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ABSTRACT 
Plane-wave theory is the commonly accepted approach to AVO-analysis/inversion but 

it is known to break down near critical angles and at large offsets. What is more, 
commonly employed linear approximations to Zoeppritz’s equations make the 
assumption of small parameter changes across the interface. Large offsets are desirable, 
however, when estimating densities by AVO-inversion. Spherical-wave theory 
overcomes offset related and small parameter change problems, but does not account for 
reverberations and tuning when only one interface is considered. In order to bring AVO 
and VSP modelling closer to actual geology, an extension to multi-layer situations is 
introduced. Based on the Ewing-method, multi-layer boundary equations are developed 
and programmed. Computed plane-wave reflection and transmission coefficients are then 
applied in Sommerfeld integrals to obtain multi-layer spherical-wave responses. A three-
layer P-wave example modelled with this technique shows the expected reverberations 
and spherical spreading. 

INTRODUCTION 
AVO-analysis has experienced ever increasing popularity from the time it was 

introduced by Ostrander (1984). Most of these developments are based on plane-wave 
analysis. Spherical-wave analysis results depart from plane-wave comparisons at larger 
offsets beyond approximately 30° of incidence angle (Haase and Ursenbach, 2006). 
Large offsets are desirable when estimating densities by AVO-inversion. Downton and 
Lines (2002) investigate normal moveout correction as an AVO error source when 
working with seismic data. Residual moveout (RNMO) is not a problem in modelling 
studies where velocities are known exactly. There is, however, a potential error source 
because of a common simplification. All the computational AVO model investigations 
undertaken in previous years by this author are based on two-layer/one-interface 
assumptions. Note that also the Zoeppritz equations are derived for “one interface” 
situations. Reservoirs in the real world are of finite thickness. Therefore it seems more 
appropriate to model the three-layer case with two interfaces. It is the aim of this study to 
develop algorithms for multi-layer model computations that can also be simplified to 
three-layer situations. There are, of course, other applications for multi-layer modelling 
techniques that go beyond AVO-analysis. One such field is VSP modelling which will be 
addressed in a future study. 

THEORY 
When deriving elastic/anelastic spherical-wave displacement reflection/transmission 

coefficients for single interface situations by assuming continuity of displacement and 
stress across a boundary in welded contact (Haase and Ursenbach, 2006) these 
coefficients are found to be scaled versions of plane-wave reflection/transmission 
coefficients derived from Zoeppritz’s equations (Aki and Richards, 1980). Because those 
derivations are already tedious in single interface situations a computational approach is 
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desirable for more complicated multi-layer cases. The problem of a point source in a 
layered half space is addressed by Ewing et al. (1957). For each layer j, Ewing et al. 
calculate the potentials φj and ψj as a sum of two Sommerfeld integrals (using their 
notation): 

 
' "

0 0
0 0

( ) ( )j jz z
j j jQ J kr e dk Q J kr e dkν νϕ

∞ ∞
−= +∫ ∫   , (1a) 

 
' '' "

0 0
0 0

( ) ( )j jz z
j j jS J kr e dk S J kr e dkν νψ

∞ ∞
−= +∫ ∫   , (1b) 

where Q and S are as yet unknown coefficients. 

 These unknown coefficients can be found by solving the system of equations for all 
layers determined by all boundary conditions. The first integral in both equations 
computes the down-going wave-field in Layer j, one frequency point at a time; similarly, 
the second integral computes the up-going wave-field in Layer j. This is the sought after 
computational approach. From Haase and Ursenbach (2006) we know that Q and S 
consist of scaling factors and plane-wave reflection/transmission coefficients derived 
from Zoeppritz’s equations. We will introduce the known scale factors directly into the 
Sommerfeld integrals below and compute all reflection/transmission coefficients from the 
boundary conditions at all interfaces. For the first interface we conveniently set the depth 
z1 to zero giving us the four Zoeppritz equations from the boundary conditions at the first 
interface plus two delayed terms representing P-wave reflections and S-wave reflections 
from the next (second) interface below located at z2: 
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where  ARj is the P-wave reflected from interface j,  

       BRj is the S-wave reflected from interface j (or converted on reflection), 

       ATj is the P-wave transmitted through interface j, 

 BTj is the S-wave transmitted through interface j (or converted on transmission), 

 αk and βk are P-wave and S-wave velocities of Layer k, 
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 ξk and ηk are vertical P-wave and S-wave slownesses of Layer k, 

 ρk is the density of Layer k, 

 p  is the horizontal slowness and 

 ω is the frequency. 

AI1 represents the P-wave incident on the first interface and is given by the source 
wavelet. Incident on the second and subsequent interfaces are the P-waves (ATj) and S-
waves (BTj) transmitted (or converted on transmission) through the interface immediately 
above. Thus we obtain for the second interface at a non-zero depth z2 
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Similar equations can be derived for all subsequent interfaces (except the last) by 
accumulating appropriate travel times (layer thickness Δzk multiplied by vertical layer 
slownesses ξk or ηk) according to 

                            1

( )
j

k k
k

i z

e
ω ξ

=

− ∑
        and             1

( )
j

k k
k

i z

e
ω η

=

− ∑
 (4) 

as well as changing subscripts. For the last interface there is no reflected wave from 
below. 

Every interface has four equations for four unknowns. Because variables are 
“borrowed” from neighbouring interfaces a system of equations must be solved. Plane-
wave reflection and transmission coefficients for all interfaces are obtained by 
elimination and back-substitution. These plane-wave coefficients are then used in 
Sommerfeld integrals for the computation of spherical-wave displacements. For the 
down-going (transmitted) P-wave along the ray in Layer j we evaluate (Haase and 
Stewart, 2007): 
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where     upj (ω)  is the P-wave displacement along the ray in Layer j at ω, 
          ω   is the frequency in radians, 
           t    is the time, 
           j    is the number of layers between the source and the receiver, 
           Tj-1(p) is the Zoeppritz  transmission coefficient from Layer j-1 to Layer j, 
           p    is the horizontal slowness, 
           ξj   is the vertical slowness of Layer j, 
           J0 and J1 are zero and first order Bessel functions of the first kind, 
           r   is the range (horizontal offset between source and receivers), and 
          θj   is the ray angle in Layer j. 

Note that Δzj  is the receiver position in Layer j (as opposed to the layer thickness).The 
up-going (reflected) P-wave displacement along the ray in Layer j can be computed from 
Equation 5 by replacing the transmission coefficient Tj-1(p) with the reflection coefficient 
Rj(p) which is the reflection off the bottom of Layer j. 

For zero-offset VSP modelling we make the range r a small number (e.g. 1m) and 
locate VSP-receivers throughout the layers at various depths z. VSP-receivers will always 
detect up-going (reflected) and down-going (direct or transmitted) wave-fields unless the 
medium is homogeneous. 

For AVO modelling all receivers are placed at source elevation in the first layer but at 
various ranges r. In addition to a direct wave there is only reflected energy in the first 
layer. 

PLANE-WAVE AND SPHERICAL-WAVE TESTS 
Equations 2 and 3 show matrix entries for the first two interfaces of a multi-layer 

system. The right-hand side is non-zero only for the first interface (located between the 
first and second layer) because the P-wave source is positioned in the first layer. The 
equations for subsequent matrix entries are similar to Equations 3 but apply the velocities 
and densities of the layers they represent. In diagonalizing this matrix we compute plane-
wave transmission and reflection coefficients. To test this algorithm velocity and density 
values are changed across one interface at a time (single reflector situation) and the 
resulting reflection coefficients are compared to Zoeppritz equation computations for the 
same layer parameter changes. Figure 1 shows a comparison of real and imaginary parts 
of a P-wave reflection coefficient Rpp(p). The rock parameters used are: 

α1 = 2000 m/s  , 

β1 = 879.88 m/s  , 
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ρ1 = 2400 kg/m3  ,        

α2 = 2933.33 m/s  , 

β2 = 1882.29 m/s  , 

ρ2 = 2000 kg/m3  , 

which describe a Class 1 AVO anomaly (Haase and Ursenbach, 2006). 

 

FIG. 1. Real part and imaginary part of plane-wave Class 1 elastic reflection coefficients. 

The imaginary part displayed in Figure 1 is non-zero only beyond the critical angle of 
approximately 43°. This result is the same for all test interface locations chosen. P-wave 
and C-wave Class 1 AVO-responses for the plane-wave situation are plotted in Figure 2. 
There is excellent agreement with Zoeppritz computations in both Figures 1 and 2. 

The crucial test for this multi-layer algorithm is the step beyond single reflector (two- 
layer) situations where multiples (reverberations) can be expected. The Class1 AVO 
example above has a zero-offset P-wave reflectivity of only 0.1 and multiple reflections 
are too weak to be clearly visible on plots. For a reverberations test the following layer 
parameters are chosen: 

α1 = 2000 m/s  , 

β1 = 1000 m/s  , 
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ρ1 = 2400 kg/m3  , 

α2 = 1000 m/s  , 

β2 = 500 m/s  , 

ρ2 = 1200 kg/m3  . 

The top of the second layer (the reservoir layer) is at 500 m depth and reservoir thickness 
is100 m. A third layer (located below the reservoir) is assumed to be the same medium as 
the top (overburden) layer. P-wave displacements along the ray computed with this three-
layer model and a 5/15-80\100 Hz zero-phase (non-causal) Ormsby wavelet (P-wave 
source) can be seen in Figure 3. The first event at 500 ms is a top of reservoir reflection 
with negative polarity because of a P-wave velocity inversion. Event number 2 at 700 ms 
is a reflection off the reservoir bottom with positive polarity caused by a P-wave velocity 
increase at the second interface. Subsequent events are multiple reflections representing 
reservoir layer reverberations that are spaced 200 ms apart. This spacing is dictated by an 
assumed reservoir thickness of 100 m and a reservoir P-wave velocity of 1000 m/s. Note 
the typical Ormsby wavelet ringing of the first two events. Of interest are also the two far 
offset traces in Figure 3. Just before 900 ms, approximately halfway between the 
reservoir bottom reflection and the first multiple, another event with negative polarity is 
barely visible. The timing suggests a one-way traverse of the reservoir at the S-wave 
velocity which would mean one conversion on transmission and one conversion on 
reflection take place. 

CONCLUSIONS 

Based on the work of Ewing et al. (1957) equations for the computation of point 
source responses in elastic and anelastic multi-layered media situations are developed. A 
system of equations is set up by introducing the boundary conditions of all interfaces 
between the layers. Plane-wave particle motion reflection and transmission coefficients 
for all interfaces are obtained from the solution of this system. These plane-wave 
coefficients are then introduced into Sommerfeld integrals for the computation of up-
going and down-going spherical-wave displacements. A three-layer/two-interface P-wave 
example modelled by the resulting Sommerfeld integrals shows the expected 
reverberations and spherical spreading. There is also evidence of doubly converted 
energy at large offsets. As a next step in this investigation the Ewing-algorithm is applied 
to a three-layer spherical-wave AVO situation (Haase, 2008, this Volume). Future work 
will include three-layer and multi-layer model Q-estimation from synthetic VSP data 
generated with this method. 

ACKNOWLEDGEMENTS 
Support from the CREWES Project at the University of Calgary and its industrial 

sponsorship is gratefully acknowledged. 

REFERENCES 
Aki, K.T., and Richards, P.G., 1980, Quantitative Seismology: Theory and Methods: Vol. 1, W.H. Freeman 

and Co. 



Sommerfeld integrals beyond two layers 

 CREWES Research Report — Volume 20 (2008) 7 

Downton, J.E., and Lines, L.R., 2002, AVO NMO: CREWES Research Report, Volume 14. 
Ewing, W.M., Jardetzky, W.S., and Press, F., 1957, Elastic Waves in Layered Media: McGraw-Hill Book 

Company, Inc. 
Haase, A.B., and Ursenbach, C.P., 2006, Spherical-wave AVO modelling in elastic and anelastic media: 

CREWES Research Report, Volume 18. 
Haase, A.B., and Stewart, R.R., 2007, Testing VSP-based Q-estimation with spherical wave models: 

CREWES Research Report, Volume 19. 
Haase, A.B., 2008, Modelling Class 1 AVO responses of a three layer system: CREWES Research Report, 

Volume 20. 
Ostrander, W.J., 1984, Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence: 

Geophysics, 49, 10, 1637-1648. 
 
 

 

FIG. 2. Plane-wave Class 1 elastic reflection coefficient comparison. 
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FIG. 3. P-wave multiples (reverberations) of a spherically spreading wave-front generated in a 
100 m reservoir (the reservoir top is at 500 m depth). The top-of-reservoir reflection arrives at 500 
ms. The event at 700 ms is a reflection off the reservoir bottom and reservoir layer reverberations 
can be seen below that. 


