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ABSTRACT

Green’s functions are obtained for depth migration in fegeneous media through
estimation of subsurface scattering-potentialMultiple vertical-seismic profiles (VSPs)
are used to computé, and elastic variation and density variation estimateepshdently
are used to perturld to represent all surface / subsurface scattering potsnii&len,V for
all points in the image space are converted to Green'’s fomgfior use in depth imaging.

In the absence of prior knowledge of elastic variation anusdyg variation, perturba-
tion of V' is computed for common-offset, common-azimuth gathergutige assumption
of smooth variation in velocity where density is constanhe3e assumptions are consis-
tent with conventional moveout velocity, so perturbatidni/ofrom moveout analysis is
developed.

INTRODUCTION

Seismic images are 3-dimensional grids where seismic tigitestrength (reflectiv-
ity) is mapped onto each grid node. The value of reflectivitya @rid node represents
the lithologic contrast local to that node. Central to thisopiag are numerical Green'’s
functions that cause wave propagation from source grid-points toatédle grid-points.
Green’s functions are normally calculated using a velatitglel that is inferred from anal-
ysis of recorded reflections. Many assumptions are made tismapproach and the most
important assumption is scalar wave-propagation. Thisrapton simplifies calculation,
but it excludes a large class of non- Fermat waves like maiipnd multi-path arrivals,
and other modes that are recorded. Significant effort, thiexgis spent in approximation
to wave propagation to adapt conventional Green’s fundiased imaging to more and
more complex geology.

Recently, there is growing interest in direct Green’s fumttstimation to reduce de-
pendence on model building to capture significantly morehefgropagating wavefields.
For example, in Brandesberg-Dahl et al. (2007), verticarsie profile (VSP) Green’s
functions are used to migrate surface data. Central to thtkadds the use of a single
VSP, plus the assumption that the medium is homogeneousllgteA Kirchhoff inte-
gral is then used to compute the image away from the VSP. Sathaas rely on in-situ
measurements in that the recorded wavefield in the subsuidabe Green'’s function as-
sociated with the source. The data/Green’s function is tis=d as the imaging Green'’s
function that maps reflectivity to image grid-locationsdbto the in-situ receiver.

For elastic media, Fishmann (2004) simulates wave-prdmaganalytically through
a Fourier-integral operator. This approach is based orkfagledge of the heterogene-
ity and anisotropy of the geology of interest. Rather than o a two-way Green’s

*In this paper, my usage @reen’s rather tharGreen follows the usage of Morse and Feshbach (1953).
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function for the Fourier-integral operator, however, | sepatural relationship between
Green’s function estimation from recorded wavefields antition of wave propagation
by Fourier-integral operator.

Because in-situ measurements are rarely distributed ewatityn the image grid, in
fact they are usually localized to well locations in the foomvertical seismic profiles
(VSPs), the direct Green'’s function methods suffer dee@ascuracy with distance from
in-situ measurements. Inaccuracy becomes even more séribaterogeneous/anisotropic
settings. Seismic velocity analysis is routine, howeved lecause the resulting velocity
model traverses the entire range of the imaging grid, it ianaato adapt scattering theory
such that measured Green’s functions may be extrapolatdtefuaway from the in-situ
locations with greater accuracy.

Direct perturbation of measured Green'’s functions basethevelocity model is, of
course, possible, but for mathematical tractability, ctifgerturbation would be based on
the approximate, analytic Green’s functions of convergi@maging. This approach, there-
fore, would impose the same limited range of propagatingeadtat the conventional
approach suffers from. Instead, to model full-wave behayibpropose to estimate scat-
tering potential” from in-situ measurements and then, with out loss of geitgreeduce
the required Green'’s functions. Then, for points far from it Stu locations, perturbation
of the known Green’s functions occurs as a result of pertiobaf the scattering potential,
and no assumption about propagating mode is required.

Because, however, prior knowledge of elasticity and densitysually sparse or un-
available, a constant-density assumption is invoked, angpgroximate perturbation ap-
proached is presented. Then, because S-wave velocityely @btained on a wide scale,
the ratio of P- and S-wave velocity is assumed constant, &ndreer approximation to the
perturbation approach is presented based on P-wave wetdoite.

Theory

For point source (z, — z), where coordinates € R* are associated with points of
observation, and, € R?* are source points, Green'’s functich(z|z,) (Morse and Fesh-
bach (1953) p.g. 493) convertsnto observed, monochromatic wavefieldx) according
to

¥ () = |G (zlzs) SO (xs —2)] (2), (1)

where S is a monochromatic scalar associated with the source. Givaonochromatic
wavefield, from a VSP for example, and giverfor the source(z may be deduced fol-
lowing Brandesberg-Dahl et al. (2007, then, can be used to modglx) exactly. For
wavefield (y) at observation poiny # z, G (y|z;) may be deduced also. Given two
reference=s, then, we depart the method of Brandesberg-Dahl et al. {20@{/turn to the
Lippmann-Schwinger equation

G=G,+G, VG, (2)

whereG is desired (found on both sides of equation@),is known (conventionally, an
approximate operator (Clayton and Stolt, 1981)), & scattering-potential according
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whereV and V- are the gradient operator and divergence operators of Gsspec-
tively (Clayton and Stolt, 1981). Variables andp, are bulk-modulus and density at the
reference point, and is the frequency of the monochromatic source. Variablesd p
correspond to bulk modulus and density at the point of désife Rather than estimate
G, as is the conventional use of Lippmann-Schwinger (Claytah&tolt, 1981), and given
G (z|zs) and G (y|xs), then according to equation 2, we may deduce instead soatter
potentialV’ for the region between andy. Modify equation 2 so that

to

G (zfzs) = G (yles) + G (yles) V (2, ylas) G (x]as) (4)

whereG (z|z,) is associated with location due to a source at,, G (y|z) is associated,
similarly, with locationy € ®* and sourcer,, andV" is the scattering potential between
andy associated with source. SolutionV ~ V for equation 4 is the scattering potential
of the region between andy for a source that is an appropriate distance frgm

For any desireds (z|z,), wherez < z < y, z € ®®, we employl” according to

Ga (2]s) = G (lrs) + G (2]rs) V (2, yles) G (z]as), , ()

where subscript G, (z|xs) based orG (z|x5). Alternatively, based- (y|z;), we have

Gy (z]xs) = G (ylws) + G (ylzs) V (2, ylzs) Gy (ylas). (6)

Of course, combinations of equation 6 can be contemplatéelimproveG (z|xs). A
weighted average of equations (5) and (6), for example,psaggpiate according to

Guy (2]z5) =€ (z|y) [¢ (z]y) Gz (2|zs) + Gy (zlzs)], (7)

wherey is a weight function that depends on wherges relative tor andy, ande is a
function that normalizes the result.

Based on equations 5, 6, or@, (z|z,), from equation 5 for example, is available to
model wavefield) (z) for source pointS § (x; — z) according to

¥ (2) = [Ga (2l2s) 56 (25 — 2)] (). (8)

Modelling is demonstrated schematically in Figures l1a,,land d. Here, a seismic ex-
periment is designed such that a source (black dot labelldeigure 1a) and two VSP
locations (red circles labelled andy Figure 1a) are selected over a region of interest.
Figure 1b shows the survey geometry in depth (the VSP remeare red circles connected
with a black line). In Figures 1a and b, the green circlesaspnt locations of desiregs
(locationsz andz’), and the green dot represents a virtual source associdttedeseiver
locationz. The source at, is detonated, and wavefields are recorded at VSP locations
andy as shown in Figure 1c.

The VSP wavefields, interpreted é5(x|z,) and G (y|z,), are input to equation 4,
and scattering potentidl (z|y) is computed. Scattering potentigl(z|y) represents the
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scattering potential betweemandy for a source at,. For pointz intermediate ta: andy,
computeG, (z|x, ) for virtual source location:, ; using wavefield (z|xzs) = ¥ (z, xy)
and equation 5 (or equation 6, or equation 7). The computid = is shown schematically
in Figure 1 (right side). Location is inline with z,, z andy, and distances;z = 7, z,
so it is natural to assume thetwill map G (z|z,) — G, (z|x,) according to equation 4.

For locationz’, however, though distancesz = z, 2/, azimuthsg, ,. # ¢./.., and,
if the geology is variable and anisotropit, is a very approximate estimate of the true
scattering potentialG, (2'|zs) (Figure 1d, left side), in this basic form, is inaccurate for
geology that is heterogeneous and anisotropic, and wavefigl>) computed according
to equation 8 will be, likewise, erroneous for offline locatk’.

Because seismic-velocity analysis is routine, velocityataom in space is available to
guide how¢ for a region is modified to suit a different region, and it isural to do this
through modification of scattering potential

Perturbed V

Suppose that, given prior knowledge of geologic variatiebsgenr andz’, we can
modify scattering potentidl’ so that it is suitable for locatiosf according to

V(' 2la) = V (2,ylx,) + AV (9)
with perturbation termAV given as a series evaluatedat

= Az PV

AV = (10)

j=1 .

and whereAx is the distance between locatiomsand z’. Spatial derivatives of/, of
course, will result in complicated functions of the spadiativatives ofx andp.

Given AV, then, G for location z’ is now an improved estimate according to (from
equation 5)

G, (7]2s) ~ G (z|z) + G (2] [V (z,ylzs) + AV] Gy (2]zy) . (11)

With good knowledge of andp variation, calculation oAV directly is possible as it is,
though and a number of difficulties present them selves. ¥amele,l” (equation 3) has

V operators in the second term that might be difficult to imgatmumerically. Also,
both terms are rather awkward functions of bulk modutusnd densityp. To simplify,

for clarity at least, assume constantand assume that the ratio of body-wave velocities
(v = «/p) is constant also to get (equation A-4 Appendix A)

e Add IV
AV =~ (1 + Y 1) Z j! @
j=1

: (12)

T

whereAa« is the difference betweem, anda,.
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The prescription forAV simplifies even further for acoustic mec(ia = /K p) when
« varies smoothly. For the acoustic case we have from Appehdix

v+ (ai) 1] i (=D G+ (ﬁ“)j (13)

AV =

whereN ~ 100 ensures accuracy for reasonable cost.
DISCUSSION

The use of the approximations given in equations 13 and 12niplify and speed
calculation of perturbed scattering-potentiak- AV may or may not be necessary where
considerable resources are available for computationy@iede P- and S-velocity variation
plus density variation is well understood. Where resourcekiaformation are limited,
then equations 13 and 12 may find considerable utility.

If it is possible to acquire more than one VSP within a largersdirface acquisition,
and before surface data are imaged with VSP-derived Graercsions, a number of issues
are yet to be resolved. First, there is the question of how tbeisvert equation 4 for a
robust estimate of scattering potential Then, the optimal weighted combination f
estimates (equation 7) should be found, and weiglasds should be determined through
experimentation.

CONCLUSIONS

For accurate depth imaging, rather estimate imaging Gsefamctions from veloc-
ity models directly, Green’s functions are obtained fromaswed subsurface scattering-
potentiall’. Determination ol is shown to require more than one VSP for a given region.
Then, withl computed for the region between source locations and VS#tverdoca-
tions, elastic variation and density variation estimatetependently are used to pertirb
to represent all surface / subsurface scattering potenfidien,l” all points in the image
space are converted to Green’s functions for use in deptbiimga

Because detailed maps of elastic variation and densityti@riare often impossible
to obtain, perturbation o/ for common-offset, common-azimuth gathers is proposed.
Smooth variation in velocity is assumed, however, and dgnsiist be constant. Because
these assumptions are consistent with conventional molysis, perturbation o
from moveout analysis is developed.

APPENDIX A
APPROXIMATE AV

Assume that, during surface acquisition, multiple VSPddast two) are live so that
they record all offsets and all azimuths in the surface deg¢arepresented in the VSP
data. Then, compute a table of common-offset-common-ghirsecattering potentialy’
according to equation 4. For surface imaging away from th& WUgations, then} is
perturbed according to equation 3. With fieoperators in the second term (equatior’3)
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FIG. 1. Schematic of proposed VSP acquisition. a) Plan view. The black bullet indicates source
location x4, and red circles indicate VSP locations x and y. Locations where Green'’s functions are
desired, z and =/, are represented by green circles. The green bullet represents virtual source z,
associated with z, and 2’ is an out-of-plane location associated with z;. b) Same as a) but with
a depth axis to indicate subsurface receiver locations. c) Following source initiation, wavefields
(indicated by rays) are recorded in the VSP locations. d) Scattering potential V' deduced from
VSPs at z and y are used to compute Green’s functions for z and 2’.
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is, perhaps, problematic numerically, however it simgifsggnificantly for constant in
that this term disappears. Further, if only P-wave data egeieed at the surface, S-wave
velocity 3 is unknown, but this problem is resolvable if the ratioyof o/ 3 is assumed to
be constant. Under these assumptions, the required degwaf” in equation 10 simplify
to

0

—V=>0+4" —V, A-1
Ox (1+97) dx Do’ (A1)
wherez € #? is a general coordinate of space, and
0? da\* 82
—V=>04+yYH—]| = A-2
8x2v (1+7 )(dx) 8a2v’ (A-2)
and so on. Further, because moveout-derivegtimates are smooth generally and
da A«
% == E -+ €, (A-3)
whereAa = a — «,.. Fore << 1 (smooth variation of), equation 10 becomes
> Add 'V
AV =~ (1+~71 — A-4
(1+7 );;j!aw (A-4)
Equation A-4 is the scattering potential for constamindp, but with variablex.
Under the acoustic assumptigni¢ still assumed to be constant)
a = /K p, (A-5)

andV (equation 3) reduces to

1 1 w1 1

From equation A-6, we may estimate the required derivativeguation A-4 according to

AV B (_1>(j+1) (74 1)! T (i) %] 1< 4 < oo. (A-7)

dad o o

Note that equation A-6 is written such that scattering piaeh” of the reference medium
is explicit. Then, using equation A-7, and because in atoustdia

=0, (A-8)
AV, is computed as

AV = [V+ (“_))2 1} i(_1)(j+1) (G+1) (ia)j. (A-9)

(8
P =1 r

Because, howeveA«a/a << 1 for smooth media, truncate equation A-9 according to

AV = {V+ (g)Q 1} i(_l)ml) G (ia

rl = .

J
> + ON+L (A-10)

whereO"*! are terms smaller than machine precision. For example, amrant work-
station,N > 300 underflow the memory within the range of values éoin the earth.
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