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ABSTRACT

We use the nonstationary equivalent of the Fourier shift theorem to derive a general
one-dimensional integral transform for the application and removal of certain seismic data
processing steps. This derivation comes from the observation that many seismic data pro-
cessing steps can be viewed as nonstationary shifts themselves. The nonstationary fre-
quency and time distortions inherent to many seismic data processes are predicted and
quantified by this transform. Once the transform is developed, we demonstrate matrix-
vector multiplication as a valuable tool for implementation.

INTRODUCTION

It is well known that the Fourier transform has a variety of properties that make it
useful for signal processing, (Yilmaz, 2001). The Fourier transform essentially rearranges
the data in an input function into its complex frequency components, (Karl, 1989). This
can be done because continuous functions and their discretely sampled equivalents can be
exactly expressed in terms of the Fourier basis. Once the data are rearranged in terms of
the Fourier basis, the function is said to be in the Fourier domain. The organization of
data in the Fourier domain allows many otherwise complex operations to be applied easily.
Properties such as the Faltung, Wiener-Khintchine and shift theorems, (Sneddon, 1995)
exploit this organization, and they are allowed to exploit it because the Fourier transform
is exactly reversible.

The inversion theorem of the Fourier transform states that no information is lost when
a function is moved in and out of the Fourier domain, (Sneddon, 1995). This property
is critical in quantitatively justifying valid processing with the Fourier transform. The
Fourier transform can be applied to an input signal, then the signal can be manipulated, and
then an inverse Fourier transform can then be applied without any residual effects of the
transformation itself. Only the effects of the manipulation are present in the output signal.

Viewing the Fourier transform from this perspective suggests that any quantitatively
valid processing domain should be reached by an exactly reversible transform. There are
many transformations that are exactly reversible, but what makes the Fourier transform so
useful to geophysicists is that the organization of the data in the Fourier domain is easy
to exploit for desirable processing steps. Therefore, a useful transform will not only be
reversible, but it should also rearrange the input data into an exploitable organization.

Many individual seismic data processing steps also simply rearrange input data. Barring
destructive processes such as muting or band-limited frequency filtering, even an entire data
processing flow is itself simply a rearranging of the input data set. Processing steps and
flows that rearrange data are essentially performing a transformation of that data into a
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corrected set. However, conventional methods used to perform processing steps of this
type are usually not implemented as transforms. Instead, they are implemented with data-
mapping algorithms that require interpolation, (Harlan, 1982).

Most conventional interpolation schemes contradict the primary assumption of the Fourier
transform, as they do not assume that the continuous equivalent of the recorded data is con-
structed with a Fourier basis. Instead, they assume some other basis in order to design effi-
cient, but approximate interpolants. These methods not only have the risk of immediately
altering the data, but are also inherently irreversible. Applying or removing processing
steps causes a small amount of information loss. With quantitative analysis methods as a
goal in seismic data processing, it is important to preserve as much of the input information
as possible during the flow.

In order to address the problem of data loss due to interpolation-based methods, we
propose a reversible one-dimensional transform for the implementation of seismic data pro-
cessing steps. Implementing data processing steps as reversible transforms does not require
interpolation in the continuous case, and correctly assumes the Fourier basis in agreement
with the Fourier transform for interpolation in the discrete case. Since the Fourier basis is
used, the forward transform is theoretically exactly invertible. Just as the inversion theo-
rem quantitatively justifies the Fourier domain as a valid processing domain, a reversible
transform for data processing steps justifies the use of corrected datasets as if they are in
valid processing domains themselves. Although several seismic data processing operations
have been individually described by transforms of exactly this type ((Margrave, 1998),
(Margrave and Ferguson, 1999), (Margrave, 2001)), the transform here is the general form.
Any processing step that can be viewed as a nonstationary shift can be easily implemented
by this transform. Seismic data processing steps are naturally useful for separating signal
from noise, so they offer familiar, exploitable organizations of data. Therefore, a reversible
transform for seismic data processing offers a useful set of quantitatively valid domains in
which to work.

The general data processing transform we derive is based on classical Fourier trans-
form theory ((Papoulis, 1962), (Sneddon, 1995)) and the theory of nonstationary filtering,
(Margrave, 1998). The development of a reversible transform comes directly from filter-
ing properties of the Fourier transform, so the parallels are straightforward. In fact, the
reversible data processing transform proposed here is a special case of the Fourier shift
theorem adapted to nonstationary filtering.

THEORY

The Fourier transform obeys the inversion theorem, which states that it is exactly re-
versible. Because of this, data can be moved in and out of the Fourier domain with no in-
formation loss. This justifies the Fourier domain as a quantitatively valid domain in which
to process data. Many conventional processing methods are not exactly reversible, so an
improvement upon them would be to find an equivalent, but reversible processing method.
We now develop a general form for a forward transform that applies data processing steps
which can be formulated as nonstationary shifts. Following this, we derive the inverse of
the transform.
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It is important to have already defined a convention for the forward and inverse Fourier
transform before proceeding. The shift-direction determined by the sign in the shifting
exponential will reverse if the opposite sign convention for the Fourier transform is used.
With the Fourier transform convention defined in equation 1, a positive sign in the shift-
ing exponential causes a backwards shift of the input function, and a negative sign in the
shifting exponential causes a forward shift.

F (ω) =

∫ ∞

−∞
f(t)e−iωtdt, (1)

Keeping track of the signs in the exponents is critical in developing the following transform.

Approximate nonstationary shifts implemented in the time domain are constrained to
evaluate the forward and reverse process using only the input grid. As an example, the
mechanics of the shift required for Normal Move Out (NMO) simply shifts data values
backwards from input time, tx, to output time, t0, where tx depends on t0. This is exactly
a nonstationary shift by combination as described by Margrave (1998), where for NMO
correction, the nonstationary shift, is expressed as,

∆NMO (t0) = tx (t0)− t0. (2)

Figure 1 shows what this shift simply represents when looking at a shot or common mid-
point (CMP) gather. Other data processing steps have similar mechanics. In general, any
processing step that requires a mapping from an input coordinate that is a function of the
output coordinate, to that output coordinate, can be viewed as a nonstationary shift by com-
bination. It is better at this point to think in terms of input and output coordinates rather
than input and output times, because then even frequency, wavenumber, space, or time
shifts can be admitted, depending on the desired domain. To emphasize that the input and
output coordinates do not necessarily correspond to time, we use the following notation for
a general nonstationary data processing shift,

∆(q) = p(q)− q, (3)

where p and q are the input and output coordinates, respectively. Using these general
coordinates, the reverse nonstationary processing shift is,

h(q) ≡ f(q + ∆(q)) =
1

2π

∫ ∞

−∞
F (β)eiβ∆(q)eiβqdβ, (4)

where β is the Fourier dual of q. The convenient form of ∆(q) allows the exponentials to
be reduced, giving a concise form of the forward data processing transform,

h(q) =
1

2π

∫ ∞

−∞
F (β)eiβp(q)dβ, (5)

which confirms the desired result,

h(q) = f(p). (6)

The output function, h(p), is a processed signal, so for example, if ∆NMO is substituted
into equation 4, then h(q) would be equivalent to f(q) with the NMO correction applied.
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FIG. 1. Synthetic shot gather showing the simple mechanical meaning of ∆NMO. This value is
nonstationary because it changes depending on not only the offset, but also on the time assumed
to be t0.
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This agrees with expression 6 as the value of the output function h at the output time, q, is
the same as the value at the input coordinate, p, in the input function, f.

The forward transform given here is in the mixed-domain. For example, if the input
function is defined over time, it takes the frequency spectrum of that input function, and
outputs a new time series. This should not be alarming, as the Fourier transform itself is a
mixed-domain transform. It may seem questionable how p(q) is handled in the exponent.
However, since the nonstationary shift is formulated here as a nonstationary combination,
and the integration is over β, nothing new is needed to handle the relation between p and
q. Nonstationary combination is a filtering process that, although nonphysical in most
cases, provides exactly the type of shift desired for the NMO correction. The distortion
of the input signal is handled by the inverse transform developed below, which relies on
physically correct nonstationary convolution instead.

To derive the inverse of this transform, it helps to recognize what is already known about
the desired output trace. First of all, notice that the forward transform shifts the data while
simultaneously performing the inverse Fourier transform. It seems reasonable to expect the
inverse transform to start with the corrected trace, and shift it in the opposite direction as
it performs the forward Fourier transform. That is, the inverse transform naturally should
recover the original input spectrum, F(β), rather than go directly back to the original input
trace.

The output function of the forward transform, h(p), becomes the input function of the
inverse transform. Since the nonstationary behaviour still depends on q, which is now the
input coordinate, the inverse transform is a nonstationary convolution operator. Although
nonstationary combination mechanically performs nonstationary shifts correctly, ampli-
tudes are not changed, and therefore energy is not conserved between input and output
traces. Figure 2 demonstrates how the area under the input signal changes under a nonsta-
tionary combination shift. Rayleigh’s theorem (also known as Plancherel’s theorem) states
that the integral of the square of an input function must be the same as the integral of its
squared Fourier transform, (Karl, 1989). Physically, this means that energy should be con-
served between the input and Fourier domains, and clearly, the forward data processing
transform violates this. The inverse data processing transform is based on the physically
valid filtering process of nonstationary convolution, and can be used to account for changes
in energy caused by the forward transform.

Rayleigh’s theorem relates the energy of a function to the area beneath the function. To
predict how the energy has been changed by the forward transform, take the ratio of each
shifted rectangular element as in figure 2:

α =
∆p

(
f(p1)+f(p2)

2

)

∆q
(

h(q1)+h(q2)
2

) . (7)

Equation 6 shows that the shifted values of the input function are not changed. This cor-
responds to the height of the rectangular elements shown in figure 2 remaining unchanged
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FIG. 2. Element area change caused by a nonstationary combination shift. The values of f at p1

and p2 are mapped to h at q1 and q2, respectively. Since ∆p does not equal ∆q, the areas are not
equal, so by Rayleigh’s Theorem, energy is not conserved. Scaling h(q) by α(q) makes the areas
the same.

by the forward transform, giving,

α ≡
∆p

(
f(p1)+f(p2)

2

)

∆q
(

f(p1)+f(p2)
2

) =
∆p

∆q
. (8)

In the continuous limit, 8 goes to,

α =
∂p

∂q
. (9)

The output function, h(q), is of course distorted by different amounts since the applied shift
is nonstationary. α does not contradict this, as for nonstationary shifts, p is a function of q,
and so α itself is also a function of q. By scaling h(q) by α(q) and integrating, we claim
that the energy change is accounted for.

Now that there is a mechanism for removing amplitude distortions, the rest of the in-
verse transform development comes from removing the mechanical shift. The familiar
approach to un-shifting is to apply the Fourier transform to h(q) in terms of its own coordi-
nate, q, then apply the nonstationary shift, and finally apply the inverse Fourier transform:

y(q) ≡ h(q −∆(q)) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
h(q)e−iβqdqe−iβ∆(q)eiβqdβ. (10)

Moving the shifting exponential into the forward Fourier transform integral gives,

y(q) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
h(q)e−iβqe−iβ∆(q)dqeiβqdβ. (11)
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Now again exploit the convenient form of ∆(q) to reduce the exponentials to a single kernel
for the inner integral,

y(q) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
h(q)e−iβp(q)dqeiβqdβ, (12)

but this expression forces integrating p(q) in the exponential over q. This may at first seem
like a less attractive route than the familiar approach, but it can be used to account for
the nonphysical distortion caused by the forward transform by nonstationary combination.
Remember from figure 2, and equation 9, that the energy change can be accounted for by
scaling h(q) by α inside an integral over q. Now remember that h(q)=f(p), and then the
scaling factor, α, conveniently acts as a change-of-integration-variable factor, giving,

y(q) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
αf(p)e−iβp(q)dqeiβqdβ. (13)

Including α allows the inner integral to be evaluated in the same form as a Fourier trans-
form. Now notice that the outer integral in equation (13) is exactly the inverse Fourier
transform of the original uncorrected spectrum. Therefore, the mixed-domain general in-
verse data processing transform is given by,

F (β) =

∫ ∞

−∞
f(p)e−iβp(q)dp. (14)

The uncorrected trace can be exactly recovered by a regular inverse Fourier transform:

y(q) =
1

2π

∫ ∞

−∞
F (β)eiβqdβ. (15)

The desired result of the inverse transform is obtained:

y(q) = f(q). (16)

Although the mechanics of this general data processing transform are clear under non-
stationary filtering theory, we demonstrate that for any data processing step implemented by
transform, α trivially predicts amplitude corrections that are otherwise difficult to quantify
under conventional stationary filtering theory.

IMPLEMENTATION

Now that the general form of the transform has been developed, an appropriate method
is needed to implement it. The method we use and discuss here is matrix vector multipli-
cation.
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In order to computationally implement an integral transform, recognize that the input
function can be viewed as a vector, or a one-dimensional array, and that the transform
kernel can be viewed as a matrix, or a two-dimensional array. The output of a matrix
vector multiplication is analogous to the output function of the integral, but it is another
vector along a new axis. The important feature of matrix vector multiplication is that it can
be used to simultaneously multiply and integrate two functions over an input index. This
concept is certainly not new to geophysics, and many of its benefits have been explored in
detail, (Claerbout, 1992).

For any transform, the size of its matrix is dependent on the length of the input vector.
For an input vector of N elements, the transform matrix will be of size N × N . The
general structure of the matrix is always the same though, in that the horizontal index, or
column number, corresponds to the input coordinate, and the vertical index, or row number,
corresponds to the output coordinate. In the case of seismic data, an input vector would
typically be a seismic trace, but the input vector can be a discrete frequency or wavenumber
spectrum as well. To start though, take for example a trace that was recorded starting at
t=0 for three seconds with a sampling interval of 4 ms. This trace would have 751 samples,
and would therefore be a vector of length N=751. The full form of a transform matrix
suitable to operate on this trace must be of size NxN. It is not uncommon to reduce the
size of a transform or operator matrix to increase computational efficiency, but this cannot
be justified without first observing symmetries of the full form. Increasing the size of the
matrix is allowed and helpful in some cases. This is done by zero-padding (appending rows
or columns of zeros), but this generally does not add any new information.

As usual, we use the Fourier transform to demonstrate the general concepts for con-
structing transform matrices. In the case of the Fourier transform, each horizontal index
of the matrix corresponds to an input time increment. Each vertical index corresponds to
an output frequency increment. The Fourier transform can be written as a matrix vector
multiplication according to (Karl, 1989, ch. 5):

F (ωj) =
N∑

l=1

e−iωjtlf (tl) . (17)

An amazing but often forgotten feature of the discrete Fourier transform is that it can ac-
tually output a valid continuous frequency spectrum, (Gubbins, 2004). This implies that
the frequency axis must be chosen in order to precisely implement the Fourier transform.
As mentioned above, no new information can be added by increasing the number of out-
put values. Conservation of information is a key idea throughout transform theory, and
it comes up again when remembering that the output of the Fourier transform is com-
plex. Since each output value actually has two parts (real and imaginary), the output list of
unique values should be only about half the length of the input list. Also, realizing that the
Nyquist frequency is the highest recoverable frequency from an input signal, the optimal
Fourier transform only outputs N/2+1 frequency spectrum values that lie between, and in-
clude, zero and the Nyquist frequency. In most conventional Fourier transform algorithms
though, the output spectrum ranges between the negative and positive Nyquist frequencies.
The negative frequency components are not unique from those at the positive frequencies,
but the negative components are required to conserve the energy of the input signal, (Elliot
and Rao, 1982).
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FIG. 3. Frequency axis for the forward Fourier transform matrix. The value of ωj is plotted against
the row index, j. The frequency axis for the inverse Fourier transform is the same, except it will
vary with the column index. The frequency axis should be constructed to match a standard FFT
algorithm - in this case, the goal was to match the FFT frequency axis used by MATLAB.

Realizing that there is more than one way to construct a frequency axis is important in
order to construct a matrix operator to perform the Fourier transform. Since it makes sense
to use a standard fast Fourier transform (FFT) algorithm whenever possible, it is often best
to choose an axis that agrees with that of the FFT algorithm. For this work, we use the
MATLAB FFT, which outputs a vector with the DC (or zero frequency) component in the
first element, the positive and then negative Nyquist frequency components in the middle
elements, and then the negative frequency components, decreasing in magnitude, in the
subsequent elements. Even though frequency components are sampled at frequencies above
the Nyquist frequency, they are just an aliased version of some other frequency component
below the Nyquist frequency. The plot in Figure 3 displays the value of the frequency axis
for a 1.2 second trace sampled at 4 ms. Also, to conform with the MATLAB FFT structure,
we choose a frequency sampling interval, dω = 2π/T, where T is the maximum input axis
value. For the example in Figure 3, T=1.2 seconds, and dω = 5.236 rad/sec.

Fortunately, the frequency axis is the only part of constructing a Fourier transform
matrix operator that is not straightforward. In equation 17, ωj is the j-th element of the
frequency axis, and tl is the l-th element of the time axis. Since MATLAB starts indexing
at one, and recording time usually starts at zero, tl = (l−1)dt. Once the time and frequency
axes are constructed, calculating the (j,l)-th element of the Fourier transform matrix is done
with equation 17. Figure 4 displays the real part of the forward Fourier transform matrix
for an input time series of length N=300, and dt=4ms.

The inverse Fourier transform can also be cast as a matrix operator. The only major
difference is that the axes have interchanged, that is, now the row index corresponds to
input frequency instead of input time, and the column index corresponds to output time
instead of output frequency. Each element is calculated as an exponential with a positive
sign now, and there is a scaling factor of 1/2π. Other than the scaling factor, the inverse
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FIG. 4. The real part of a 300x300 Fourier transform operator matrix. Multiplying the full complex
form of this matrix by a discrete time series yields the frequency spectrum of that time series.
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FIG. 5. The real part of a 300x300 inverse Fourier transform operator matrix. Multiplying the full
complex form of this matrix by a discrete frequency spectrum recovers the time series associated
with that spectrum.
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Fourier transform matrix is the adjoint of the forward Fourier transform matrix, and the
operation can be written as:

f (tj) =
N∑

l=1

(
eiωltj

2π

)
F (ωl) , (18)

with no summation inside the large parentheses. The inverse Fourier transform matrix is
shown in Figure 5.

Constructing a matrix operator for the forward and inverse data processing transforms
follows the same procedure as we used for the Fourier transform. The general procedure is
summarized here:

1. Identify the kernel of the transform and the input and output signals.

2. Construct the discrete input and output axes based on the sampling interval and do-
main of the input signal.

3. For an input signal of N-samples, initialize an empty matrix of size NxN, and asso-
ciate the matrix indices with the input and output axes.

4. For each (j,l) matrix coordinate pair, calculate the kernel value and place it in the
matrix.

The forward and inverse Fourier transform is often discussed as a mixed-domain trans-
form between time and frequency domains. However, the Fourier and inverse Fourier trans-
form are more generally described as a map between an input domain and its associated
Fourier domain. In the same sense as the inverse Fourier transform, the forward data pro-
cessing transform has an input Fourier-domain axis and an output axis that is associated
with the original input domain. The only difference is that the input domain axis becomes
distorted during the transform as a function of the regular input axis. The concise form of
the forward data processing transform can then be cast as a matrix vector multiplication:

h (qj) =
N∑

l=1

eiβlp(qj)

2π
F (βl) . (19)

If the input signal is a time series, as in an NMO correction, then p and q are time
variables, and they would correspond to the vertical output axis of the NMO matrix. The
input axis would correspond to β, and in the case of NMO, would be the frequency axis
that is build to match the Fourier transform frequency axis. A convenient feature of the
data processing transform matrices is that they do not differ from the form of the Fourier
transform matrices other than the time axis, and scaling factors. So the standard Fourier
frequency axis that is carefully matched to the FFT axis is still valid. The standard time
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axis is still useful, as it actually represents q for a given index. A new time axis is needed
with elements pj , which are each just the value of p(qj) for the j-th row. If the input series
to the data processing transform is a frequency spectrum, as in f-k migration, the axes take
on different meanings.

The inverse data processing transform is more similar in form to the forward Fourier
transform, in that it usually takes the series from the input domain and outputs a Fourier
spectrum. Again following the procedure to construct a transform matrix, cast the inverse
data processing transform (14) as a matrix-vector multiplication:

F (βl) =
N∑

l=1

[
αle

−iβjp(ql)
]

2π
f (pl) , (20)

with no summation over l inside brackets. A standard inverse Fourier transform such as the
inverse fast Fourier transform, (IFFT) can be applied to the output vector in equation 20 to
recover the uncorrected input signal.

Although not necessary for implementation, it is insightful to separate the data pro-
cessing transform matrices as a composition of a Fourier transform matrix with a shifting
matrix. For a set of traces that are of the same length, the only part of the data processing
transform matrix that changes from trace to trace is the shifting exponential. It is only be-
cause of the unique form of the shift itself that the exponentials reduce to a single transform
exponential. Before this reduction, the Fourier transform matrices can be constructed sep-
arately from the forward and reverse shifting matrices for the same data. The construction
of the Fourier transform matrices is already given above, and the forward shift matrix is
given by:

ajl ≡ eiωl∆j = eiωl(p(qj)−qj). (21)

The reverse shifting matrix is then given by:

bjl ≡ e−iωj∆l

αl

=
e−iωj(p(ql)−ql)

αl

, (22)

with no summation over indices. This approach only requires the Fourier matrices to be
calculated once for an input dataset. For that given dataset, the traces are looped over, and
at each trace, the shifting matrix is computed, and then combined with the Fourier matrix
by Hadamard (entry-wise) matrix product. This builds the transform matrix, which is the
multiplied by either the corrected input trace for the inverse transform, or the spectrum of
the uncorrected input trace for the forward transform.

The inverse of the data processing transform can be exactly formulated as seen in the
continuous case. This alone is a significant development, but when cast as a matrix, the
data processing transform has a form very similar to the Fourier matrices, and not only
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that, its approximate inverse is easily calculated. From equations 21 and 22, we claim that
the inverse matrix for each trace is best approximated by the adjoint of the forward matrix,
scaled by α.

DISCUSSION

Casting a theoretically continuous input signal as a vector is a natural and correct way to
view recorded seismic data. The time-sampling interval of the recorded data determines the
Nyquist frequency of the recorded signal, (Gubbins, 2004), and it can be assumed that the
data is frequency band-limited between zero and the positive Nyquist frequency, (Gubbins,
2004). This means that the recorded signal is exactly determined by this small and discrete
range of frequencies. No information is gained by using filters that operate on frequencies
higher than the Nyquist frequency. This observation, combined with the Fourier sampling
theorem, suggests that a continuous, but band-limited form of the recorded signal exists,
and it is exactly described by the Fourier basis. This continuous form is not necessarily the
same as the true continuous function that a seismometer attempts to record. Conventional
methods estimate the values of this continuous function by assuming that the function be-
haves like some interpolant between samples. We claim that a repeatable and discretely
accurate approach to data processing is to return the exact value of the band-limited contin-
uous equivalent of the recorded signal at any desired input coordinate. The data processing
transform attempts to do exactly this.

The data processing transform is a special case of the nonstationary Fourier shift the-
orem. It follows then, for the continuous case, that data processing steps implemented by
transform are effectively performing convolution with a shifting scaled Dirac delta func-
tion. The sifting property of the delta function justifies using convolution with a delta
function to return the exact value, as only the value of the input signal at the target time is
extracted. This is the ideal way to apply data processing corrections in both transform and
time mapping approaches, but the discrete nature of seismic data prevents this. We suggest
below that any interpolation scheme can be viewed as an approximation to a continuous
and exact nonstationary shift. This suggestion arises from the observation that interpola-
tion operators are approximations to the Dirac delta function.

The Dirac delta function can be formulated as the generalized limit of other more com-
mon functions, (Papoulis, 1962). Two clear examples of this are boxcar (rectangle) and
Gaussian functions, which both approach an impulse as their widths go to zero and their
heights go to infinity, (Papoulis, 1962). Take for example the boxcar function:

rε(t) =

{
1
ε
|t| ≤ ε

0 |t| > ε
. (23)

As ε approaches zero, the width of the boxcar goes to zero, and the height goes to infin-
ity, see figure 6. As this occurs, the boxcar function approaches the Dirac delta function:

lim
ε→0

rε(t) = δ(t). (24)
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FIG. 6. Nearest-neighbour interpolant approaching δ(t). As ε approaches zero, the rectangle func-
tion defined by equation 23 approaches the Dirac delta function.

The scaled boxcar function is used as an interpolant for nearest-neighbour interpolation,
where the width of the boxcar is equal to the sampling interval. This is a poor choice in
most cases, as nearest-neighbour interpolation in the time domain has the unwanted effect
of multiplying the frequency spectrum by a sinc function. Conversely, nearest neighbour
interpolation in the frequency domain introduces ringing into the time series.

Linear interpolation is equivalent to convolution with a scaled triangle function with
a width equal to twice the sampling interval, (Harlan, 1982). The triangle function also
approaches the delta function as its width goes to zero and its height goes to infinity:

Λε(t) =

{
1
ε
− |t|

ε2
|t| ≤ ε

0 |t| > ε
, (25)

lim
ε→0

Λε(t) = δ(t). (26)

This behaviour can be seen in figure 7.

Data processing corrections implemented by sinc-interpolation algorithms effectively
perform convolution of the input signal with a shifting scaled sinc-function. In the general
continuous case, this has no clear justification, but for band-limited or discrete data, the
purpose of the sinc-function becomes apparent, (Harlan, 1982). The Fourier transform of
the sinc-function is a boxcar function over its own frequency content, (Harlan, 1982). Since
the ideal interpolant should not affect the frequency content of the data while it estimates
an intermediate value, a sinc function with frequency content at least up to the Nyquist
frequency of the input signal will be the ideal interpolator, (Harlan, 1982). To reduce the
Gibbs phenomenon of ringing associated with the transform of a boxcar function, tapering
of the sinc function is often performed, (Rosenbaum and Boudeaux, 1981), and computa-
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FIG. 7. Linear interpolant approaching δ(t). As ε approaches zero, the triangle function defined by
equation 25 approaches the Dirac delta function.

tional efficiency is increased by truncating the length of the sinc operator, (Harlan, 1982).

The sinc function is a very good choice for an interpolant as it attempts to respect the
finite bandwidth of the recorded data. However, convolution with a sinc function is still an
approximation to convolution with the ideal delta function. For the following expression,
(Elliot and Rao, 1982), as ε approaches infinity, the normalized sinc function approaches
an impulse, see figure 8:

sincε(t) =
εsin(πεt)

πεt
, (27)

lim
ε→∞

sincε(t) = δ(t). (28)

There are more similarities between the narrowing sinc function and the Dirac delta
function than just the shape of the pulse. When ε is less than infinity in equation 28, the
side lobes of the sinc function mimic GibbÂŠs phenomenon in Fourier transform theory,
(Papoulis, 1962). Since the Fourier transform of a sinc function is a boxcar function, one
can also visualize how it approaches the delta function in the Fourier domain. As the
sinc function narrows, its frequency content increases, and its boxcar Fourier transform
broadens. When the sinc function finally becomes an impulse, its Fourier spectrum is an
infinitely wide boxcar, which is simply a constant, just as the Fourier transform of the
delta function. Applying a band-pass filter to a delta function yields a sinc function, and
conversely, the sinc-function is a band-limited estimation of the Dirac delta function. The
sinc-function interpolant, before tapering or truncation, respects the Fourier basis assumed
by the Fourier transform, and is equivalent to processing by discrete nonstationary filtering.

The inverse to any processing step is exactly formulated here for the continuous case
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FIG. 8. Sinc interpolant approaching δ(t). As ε approaches infinity, the sinc-function defined by
equation 27 approaches the Dirac delta function.

FIG. 9. Mixed-domain transform diagram. The relation between the Fourier transform (FT), the data
processing transform (DPT), the inverse Fourier transform (IFT), and the inverse data processing
transform (IDPT) is shown here. The FT and IFT move between the uncorrected and Fourier
domains, while the DPT and IDPT move data between the Fourier and corrected domains.

using the nonstationary version of the Fourier shift theorem. This is not surprising, as
even the conventional procedure of mapping data directly between input and output times
is exactly reversible assuming continuous data. Casting the integral kernel as a discrete
matrix defined on the sampling intervals allows a precise method of approximating the
exact continuous form assuming a Fourier basis. Although the continuous inverse of a
nonstationary shift is exact, the matrix approximation can be evaluated by checking if the
product of the forward and inverse transform matrices for a given trace yields an identity
matrix.

Like the Fourier transform, the data processing transform is a mixed-domain transform.
In the general case, the input data should be viewed as an image, and then a distorted ver-
sion of that image is the desired output. The data processing transform moves data directly
between the Fourier spectrum of the input image and the corrected image (See figure 9).
Viewing the input and output data each as an image makes the general application of the
transform to any processing step clear. The physical meaning of the transform coordinates
and distortions can be defined only when discussing specific processing steps.
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