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Differential operators 2: The second derivative 

John C. Bancroft 

ABSTRACT 
Differential operators are used in many seismic data processes such as triangle filters 

to reduce aliasing, finite difference solutions to the wave equation, and wavelet correction 
when modelling with diffractions or migrating with Kirchhoff algorithms. Short operators 
may be quite accurate when the data are restricted to low order polynomials, but may be 
inaccurate in other applications. 

This is the second of three papers on differential operators and deals specifically with 
the second derivative. The first paper deals with the first derivative and the third paper 
deals with the square-root derivative.  

The purpose of this paper is to evaluate visually the short operators that approximate a 
second derivative.   

APPLICATIONS 
The first paper in this series presents a number of applications for the different 

derivatives.  They are: 

1. The rho filter that applies corrections to the wavelet after diffraction modelling 
or Kirchhoff migration. 

2. Fast filtering in the time domain that differentiates the filter operator to delta 
functions and is then applied to a trace that has been integrated.  Convolving 
with the delta functions is equivalent to summing a few samples. 

3. Finite difference solutions to the wave equation 

ASSUMPTIONS 
I assume an array of data fn, that I call a trace, is sampled from a continuous function 

f(t) defined in time. Its Fourier transform is in the frequency domain is Fn.  The trace can 
be in either time or distance transforming into the frequency or wavenumber domains. I 
will assume the trace to be in the time domain and refer to the transform domain 
parameters as frequency. 

The displayed results are created using MATLAB with code  
       \2008-Matlab\DifferentialOperatorSecond.m 

INTRODUCTION 
The second derivative is much easier to implement than the first derivative as the 

simplest implementation provides very good results, especially with the phase. The 
second derivative produces a 180 degree phase shift that is simple represented by a 
change in the sign. The amplitudes of the samples are even about time zero (i.e. 
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( ) ( )1 1f t f t− = + ). However, greater accuracy is usually required, especially when being 
applied many times when used with solutions to the wave-equation. A seismic trace is 
usually over sampled by a factor of three, or the maximum frequency is one third the 
Nyquist frequency. Operators usually have good accuracy at the lower frequencies and 
work well with the time sampled data. 

In the spatial direction, the data is usually under sampled and is often aliased in areas 
with steep dip. This is a typical area where the second derivative is applied and knowing 
the frequency limits of the operator becomes essential in designing an accurate algorithm.  
In the time direction, a three point operator may be adequate, while in the spatial 
directions a five or larger operator may be required. Different approximations to the 
derivatives have lead to names of migration algorithms such as the fifteen forty-five and 
sixty degree algorithms. 

SECOND DERIVATIVE 
Since differentiation is a filtering process, the second derivative could be obtained by 

convolving twice with a first derivative. But the first derivative operator, in its simple 
forms as a forward and backward approximation, leads to phase errors. However, using 
one first, and the other second, an accurate second derivative can be approximated.   

Assume the sequence fn is differentiated to f’n and the second derivative is f”n. The 
forward difference derivative 
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when combined give the second derivative, 
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This is a well known result and is used extensively. 

Consider another approach that uses the Taylor series: 
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or with a negative increment 
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Adding these two equations and reorganizing gives 
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where all the odd order derivative are now gone. The left side is identical to the first 
approximation to the second derivative in equation (3). We continue the rearrangement to 
give 
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where we now see an accurate representation of the second derivative that includes 
higher order derivatives.  If our data is band limited, or smooth enough such the higher 
order derivatives are zero, then the approximation given by (4) become an exact solution. 

If there are higher order derivatives, then we can include the fourth derivative by using 

 

2 2 2

2 2 2

( ) 2 ( ) ( ) ( ) ( ) ( )1 ...
( ) 12

f t t f t f t t f t t f t
t t t

∂ ∂
∂ ∂

⎛ ⎞− Δ − + + Δ Δ= + +⎜ ⎟Δ ⎝ ⎠ , (9) 

where we now see only second order terms plus the sixth order and above.  Solving for 
the second derivative we get a recursive form 
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We can substitute a simple form of the second derivative from equation (4) into the 
denominator, 
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or in the discrete form we have 
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Claerbout (1996) indicated that this truncated form can be further improved by 
modifying the 1/12 scaling term to 1/6.   
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HIGHER ORDER APPROXIMATIONS 
As with the first derivative, we can use the Taylor series to get higher order 

approximations. I will start with the sum of the two approximations in equation (7), but 
will continue in discrete form and assume the interval is unity, i.e.,  
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We do need an approximation to the fourth derivative and I will get that by taking the 
simple second derivative of the second derivative, i.e., 

 1 1" 2n n n nf f f f− += − + , (15) 

to get 

 ( ) ( ) ( )2 1 1 1 1 2"" 2 2 2 2n n n n n n n n n nf f f f f f f f f f− − − + + += − + − − + + − + , (16) 

which simplifies to 

 2 1 1 2"" 4 6 4n n n n n nf f f f f f− − + += − + − + . (17) 

The fourth order approximation is substituted into (14) to get 
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and the second derivative becomes 
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This is the five point central difference equation for the second derivative.  We can 
also solve for a second derivative at the first, second, fourth, or fifth point.  The following 
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figure contains many similar approximations to the second derivative and is taken from 
the internet. 

 

 

FIG. 1.  Examples of various approximations to the second derivative. 

http://documents.wolfram.com/mathematica/Built-inFunctions/AdvancedDocumentation/ 

DifferentialEquations/NDSolve/PartialDifferentialEquations/TheNumericalMethodOfLines/ 

SpatialDerivativeApproximations.html 

As in the first-derivative paper, the above equations are suitable for insertion into a 
matrix.   

The above approximations all assume that the higher order derivatives are zero and 
that we should only be applying these operators for correspondingly smooth data. This 
will become more evident when viewing the following spectral properties of the different 
approximations. 
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GRAPHICAL EXAMPLES  
Figure 2a contains the amplitude spectrum of the second derivative defined by 

( )2 2jω ω= −  with Nfft = 64. The phase is zero (or 180o) and the amplitude is seen to be 
increasing with the square of the sample number. The negative frequencies are plotted on 
the right side of the figure to illustrate what happens in the center at the Nyquist 
frequency. The inverse transform is plotted in (b). 

 

a) 

 

b) 

FIG. 2.  Amplitude spectrum a) and the inverse transform b) of the second derivative. 

10 20 30 40 50 60
-1000

-800

-600

-400

-200

0

200

400

600

800

1000

N

A
m

pl
itu

de

Amplitude spectrum 

 

 

(jw)2

(jw)2

-30 -20 -10 0 10 20 30

-3

-2

-1

0

1

2

3

N

A
m

pl
itu

de

Rotated IFFT of the Freq. domain derivative.



Second derivative 

 CREWES Research Report — Volume 20 (2008) 7 

The data in Figure 2b shows that a small operator will be effective as most of the 
energy of the wavelet is concentrated towards the center.  To avoid wrap around effects a 
larger value for Nfft will be used (512) and the data zoomed to view the wavelet.  A seven 
point operator is created by windowing with a cosine shown in Figure 3a with the 
corresponding amplitude spectrum in (b). 

 

a) 

 

b) 

FIG. 3.  A windowed wavelet a) and b) it spectrum. 

The amplitude spectrum looks OK in Figure 3b, but its relative error in Figure 4 
appears quite large. The error is due to a slight change in the DC value of the time 
domain operator. It is really quite small as the amplitudes are small. We can greatly 
reduce this error by using a raised cosine window as illustrated in Figure 5. This also 
reduces the bandwidth of the operator as illustrated in Figure 6. 
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FIG. 4.  Error of a seven point operator when using a cosine window. 

 

FIG. 5.  Error of a seven point operator when using a raised cosine window. 

50 100 150 200 250 300 350 400 450 500
-5

-4

-3

-2

-1

0

1

2

3

4

5

N

Pe
rc

en
t

Percent error of imaginary spectrum of windowed operator, Nfft = 512   Window = 7

10 20 30 40 50 60
-5

-4

-3

-2

-1

0

1

2

3

4

5

N

P
er

ce
nt

Percent error of imaginary spectrum of windowed operator, Nfft = 64   Window = 7



Second derivative 

 CREWES Research Report — Volume 20 (2008) 9 

 

FIG. 6.  Amplitude spectrum of the seven point operator when a raised cosine window is used in 
the time domain. 

The amplitudes of this latest seven point window are shown below.  
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COMPARISON OF AMPLITUDES SPECTRUMS 
Three central difference operators of size 3, 5, and 7, using the polynomial method are 

plotted in Figure 7.  Spectrally derive operators using the raised cosine are plotted for size 
3, 5, 7, and 9, and displayed in Figure 8. 

 

 

FIG. 7.  Amplitude spectrum for operators derived using the Taylor series. 

 

FIG. 8.  Amplitude spectrum for operators derived using time domain windowing. 
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Amplitudes of the spectral errors are shown in Figure 9 for the polynomial operators 
and in Figure 10 for the spectral operators. 

 

FIG. 9.  Percent errors for the Taylor series operators. 

 

FIG. 10.  Percent errors for the time domain windowing operators. 
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A plot comparing the two seven point operators is shown in Figure 11. The 
polynomial operator has a 1% bandwidth to approximately 115 hz, while the spectrally 
derived operator has a bandwidth of approximately175 Hz.   

 

FIG. 11.  Comparison of spectrum errors for seven point operators. 

CONCLUSIONS 
Numerous short approximations to the second derivative were presented. The best 
solution for a seven point operator was found from the inverse Fourier transform of a 
windowed ( )2jω  function. 

Operators were defined using polynomial approximations and truncated Taylor series.  
These short operators do assume a low order polynomial and can define the derivative at 
any location within the locally smoothed area. This aids in defining second derivatives at 
the beginning and end of an array (the boundary conditions).   

Spectrally derived operators have a larger bandwidth for an equivalent seven point 
operator.   
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