogeneous and anisotropic, and wavefield ψx (z) computed according
to equation 8 will be, likewise, erroneous for offline location z′.

Because seismic-velocity analysis is routine, velocity variation in space is available to
guide howG for a region is modified to suit a different region, and it is natural to do this
through modification of scattering potentialṼ .

Perturbed V

Suppose that, given prior knowledge of geologic variation betweenx andz′, we can
modify scattering potential̃V so that it is suitable for locationz′ according to

Ṽ (z′, x| xs) = Ṽ (x, y|xs) + ∆V (9)

with perturbation term∆V given as a series evaluated atx

∆V =
∞

∑

j=1

∆xj

j!

∂jV

∂xj

∣

∣

∣

∣

∣

x

, (10)

and where∆x is the distance between locationsx and z′. Spatial derivatives ofV , of
course, will result in complicated functions of the spatialderivatives ofκ andρ.

Given ∆V , then,G for locationz′ is now an improved estimate according to (from
equation 5)

Gx (z′|xs) ≈ G (x|xs) +G (x|xs)
[

Ṽ (x, y|xs) + ∆V
]

Gx (z|xs) . (11)

With good knowledge ofκ andρ variation, calculation of∆V directly is possible as it is,
though and a number of difficulties present them selves. For example,V (equation 3) has
∇ operators in the second term that might be difficult to implement numerically. Also,
both terms are rather awkward functions of bulk modulusκ and densityρ. To simplify,
for clarity at least, assume constantρ, and assume that the ratio of body-wave velocities
(γ = α/β) is constant also to get (equation A-4 Appendix A)

∆V ≈
(

1 + γ−1
)

∞
∑

j=1

∆αj

j!

∂jV

∂αj

∣

∣

∣

∣

∣

x

, (12)

where∆α is the difference betweenαx andαz′ .
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The prescription for∆V simplifies even further for acoustic media
(

α =
√
κ ρ

)

when
α varies smoothly. For the acoustic case we have from AppendixA

∆V ≈
[

V +

(

ω

αz

)2
1

ρ

]

N
∑

j=1

(−1)(j+1) (j + 1)

(

∆α

αx

)j

(13)

whereN ∼ 100 ensures accuracy for reasonable cost.

DISCUSSION

The use of the approximations given in equations 13 and 12 to simplify and speed
calculation of perturbed scattering-potentialV + ∆V may or may not be necessary where
considerable resources are available for computation, andwhere P- and S-velocity variation
plus density variation is well understood. Where resources and information are limited,
then equations 13 and 12 may find considerable utility.

If it is possible to acquire more than one VSP within a larger 3D surface acquisition,
and before surface data are imaged with VSP-derived Green’sfunctions, a number of issues
are yet to be resolved. First, there is the question of how best to invert equation 4 for a
robust estimate of scattering potentialV . Then, the optimal weighted combination ofV
estimates (equation 7) should be found, and weightsφ andε should be determined through
experimentation.

CONCLUSIONS

For accurate depth imaging, rather estimate imaging Green’s functions from veloc-
ity models directly, Green’s functions are obtained from measured subsurface scattering-
potentialV . Determination ofV is shown to require more than one VSP for a given region.
Then, withV computed for the region between source locations and VSP receiver loca-
tions, elastic variation and density variation estimated independently are used to perturbV
to represent all surface / subsurface scattering potentials. Then,V all points in the image
space are converted to Green’s functions for use in depth imaging.

Because detailed maps of elastic variation and density variation are often impossible
to obtain, perturbation ofV for common-offset, common-azimuth gathers is proposed.
Smooth variation in velocity is assumed, however, and density must be constant. Because
these assumptions are consistent with conventional moveout analysis, perturbation ofV
from moveout analysis is developed.

APPENDIX A

APPROXIMATE ∆V

Assume that, during surface acquisition, multiple VSPs (atleast two) are live so that
they record all offsets and all azimuths in the surface data are represented in the VSP
data. Then, compute a table of common-offset-common-azimuth scattering potentialsV
according to equation 4. For surface imaging away from the VSP locations, then,V is
perturbed according to equation 3. With the∇ operators in the second term (equation 3)V
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FIG. 1. Schematic of proposed VSP acquisition. a) Plan view. The black bullet indicates source
location xs, and red circles indicate VSP locations x and y. Locations where Green’s functions are
desired, z and z′, are represented by green circles. The green bullet represents virtual source xz,s

associated with z, and z′ is an out-of-plane location associated with xs. b) Same as a) but with
a depth axis to indicate subsurface receiver locations. c) Following source initiation, wavefields
(indicated by rays) are recorded in the VSP locations. d) Scattering potential V deduced from
VSPs at x and y are used to compute Green’s functions for z and z′.
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is, perhaps, problematic numerically, however it simplifies significantly for constantρ in
that this term disappears. Further, if only P-wave data are acquired at the surface, S-wave
velocityβ is unknown, but this problem is resolvable if the ratio ofγ = α/β is assumed to
be constant. Under these assumptions, the required derivatives ofV in equation 10 simplify
to

∂

∂x
V =

(

1 + γ−1
) dα

dx

∂

∂α
V, (A-1)

wherex ∈ ℜ3 is a general coordinate of space, and

∂2

∂x2
V =

(

1 + γ−1
)

(

dα

dx

)2
∂2

∂α2
V, (A-2)

and so on. Further, because moveout-derivedα estimates are smooth generally and

dα

dx
=

∆α

∆x
+ ǫ, (A-3)

where∆α = α− αr. Forǫ << 1 (smooth variation ofα), equation 10 becomes

∆V ≈
(

1 + γ−1
)

∞
∑

j=1

∆αj

j!

∂jV

∂αj

∣

∣

∣

∣

∣

r

. (A-4)

Equation A-4 is the scattering potential for constantγ andρ, but with variableα.

Under the acoustic assumption (ρ is still assumed to be constant)

α =
√
κ ρ, (A-5)

andV (equation 3) reduces to

V ≈ ω2

(

1

κ
− 1

κr

)

=
ω2

ρ

(

1

α2
− 1

α2
r

)

. (A-6)

From equation A-6, we may estimate the required derivativesin equation A-4 according to

∂jV

∂αj
= (−1)(j+1) (j + 1)!

αj

[

V +

(

ω

αr

)2
1

ρ

]

,1 ≤ j ≤ ∞. (A-7)

Note that equation A-6 is written such that scattering potential V of the reference medium
is explicit. Then, using equation A-7, and because in acoustic media

γ−1 = 0, (A-8)

∆Vx is computed as

∆V =

[

V +
(ω

α

)2 1

ρ

] ∞
∑

j=1

(−1)(j+1) (j + 1)

(

∆α

αr

)j

. (A-9)

Because, however,∆α/α << 1 for smooth media, truncate equation A-9 according to

∆V =

[

V +
(ω

α

)2 1

ρ

] N
∑

j=1

(−1)(j+1) (j + 1)

(

∆α

αr

)j

+ ON+1, (A-10)

whereON+1 are terms smaller than machine precision. For example, on a current work-
station,N > 300 underflow the memory within the range of values forα in the earth.
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