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Seismic waves in poroviscoelastic media: A tutorial 

Edited and partially retranslated by Pat F. Daley1 

ABSTRACT2 

Initially, it should be mentioned that this report is a highly edited redraft, modification 
and partial retranslation of a paper by Frenkel (1944) which was written in Russian and 
translated by Cheng (1972). As the title of the original paper dealt with seismoelectric 
theory, some of the original text has been deleted, some moved to Appendix A, and 
additional text and formulae have been added. The writer of this apologizes to the 
original author and translator for this (possible) misuse of their academic research, but it, 
compared with other similar works, explains in a fairly uncomplicated manner the 
implementation of Darcy’s law into the elastodynamic equations, producing, at least in 
principle, the equations of motion for compressional ( )P  and shear ( )S  waves 
propagating in a poroviscoelastic medium. Other papers and texts on this topic will have 
to be consulted for more numerically specific aspects of this problem. However, a 
reasonable understanding of the contents of this report should make such undertakings 
much easier. All equations have been re-derived and typographic errors corrected, and 
points that may require further investigation are annotated in footnotes. Appendix B has 
been added, in which all of the parameters used in the text are defined, as the notation of 
the original translation has been modified to conform to recent works dealing with this 
topic. Finally, it should be noted that as the original paper was severely modified, this is a 
preliminary report and is subject to changes to improve its readability or to introduce 
additional relevant content. 

INTRODUCTION3 
The processing of seismic data by geoscientists is based almost exclusively on 

elastodynamic theory. For the general area of seismological study, this is a reasonable 
choice. However, for those dealing with the hydrocarbon exploration and data processing 
related to this endeavor, the question of whether a more relevant and accurate theory 
should be incorporated in their work, specifically that of porosviscoelasticity. As the 
basis of hydrocarbon recovery from reservoirs at depth involves the flow of a fluid 
through a porous medium, which is recovered and brought to the earth’s surface, would 
indicate that elastostodynamic theory alone might be found lacking when used in 
explaining the dynamics of this process. Porosviscoelastic theory would be the more 

                                                 
1 Department of Geoscience, University of Calgary:    pdaley@ucalgary.ca   
2 The theory of motion of a fluid in a porous medium based on Darcy’s law does not take into account the 
fact that the particles comprising the dry porous medium can be elastically compressed and extended  and 
assumes that the external forces and hydrostatic pressure act only on the fluid which occupy the pores.  

3 Linearized elastodynamic theory describing seismic wave propagation in an isotropic homogeneous 
medium is specific to the aforementioned medium type with no theoretical provisions, even in the 
inhomogeneous extension, for the existence of a static fluid phase, much less a fluid phase that has a flow 
rate within in the medium measured relative to the isotropic solid. 
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correct choice. As the core curricula at post secondary institutions in the geosciences are 
designed to provide a general treatment of seismic wave propagation, the inclusion of this 
type of specialized topic most often has to be delegated to a post graduate program. The 
development of poroviscoelastic theory presented here is directed at the geoscientist. 
Starting with basic elastodynamic theory, Darcy’s law is introduced to construct 
equations governing the propagation of seismic waves in a porous medium with a fluid 
occupying the pores. It is by no means an all inclusive exposition of the poroviscoelastic 
problem, but rather has been designed to provide an introduction of the topic which 
should allow for more specific problems in this area to be considered.  

DRY POROUS MEDIUM 
A porous medium, assuming a two – phase system, is characterized, from the point of 

view of elastic properties, as the propagation of waves in each of its two constituents; the 
solid and fluid phases. The propagation of each phase is partially dependent on the 
propagation of the other. Let it initially be assumed that the fluid phase is totally absent 
so that the volume occupied by the pores is empty. The elastic properties of the medium 
may then be described, from a macroscopic point of view by equations related to wave 
propagation in an elastodynamic solid, which will taken here to be isotropic. The 
quantities 

 2ik ik ikeτ δ λθ μ= +  (1) 

are the components of the elastic stress tensor, ( ), 1, 2,3ik i kτ =  where 1ikδ =  for i k=  
and 0ikδ = , i k≠  The related quantities  
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2
i k

ik
k i

u ue
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⎛ ⎞∂ ∂= +⎜ ⎟∂ ∂⎝ ⎠
 (2) 

(Aki and Richards, 1980) are the components of the strain tensor, where ( )1,2,3iu i =  are 
the components of particle displacement vector, dependent on the Cartesian coordinates 

( )1,2,3ix i = . Letting θ ⋅= ∇ =u  i iu x∂ ∂∑  defines the relative change of the effective 
volume of the dry porous medium. Also, λ  and μ  are Lamé’s coefficients, which 
specify the elastic properties of the dry medium, which is a porous elastic medium with 
empty pores. From equation (1) the expressions for the components of the elastic force 
acting upon a unit volume of the dry porous medium are  

 ( )
2

2 .s ik i k
i

k k kk i k i k

u u
x x x x x
τ θλ μ μ∂ ∂ ∂∂ ∂Φ = = + +

∂ ∂ ∂ ∂ ∂∑ ∑ ∑  (3) 

In vector notation the above becomes 
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 ( ) ( ) 2s λ μ θ μ= + ∇ + ∇Φ u  (4) 

In the macroscopic theory of a porous elastic medium, only those distances that are 
large when compared to the dimensions of the pores4, and such volumes that contain a 
large number of pores within a “reasonable” volume of the solid medium are considered. 
The presence and degree of porosity is accounted for by the coefficient φ 5 which is equal 
to the ratio of the volume of pores, fV  to the total (macroscopic) volume occupied by the 
porous medium, that is, s fV V V= + , where sV  is the volume actually filled by the solid 
constituent. The actual density of the solid constituent will be denoted by sρ  and the 
mean (macroscopic or effective) density of the porous medium by sγ . Referring these 
quantities to the volumes sV  and s fV V+  for a unit mass results in  

 1 1, .s s
s s fV V V

ρ γ= =
+

 (5) 

As a consequence 

 1 .fs
s s s

s f s f

VV
V V V V

γ ρ ρ
⎛ ⎞ ⎛ ⎞

= = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 (6) 

Employing the definition of φ  

 ( )1 .s sγ ρ φ= −  (7) 

The change in the volume of the porous medium consists of two parts: 

1. the change in volume of a unit mass of the solid phase, sVΔ , and 

2. the change in the volume of the pores associated with this unit mass, fVΔ . 

For the case of small strains6, which are routinely considered in elastodynamic theory, 
these quantities can be taken to be proportional to one another, so that  

 s fV VαΔ = Δ  (8) 

where α  is some proportionality coefficient7, which together with the porosity φ  
specifies the mechanical properties of the dry porous medium. With the assistance of this 
parameter, it is possible to express the variation of the degree of porosity of the porous 

                                                 
4 Probably more accurately, a distribution of pore sizes that does not violate the macroscopic theory. 
5 This is an overly cautious manner of introducing porosity. In what follows, φ  is porosity. 
6 Small strains imply small deformations, which is the foundation of linearization, as well as other related     
approximations to the state equations derived from physical principles. 
7 Although this may seem fairly straightforward, α  is a very important quantity, which if not estimated 
correctly, can cause large inaccuracies in any related computations. 
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medium due to its deformation. Using the definition of φ  for a unit mass, the following 
results 

 ( )
( )
( ) ( )2 2

f s ff s f f s

s f s f s f

V V VV V V V V
V V V V V V

φ
Δ + ΔΔ Δ − Δ

Δ = − =
+ + +

 (9) 

which leads to 
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( )

( ) .s f f s s f
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s f s f

V V V V V V
V

V V V V
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φ

⎛ ⎞Δ − Δ −Δ ⎜ ⎟= = Δ
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 (10) 

Since 

 1 11 1s fs

f f

V VV
V V

φ
φ φ

+ −= − = − = 8 (11) 

then 
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( )
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s f
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φ
− +

Δ = Δ
+

 (12) 

From another perspective, according to the definition of the quantity θ =∇⋅u  it follows 
that 

 ( )
( )
( )
1

.s f f

s f s f

V V VV
V V V V V

α
θ

Δ + Δ + ΔΔ= = =
+ +

 (13) 

Thus the subsequent relationship between φΔ  and θ  is obtained as 

 ( )
( )

1 1
.

1
φ α

φ θ
α

− +
Δ =

+
 (14) 

In the case of high porosity, the coefficient α  must be small compared with unity, so 
that the compression or expansion of the porous medium is realized primarily as the 
result of the compression or expansion of its pores. With a decrease in porosity, α  must 
increase. It is natural to assume, however, that for values of φ  not equal to zero, the 

product ( )1φ α+  must be smaller than unity, i.e., 1 1α φ+ < . 

The forces acting on a solid body and characterized by the stress tensor ikτ  can be 

divided into a pressure, ( )( )11 22 331 3sp τ τ τ= + +  and shear stresses, specified by the 
tensor 

                                                 
8 Compare this to what is termed tortuosity. 
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 1

3
.ik ik ik ii ik ik s

i
pτ τ δ τ τ δ′ = − = +∑  (15) 

In the absence of shear stresses, the deformation of the body is reduced to either a simple 
expansion or compression, with the pressure being defined by the formula 

 ( )11 22 33
2 2

3 3
s ikp e e eλθ μ τ λ μ θ⎛ ⎞′− = + + + = +⎜ ⎟

⎝ ⎠
 (16) 

which follows from equation (1) together with the definition of θ . Thus  

 1
1

b

p
K

θ = −  (17) 

where 2

3
bK λ μ= +  is the bulk modulus9 of the dry porous medium, and as a result, 

taking equation (14) into consideration, 

 ( )
( )

1 1
1 s

b

p
K

φ α
φ

α
− +

Δ = −
+

. (18) 

Hence, if the condition 1 1α φ+ <  holds, the compression of the dry porous medium 
must be accompanied by a decrease in porosity, whereas for the case 1 1α φ+ >  the 
opposite would be true. The following relations will also be needed in what follows 

 1ik ik ike pδ σ ϑτ= +  (19) 

which are obtained by employing equations (1) for the quantities ike . The coefficients σ  
and ϑ  are defined by the formulae 

 ( )
( )

2 3 1, .
2 2 2sp
λ μ

σ ϑ
μ λ μ μ
+

= =
+

 (20) 

The absence of shear stresses is characterized by the relationships 11 22 33 spτ τ τ= = = −  

which together with 12 23 31 0τ τ τ= = = 10, requires that equation (19) reduces to equation 
(17) in this case. 

SATURATED POROUS MEDIUM 
To this point a dry porous medium has been considered. Now assume that all of the 

pores are totally filled with a fluid, which can flow freely within the pore spaces. The 
question that arises is: “What will be the influence of the fluid phase under such a 
situation on the macroscopic properties of the porous medium?” 

                                                 
9  See the definition of compressibility in Appendix B. 
10 τ  is symmetric, so that 21 32 13

0τ τ τ= = =  also holds in this case. 
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In order to remain in equilibrium the fluid phase must, in the absence of external 
forces, be subjected to the same hydrostatic pressure, fp , at all points in the connected11 
space formed by the pores. This pressure is also exerted on the solid skeleton of the 
porous medium. The resulting deformation of this skeleton must be proportional to the 
variation of the volume of the solid phase in the same ratio as that of the fluid phase in 
the following manner 

 1fs
f

s f s

VV p
V V K

ΔΔ = = −  (21) 

where sK  is the actual (effective) bulk modulus12 of the solid phase. It follows that the 
entire (macroscopic) volume of the porous medium must vary at the same ratio 

 1
f

s

V p
V K

θΔ = = −  (22) 

and that the porosity percentage must remain unaltered. Consequently 

 0 .φΔ =  (23) 

Comparing equations (17) and (22) indicates that the hydrostatic pressure, fp , is 
equivalent to the compression of the porous medium, produced by it, so that the pressure 
in the solid given by 

 b
s f

s

Kp p
K

=  (24) 

which is such that it is smaller than fp  because s bK K> .13 

Equation (22) requires an additional condition to complete its specification. This is 
given by 

 1f
f

f f

p
K

ρ
ρ

Δ
=  (25) 

relating the true density of the fluid (as well as the bulk modulus of the fluid) with the 
hydrostatic pressure and represents the approximate form of the equation of state of the 
fluid at a constant temperature.14 

                                                 
11 What is meant here is that all of the pore space is effective. That is, there are no pore spaces that are not 
connected to another pore space. Taken to the limit, all pore spaces are connected in some fashion. If all the 
pore space is not effective, the following derivations are questionable without some correction factor that 
compensates for the unconnected pore space. Again see tortuosity. 
12 Again see the definition of compressibility in Appendix B. 
13 ( )2 3s bK K λ μ> = + . 
14 fK  is the bulk modulus of the fluid. The definition of compressibility is given in Appendix B. 
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It must be kept in mind that the mass of the fluid, f fVρ , filling the pores in a certain 
part of the solid skeleton, sV , is, generally speaking, a variable quantity15, when 
compared to the solid constituent, s sVρ , which remains constant. The pressures sp  and 

fp  are totally different in their origin and nature, and as such are completely independent 
of one another. The total variation of the macroscopic volume of the porous medium, due 
to their combined action, is equal to the sum of the variations (elastodynamic), due to 
each of them being considered separately. Adding the expressions (17) and (22) results in 

 1 1 .s f
b s

p p
K K

θ = − −  (26) 

This formula is valid in the special case of the absence of shear stresses in the solid 
skeleton of the rock. Given that these stresses are absent when the fluid has no relative 
velocity (motion) to the rock (fluid at rest), the stress tensor in the rock reduces to, in the 
general case, to the sum of equation (19) and the tensor ( )1 3 s f ikK p δ⎡ ⎤−⎣ ⎦ . This leads to 
the relationship 

 1 .
3ik ik s f ik

s

e p p
K

δ σ ϑτ
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

 (27) 

The above equations, together with equations (25) specify the deformations of the fluid 
and solid phases as functions of the stresses. To derive the equations of motion in the 
solid, the stresses must be expressed as functions of deformation (strain). Define 

f fϕ ρ ρ= Δ  such that ϕ  (not to be mistaken for φ ) becomes a characterization of the 
liquid phase in a similar manner as θ  does for the solid phase. Replacing fp  in 

compliance with equation (25) ( )f fp K ϕ= −  equations (27) may be rewritten in the form 

 .
3

f
ik ik ik s ik

s

K
e p

K
δ ϕ δ σ ϑτ− = +  (28) 

 2
3

f f
ik ik ik ik

s s

K K
e

K K
τ δ λθ ϕ μ δ ϕ

⎛ ⎞ ⎛ ⎞
= − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (29) 

or since 2

3
bKλ μ+ =  

 2b f
ik ik ik

s

K K
e

K
τ δ λθ ϕ μ

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 (30) 

These equations together with the equation of state of the fluid phase 

                                                 
15 That is, the fluid is compressible. If it were incompressible then the mass of the fluid would not be 
variable. 
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 f fp K ϕ= −  (31) 

allows for the determination of the elastodynamic volume forces on the solid in the case 
when the quantities ikτ  and fp  vary arbitrarily within the medium. In classic 
elastodynamic theory, the vector components of the elastic force, with reference to some 
unit volume of the medium, are given by 

 ( )s ik
i

k kx
τ∂Φ =

∂∑ . (32) 

In the problem being considered here, the above expression refers only to the solid phase, 
which is contained in a unit volume of the medium. In the presence of a hydrostatic 
pressure, a unit volume of the solid is also acted upon by the force fp−∇ , which is 
distributed between the fluid and solid phases according to the ratio of their respective 
volumes, which is, ( )1φ φ− . Equations for the components of ( )s

iΦ  may now be written 
as 

 ( ) ( )1s fik
i

k k i

p
x x
τ φ

∂∂Φ = − −
∂ ∂∑ . (33) 

The force acting on the fluid phase per unit volume of the solid is 

 ( )f
fpφ= − ∇Φ . (34) 

Substituting equations (33) and (34) into the expressions (30) and (31) results in (for the 
solid) 

 

( ) ( )

( ) ( )

2

2

2

2

1

1

s b f i k
i f

k kk s k i k i

b f i
f

kk s k i

K K u u K
x K x x x x

K K u K
x K x x

ϕλθ ϕ μ φ

ϕλ μ θ ϕ μ φ

⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ∂Φ = − + + + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎛ ⎞ ∂∂ ∂= + − + + −⎜ ⎟∂ ∂ ∂⎝ ⎠

∑ ∑

∑
 (35) 

or in vector notation 

 ( ) ( ) ( )( )2 1s
f f sK K Kλ μ θ μ φ ϕ= + ∇ + ∇ + − − ∇Φ u . (36) 

For the liquid phase 

 ( ) .s
sKφ ϕ= ∇Φ  (37) 

In the next section, ( )sΦ  and ( )fΦ  will be related through the introduction of Darcy’s 
law. 
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EQUATIONS OF MOTION IN A POROUS MEDIUM: THE INTERACTION 
BETWEEN SOLID AND FLUID PHASES 

From the theory of hydrodynamics, the mean velocity of the flow of a fluid, which 
completely occupies the pores in a porous solid, under the additional assumption of 
absolute rigidity of the solid skeleton, is determined by Darcy’s equation (Craft and 
Hawkins, 1991) 

 ( ) ( )f f f f f
k kp p
η η

= −∇ + = −∇ +v F F  (38) 

where η  is the viscosity, k  is the permeability and fF  denotes the external forces acting 
on the fluid contained within a unit volume of the porous medium. The permeability is 
proportional to the porosity, φ , and the average values of a cross section of the pores in 
the porous medium. This would indicate that the relationship  

 2constant  k φ= × A  (39) 

is valid, where A  is a linear dimension in the porous medium. To complete the 
specification of the problem, as in a standard hydrodynamics problem, a continuity 
equation is required. This is given by 

 ( ) 0f
f ft

γ
γ

∂
+ ∇ ⋅ =

∂
v  (40) 

where f fγ φ ρ=  is the mean (effective) density of the fluid in some macroscopically 
small region, that contains a sufficient pore density to provide an adequately accurate 
definition of fγ .16 Equation (38) refers to the case of steady flow. For variable flow, it is 
replaced by 

                                                 
16 In some of the literature on this topic, fγ  in the second term on the left side of equation (40), is replaced 

by fρ .so that the continuity equation has the form 

 ( ) 0f

f ft

γ
φ ρ

∂
+ ∇ ⋅ =

∂
v .  

It can be shown that in this form it contradicts the law of conservation of mass of the fluid, when compared 
to the definition of mean macroscopic velocity of flow, fv . This circumstance is of no consequence as 

long as the liquid is assumed to be incompressible or if the solid skeleton of the porous medium is taken to 
be absolutely rigid. (In the latter case, the definition of fv  must be somewhat altered.) In the case of a 

deformable skeleton, the use of the equation contained in this footnote will lead to erroneous results. 
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 f
f f f fp

t k
ηγ

∂
= −∇ + −

∂
v

F v . (41) 

The higher order term ( )f f∇ ⋅ v v  has been neglected in the above equation. Equation 
(41) is inexact17 because of the absence of the factor φ  preceding the gradient of the 
pressure, fp . Introducing this factor, the corrected equation for the motion in the fluid is 
obtained as 

 f
f f f fp

t
ηγ φ
κ

∂
= − ∇ + −

∂
v

F v  (42) 

where the permeability has been replaced by the porosity normalized permeability 
defined as 

 2constant kκ
φ

= = × A  (43) 

whose introduction ensures Darcy’s law will be satisfied for the case of steady flow of 
the fluid. 

Equation (42) may be generalized to the case when the deformability and the mobility 
of the solid skeleton become important, in the propagation of elastic vibrations.. Here, the 
absolute velocity of the liquid, fv , must be replaced by its velocity relative to the solid 
phase, f s−v v . The quantity sv , where, s t= ∂ ∂v u  (u  being particle displacement) 
denotes the mean macroscopic velocity of the particles in the solid phase at some 
arbitrary point within the porous medium. The relative velocity is connected to the 
friction force acting on the fluid in a unit volume of the porous medium through the 
formula 

 ( )fs f s
η
κ

= − −F v v  (44) 

the solid phase being acted on by the fluid phase in a unit volume by an equal but 
opposite force, sf fs= −F F . 

Replacing 2v  in equation (42) by f s−v v  and fp  by fK ϕ−  results finally in 

 ( )f
f f f f sK

t
ηγ φ ϕ
κ

∂
= ∇ + − −

∂
v

F v v . (45) 

In the absence of external forces equation (45) may be written as 

                                                 
17 Both of the normalizations  and f fkκ φ γ φ ρ= =  cause this inconsistency. 
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 ( )f
f f f sK

t
ηρ ϕ
κφ

∂
= ∇ − −

∂
v

v v . (46) 

The equation of motion of the solid phase in the general case of a relative motion of the 
fluid can be written as 

 ( ) ( )ss
s s f st

ηγ
κ

∂ = + + −
∂
v Φ F v v  (47) 

As in elastodynamic theory, velocity is considered to be a function of time and the 
spatial coordinates of a solid particle, so that s t∂ ∂v  is the specification of acceleration. 
In the fluid phase, f t∂ ∂v  is not the exact expression for the corresponding quantity. 

Rather, the exact expression in this case is ( )f f ft∂ ∂ + ⋅∇v v v , which includes a term 
that was previously dropped. In practice, however, the motion of the fluid is so slow that 
the addition of the extra term does not play significant role, as it is negligibly small. It 
should also be mentioned that the effective density of the solid phase, ( )1s sγ φ ρ= − , in 
equation (47) refers to the unstressed state and must as a consequence must be assumed 
to be a constant quantity. 

Substituting expression (36) for ( )sΦ  in equation (47) produces, in the absence of body 
forces, 

 ( ) ( ) ( )2 1s
s f b s f sK K K

t
ηγ λ μ θ μ φ ϕ
κ

∂ = + ∇ + ∇ + + − ∇ + −
∂
v u v v . (48) 

Equations (45) or (46) and (48) are functions of the quantities: u , fv , fρ , ϕ  and φ  
( s t= ∂ ∂v u ,θ = ∇ ⋅u  and constantsγ = ). The quantities fρ  and ϕ  are related by the 
expression 

 ( ) ( )0 1f fρ ρ ϕ= −  (49) 

where ( )0
fρ  is the average density of the fluid. Its effective density is related to the 

velocity fv  through the continuity equation (40). The variation of the porosity may be 
expressed in terms of θ  as 

 ( )
( )

1 1
1

f

s

K
K

φ α
φ θ ϕ

α
− − ⎛ ⎞

Δ = −⎜ ⎟+ ⎝ ⎠
 (50) 

This relation is obtained from equation (27) if θ  is replaced by s bp Kθ = − , which is in 
terms of the solid phase pressure and as has been shown in the derivation of equation 
(30), is equal to ( ) .f sK Kθ ϕ− . 

Thus there are five equations in five unknowns such that the equations of motion in 
the porous solid are fully determined. 
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COMPRESSIONAL WAVE PROPAGATION IN A POROUS MEDIUM 
In this section compressional wave propagation is investigated, under the assumption 

of small vibrations in the porous medium, which allows for the linearization of the 
equations of motion. With this supposition, the small coefficients of quantities of interest 
may be replaced by their values in an unstressed medium, as is done in classical 
elastodynamic and hydrodynamic problems. The quantities in question include: u , sv , 

fv , θ , ϕ  and φΔ . For the analysis of compressional waves the operator " "∇ ⋅  is applied 
to the equations of motion. The following formula will be used 

 s t t
θ∂ ∂∇ ⋅ = ∇ ⋅ =

∂ ∂
v u  (51) 

together with the equation 

 1 1 1 1f f
f

f ft t t t t
γ ρφ φ ϕ

γ φ ρ φ
∂ ∂∂ ∂Δ ∂∇ ⋅ = − = − − = − +
∂ ∂ ∂ ∂ ∂

v  (52) 

which follows from equation (20) and in its linearized form, relating equation (23) with 
equation (50), can be written as 

 ( )1f t t
θ ϕβ β∂ ∂′∇ ⋅ = − − +

∂ ∂
v  (53) 

where the following intermediate variables have been introduce to reduce the complexity 
of notation within the problem 

 ( ) ( )1 , 1 1
1

f

s

K
K

β β β
φ α

′= = + −
+

. (54) 

Applying the operator " "∇ ⋅  to both sides of the linearized equation (48) and utilizing the 
previous equations in this section, the following results  

 
2

2 2
2 1f b

s s s s

K KE
t K t t
θ η ϕ θθ φ ϕ β β

γ γ κγ
⎛ ⎞∂ ∂ ∂⎛ ⎞′= ∇ + − − ∇ + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

. (55)18 

In a similar manner equation (43) becomes 

 
2

2 2
2

1 f

f s

K
t t t
ϕ β η ϕ β θθ ϕ

β β ρ κγ β
⎛ ⎞∂ − ∂ ∂− ∇ = ∇ − −⎜ ⎟′ ′ ′∂ ∂ ∂⎝ ⎠

. (56) 

Equations (55) and (56) contain, at least in principle, the specification of the propagation 
of compressional vibrations in a saturated porous medium. Before proceeding to possible 
solution methods, a plane wave solution will be considered in the next section. 

                                                 
18 Recall that 2 Eλ μ+ =  is Young’s modulus for an elastic medium (dry porous medium). 
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PLANE COMPRESSIONAL WAVES 
Rather than attempt to solve the most general case of propagation of compressional 

waves in a porous medium, a plane wave solution will be considered (with a damping 
coefficient or viscosity term). 

Assume a plane wave type of solution for the quantities θ  and ϕ  of the form 

 ( )i wt qxe −  (57) 

where timet −  and the direction of propagation may be arbitrarily chosen. Let this 
direction be the x  direction so the plane wave solution is ( )i wt qxe − . Here, 2 fω π =  is the 
frequency of the vibrations and 2q π  the complex wave number in the direction of wave 
propagation19. It is equal, in the absence of damping, to the reciprocal of the wave length, 
λ . The ratio qω  is the generally complex valued velocity of wave propagation. 

Under these conditions, the differential equations (55) and (56) reduce to a system of 
two linear algebraic equations for the amplitudes θ  and ϕ , as20 

 1 0
s s s

E i iηβ ηβξ θ εξ ϕ
γ κγ ω κγ ω

⎛ ⎞ ⎛ ⎞′ ′
− + + − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (58) 

and 

 1 1 0f

f f f

Ki iβ ηβ ηθ ξ ϕ
β κγ β ω β ρ κγ β ω

⎛ ⎞ ⎛ ⎞− − + − + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′ ′ ′⎝ ⎠ ⎝ ⎠
 (59) 

where 2 2 21 Pq Wξ ω= =  and ( )1f s sbK K Kε γ φ= − − . This quantity, the propagation 
velocity of the wave, is determined from the solution of the quadratic equation21 

 

1 1

1 0

f

s s f f

s f

KE i i

i i

ηβ ηξ ξ
γ κγ ω β ρ κγ β ω

μβ β ηβεξ
κγ ω β κγ β ω

⎛ ⎞⎛ ⎞′
− + − + −⎜ ⎟⎜ ⎟⎜ ⎟′ ′⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞′ −− − =⎜ ⎟⎜ ⎟⎜ ⎟′ ′⎝ ⎠⎝ ⎠

 (60) 

which represents the compatibility condition of equation (59)22. After some manipulation 
the above quadratic equation reduces to  

                                                 
19 q ω  is the complex slowness in the direction of propagation. 
20 ( )1f s sbK K Kε γ φ= − −  See equation (A.3). 
21 A quadratic equation implies two velocities, these are the fast and slow compressional wave velocities. 
22 For the system of equations 0=Aθ , A  a matrix, θ  a vector, to have a solution, [ ]det A  must be 
equal to zero. 
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2 1 1 1

1 11 0

f f b
f

s f s f s f s

s f

EK K KE i E K
K

i

β η βξ ε ξ
β γ ρ γ β ρ β κω γ γ β

η
κω γ γ

⎧ ⎫⎡ ⎤⎛ ⎞−⎪ ⎪− + + − + −⎨ ⎬⎢ ⎥⎜ ⎟′ ′ ′ ′ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
⎛ ⎞

+ − + =⎜ ⎟⎜ ⎟
⎝ ⎠

 (61) 

The two roots of equation (61) will not be given here as they are easily obtained 
numerically.23 It should be noted that for large values of the parameter, ζ η κ=  one of 
the roots corresponds to a wave with a very small damping factor (fast compressional) 
while the other, to a very large damping factor (slow compressional). Waves of the 
second type may be difficult to detect, however, recent papers have indicated their 
existence (See for example, Coussy and Bourbie,1984). An approximate determination of 
the value of ξ , corresponds to a wave of the first kind. Approximating ξ  in a series in 
terms of the powers of the small parameter, i iω κ η χ= , results in 

 0 1iξ ξ χξ= + +…  (62) 

Substituting this truncated series into equation (61) and equating the coefficients of the 
various powers of χ , starting with 1χ −  produces 

 0
1 1 11 0b

f
s f s s f

KE K
K

β ξ
γ γ β γ γ

⎛ ⎞⎡ ⎤⎛ ⎞
+ − − + =⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟′ ⎝ ⎠⎣ ⎦ ⎝ ⎠

 (63) 

 2
0 0 1

1 1 1 1 0f f b
f

s f s f s f s

EK K KE E K
K

β βξ ε ξ ξ
β γ ρ γ β ρ β γ γ β

⎛ ⎞ ⎡ ⎤⎛ ⎞−− + + − + − + =⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟′ ′ ′ ′ ⎝ ⎠⎣ ⎦⎝ ⎠
 (64) 

 2
0 1 1 2

2 1 1 1 0f b
f

s f s f s f s

K KEK E E K
K

β βξ ξ ε ξ ξ
β γ ρ γ β ρ β γ γ β

⎛ ⎞ ⎡ ⎤⎛ ⎞−− + + − + − =⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟′ ′ ′ ′ ⎝ ⎠⎣ ⎦⎝ ⎠
 (65) 

 .etc   

The first of these equations leads to  

 
( ) ( )

0

1f b s
P

s f

E K K K
W

β β
γ γ
′+ −

=
+

 (66) 

as 
0

2
0 1 PWξ =  where W  indicates velocity and the subscripts the type of wave and order 

of approximation. 

                                                 
23 Equation (61) has two roots corresponding to the fast and slow compressional waves. However, the 
expressions for these two compressional wave velocities, obtained by solving the quadratic, are complex 
and consequently of limited usefulness. For this reason, the analysis that follows, which provides an 
approximation to the fast compressional wave, will be pursued as the resulting expression provides a usable 
point of reference from which numerical experiments may be undertaken to ascertain the affects of varying 
specific quantities on the velocity and damping factor. 
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Inserting the expression for 
0

2
0 1 PWξ =  into equation (64) results in the following first 

order correction 

 

3 2
0 0 0

1

1

1 1

f f

s f s f

s f

EK KE

i i

βξ ε ξ ξ
β γ ρ γ β ρ β

χξ χ

γ γ

⎛ ⎞−− + + +⎜ ⎟⎜ ⎟′ ′ ′⎝ ⎠=
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠

. (67) 

With a first order accuracy with respect to χ  for the complex propagation velocity of the 
(fast) compressional wave, 

1PW , is determined by the formula 

 
1

1 2
1 2 1 21 1

1 0 0 1 2
0 0

1 1
2P

i i
W

ξ ξξ ξ χ ξ χ
ξ ξ

⎛ ⎞
= = + ≈ +⎜ ⎟

⎝ ⎠
24 (68) 

that is 

 0

1 0

11 1
2
P

P P

W
i

W W
ω ξκ

η
= +  (69) 

where 1ξ  is given by equation (67). Inserting this expression in the exponent of the factor 

( )exp i t qxω⎡ − ⎤ =⎣ ⎦  ( )1
exp Pi t x Wω ω⎡ ⎤−⎣ ⎦  and writing the later in the form 

( )0
exp 2Pi t x W xω ω δ⎡ ⎤− −⎣ ⎦ , where δ  is the damping coefficient of the wave per unit 

length, the following expression for this coefficient is obtained 

 ( )
0 0

0

2 2

2

3

1f f
P P

s f s f

P s f

K EKE W W

W

β ε
γ β ρ β γ β ρκωδ

η γ γ

−⎛ ⎞−+ + − −⎜ ⎟⎜ ⎟′ ′ ′⎝ ⎠=
+

 (70) 

The damping coefficient has been shown to be proportional to the square of the vibration 
frequency, that is to ( )22 2 fω π= . This is the same as for the case of the propagation of 
compressional waves in an ordinary viscous liquid. 

In conclusion, consider the limiting case of wave propagation in a medium with 
vanishing porosity. In this case, 0φ → , so that as a consequence, s sγ ρ=  and 0fγ = . 

Also, 0κ → 25, ( )1 1β φ α= +  which follows from equation (50), 1β ′ =  and b sK K= . 

Under these conditions, δ  vanishes and 
0PW  reduces to sE ρ  - the standard expression 

for the compressional wave propagation in an isotropic elastic solid medium. 

                                                 
24 A “2” appears in the denominator of the imaginary part of this equation. It does not appear in Frenkel. 
25 2constant  k φ= × A , kκ φ= . 
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Equation (33) enables the determination of the variation of this velocity with an 
increase in the number and size of pores, which are assumed to be fluid saturated. An 
essential role is played here by the decrease of the elastic modulus bK  of the solid 
skeleton. This topic is not dealt with here as it is complex and should be the topic of an 
independent study. 

PROPAGATION OF SHEAR WAVES IN A POROUS MEDIUM 
The equations governing the propagation of shear waves in a porous medium can be 

obtained from the fundamental equations of motion, (45) and (48), by applying the 

operator " "∇×  to them. Introducing the notation, 1

2
s s= ∇×Ω v  and 1

2
f f= ∇×Ω v , 

which are the angular velocities of the solid skeleton and of the fluid phase, respectively, 
results in 

 ( )
2

2
2

s
s s f st t

ηγ μ
κ

∂= ∇ + −
∂ ∂

∂ Ω Ω Ω Ω

 ( )
2

2
f

f f st t
ηγ
κ

∂= − −
∂ ∂

∂ Ω
Ω Ω . (71) 

If a plane wave solution, which propagates in the (arbitrary) x  direction ( )( )i t qxe ω − , is 

assumed, the above equations reduce to the linear equations 

 ( ) ( )s s f s
iημξ γ
κω

− = −Ω Ω Ω  (72) 

 ( )f f f s
iηγ
κω

= −Ω Ω Ω  (73) 

where 2 2qξ ω=  and q  and ω  have been previously defined. Eliminating sΩ  and fΩ  
from equations (73) results in the following equation for ξ  

 1 1 1
f s

i
χ γ μξ γ
⎛ ⎞

− =⎜ ⎟⎜ ⎟−⎝ ⎠
. (74) 

From this it follows that 

 ( ) 11 or 1
1

fs
s f

f

i
i

γγμξ γ ξ χγ
γ χ μ μ

−
= + = + +

+
. (75) 

Thus, in the first approximation with respect to χ  

 
2

s f fi
γ γ γ

ξ χ
μ μ
+

= −  (76) 

This formula shows that the shear waves propagate in a fluid filled porous medium with 
the velocity 
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0

1

2

2

1 s f f
S

s f S

W i
W

γ γ γμ ωκ
γ γ μ μ χ

⎡ ⎤+
= = −⎢ ⎥

+ ⎢ ⎥⎣ ⎦
 (77) 

with the damping coefficient 

 ( ) 0

2 22 2
f f

Ss f W
γ γω κ ω κδ
μ η ηγ γ

= =
+

 (78) 

It can be seen from equation (78), that as in the case of compressional waves, the 
damping coefficient is proportional to the square of the circular frequency, ω . 

CONCLUSIONS 
Equations of particle motion have been derived for a porous medium whose pores are 

fluid saturated. Fluid flow within the pores of the solid skeleton results in friction 
between the two phases. This affects the perceived (measured) values of many of the 
quantities describing the total medium in such a manner that they may differ when 
compared to results obtained using elastodynamic theory. Employing poroviscoelastic 
theory in seismic exploration and data processing should, based on the derivations 
presented here, produce a more accurate description of the physical processes and 
parameters involved in hydrocarbon recovery from reservoirs at depth within the earth. 
Granted, a number of assumptions and approximations have been made in the course of 
the investigation. However, it is difficult to justify not using at least some aspects of the 
theory presented when dealing with seismological problems related to fluid filled porous 
media, which are a reasonable approximation of hydrocarbon reservoirs. 

What are conspicuous by their absence are references to other texts and papers on this 
topic. A survey of the literature produces numerous texts and papers on this subject. As 
this work has been indicated as being tutorial in nature, with the specific intent of 
introducing the topic of seismic wave propagation in a poroviscoelastic medium, it was 
thought that as this report is essentially self contained, the listing of these citations would 
not contribute, and possibly be a detriment. A subsequent report, which is under 
preparation, deals with numerical solution possibilities. It contains numerous references 
applicable to the general topic of wave propagation in a poroviscoelastic medium.  
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APPENDIX A: A SPECIAL CASE AND A SOLUTION OF THE EQUATIONS OF 
MOTION BASED ON THE METHOD OF SUCESSIVE APPROXIMATIONS 
An important special, or rather limiting case, corresponding to an extremely large 

value of the parameter fη κγ  (an extreme smallness of pores) will be considered first. 
Dividing equations (55) and (56) by this parameter and noting that the quantities θ  and 
ϕ  must have finite values, the following expression is obtained relating them in this 
instance 

 βϕ θ
β

=
′

 (A1) 

This relationship indicates that the two velocities sv  and fv  are identical. That is, there 
is no relative motion of the fluid with respect to the solid. 

Under the conditions (A1), equation (55) reduces to 

 
2

2
2

s

E
t
θ βε θ

γ β
⎛ ⎞∂ = + ∇⎜ ⎟′∂ ⎝ ⎠

 (A2) 

where 

 1f b

s s

K K
K

ε φ
γ

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 (A3) 

while equation (56) becomes 

 
2

2
2

f

f

K
t
ϕ β ϕ

β ρ
∂ = ∇

′∂
 (A4) 

The later equation contradicts equation (A2), since the functions θ  and ϕ  must be 
connected by the relation (A1), unless the velocity of the propagation of waves, given by 
equation (A2) ( ) ( )sE γ εβ β⎡ ⎤′+⎣ ⎦  which coincides with the wave velocity defined by 

equation (A4) - ( )( )f fK ρ β β ′ . 

Proceeding to the next topic in this Appendix, it can be seen that when the parameter 
η κ  or ( )fη κγ  tends to infinity, the difference of the velocities f s−v v  or their 
divergences tend to zero in a manner such that its product with this parameter remains 
finite. 

Keeping this in mind, this difference will be represented in the form of a series in 
powers of the small parameter κ η ζ= , such that 
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 2 3
1 2 3

βϕ θ ζψ ζ ψ ζ ψ
β

= + + + +
′

…  (A5) 

where 1 1, ,ψ ψ …  are some unknown functions with finite values. 

Before substituting this expression into equations (55) and (56) it must be noted that in 
solving these equations by the method of successive approximations the function θ  must 
also be expanded in a power series in ζ , so that 

 2
0 1 2θ θ ζθ ζ θ= + + +…  (A6) 

and as a consequence 

 2
0 1 1 2 2

β β βϕ θ ζ θ ψ ζ θ ψ
β β β

⎛ ⎞ ⎛ ⎞
= + + + + +⎜ ⎟ ⎜ ⎟′ ′ ′⎝ ⎠ ⎝ ⎠

… . (A7) 

After substituting these expressions into equations (55) and (56) and equating like powers 
of ζ  in both of them, a system of equations is obtained for the determinations of the 
functions kθ  and kψ . In the zero order approximation (terms not containing the parameter 
ζ ) and making use of the notation in equation (A2) results in  

 
2

20 1
02

s s

E
t t
θ β β ψε θ

γ β γ
⎛ ⎞ ′∂ ∂= + ∇ +⎜ ⎟′∂ ∂⎝ ⎠

 (A8) 

 
2

20 1
02

f

f f

K
t t

βθ β ψθ
ρ β γ

⎛ ⎞ ′∂ ∂= ∇ +⎜ ⎟⎜ ⎟′∂ ∂⎝ ⎠
 (A9) 

Multiplying the first of these equations by sγ  and the second by fγ  and then adding 
them, results in the following expression for 0θ  being obtained 

 ( )
2

20
02s f s fE K

t
θ β βγ γ εγ φ θ

β β
⎛ ⎞∂+ = + + ∇⎜ ⎟′ ′∂ ⎝ ⎠

. (A10) 

Upon introducing the definition of ε  leads to 

 ( )
2

20
02 1 b

s f f
s

KE K
t K
θ βγ γ θ

β
⎡ ⎤⎛ ⎞∂+ = + − ∇⎢ ⎥⎜ ⎟′∂ ⎝ ⎠⎣ ⎦

 (A11) 

This equation describes waves which are propagated without damping at velocity 
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( ) ( )

0

1f b s
P

s f

E K K K
W

β β
γ γ
′+ −

=
+

. (A12) 

To obtain the next term in the approximation expressions (A6) and (A7) must be 
substituted in equations (55) and (56), and equate the first order terms in ζ  to obtain the 
system of equations 

 
2

2 21 1
1 12

s s

E
t t
θ β β ψε θ ε ψ

γ β γ
⎛ ⎞ ′∂ ∂= + ∇ + ∇ +⎜ ⎟′∂ ∂⎝ ⎠

 (A13) 

 
2 2

21 1 1
1 12 2

f

f f

K
t t t
θ ψ β β ψβ θ ψ

ρ β γ
′⎛ ⎞∂ ∂ ∂′+ = ∇ + −⎜ ⎟′∂ ∂ ∂⎝ ⎠

 (A14) 

Multiplying the first of these by sγ  and the second by fγ  and adding, the following 
relation between 1θ  and 1ψ  or 1θ  and 1ϕ  results 

 
( )

2
21

12

2
21

12 .

f
s f s f

f

f
f s f

f

K
E

t

K
t

θ βγ γ εγ γ θ
β ρ

ψβ γ εγ γ ψ
ρ

⎡ ⎤⎛ ⎞∂+ − + + ∇ =⎢ ⎥⎜ ⎟⎜ ⎟′∂ ⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞∂′ + + ∇⎜ ⎟⎜ ⎟∂ ⎝ ⎠

 (A15) 

Introducing equation (A12) 

 
0

2 2
2 21 1

1 12 2
f s f

P
s f s f

K
W

t t
β γ εγ φθ ψθ ψ

γ γ γ γ
′ +∂ ∂− ∇ = − + ∇

∂ + ∂ +
 (A16) 

or by virtue of the definition of ε  (equation (A3)) 

 
( )

0

2 2
2 21 1

1 12 2

1f f b s
P

s f s f

K K K
W

t t
β γθ ψθ ψ

γ γ γ γ
′ −∂ ∂− ∇ = − + ∇

∂ + ∂ +
. (A16) 

Comparing this equation with equation (A11) there follows, among other things, that the 
right hand side must be orthogonal to the function 0θ . For the determination of 1θ , the 
function ψ  in (A16) must be replaced by its expression in 0θ  using one of equations 
(A8) or (A9). Thus 

 
( )
( )

0

22 2
2 201

1 02 2 2

2
2 20

02
2

1

s f
P

s f s

s f b s

s s

EW
t t t t

K K K E
t

γ γ θθ βθ ε θ
γ γ γ β

γ θ βε θ
β γ γ γ β

⎡ ⎤⎛ ⎞⎛ ⎞ ∂∂ ∂ ∂− ∇ = − − + ∇⎢ ⎥⎜ ⎟⎜ ⎟ ′∂ ∂ + ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤− ⎛ ⎞∂+ ∇ − + ∇⎢ ⎥⎜ ⎟′ ′+ ∂ ⎝ ⎠⎣ ⎦

 (A17) 

This process can be continued to obtain equations of higher order. 
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APPENDIX B: NOTATION 
What follows are definitions of the parameters used in this report. Additional support 

in this may be found on http://www.glossary.oilfield.slb.com and related links. 

 ( ) 1compressibility bulk modulus  See , and .b s fK K K−−  (B1) 

 1

2
elastic strain tensor.i k

ik
k i

u ue
x x

⎛ ⎞∂ ∂= + −⎜ ⎟∂ ∂⎝ ⎠
 (B2) 

 
[ ] 2Young's modulus = 2 (tensile stress)/(tensile strain)  N/m .

   A measure of the stiffness of a given material.

E λ μ ⎡ ⎤− + ⎣ ⎦
−

 (B3) 

 

, porosity - the percentage of pore volume that
              can contain fluids. Effective porosity excludes 
              isolated pores and refers only to the connected
              pore volume i

φ φΔ −

n a rock that contributes to fluid
              flow. Total porosity is the total pore volume of
              of the rock. change in porosity.φΔ −

 (B4) 

  external force acting on the solid phase in a unit volume.s −F  (B5) 

  external force acting on the fluid phase in a unit volume.f −F  (B6) 

 ( )  friction force acting on the fluid in a unit

                                  volume of the porous medium.

sf f s
η
κ

= − − −F v v
 (B7) 

 
 an equal but opposite force acting on the solid

                      phase due to fluid friction in a unit volume.
fs sf= − →F F

 (B8) 

 Lamé's coefficient in the elastic limit.μ −  (B9) 

 
immisible - the inability of two fluids to mix to form
      form a homogeneous mixture; oil and water are
      immisible fluids.

 (B10) 

 
permeability,  the ability or measurement of a rock's

      ability to transmit fluids, measured in darcies or 
      milllidarcies. (Relative and absolute.) (See .)

k

κ

−
 (B11) 
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( )( )

, , bulk modulus - the ratio or percent change

                      in volume to the change of pressure applied 

                      to a fluid or rock. 2 3 .

                              

b s f

b

K K K

K

K

λ μ

−

= +

−

( )

bulk modulus of the dry solid.
                              actual bulk modulus of the solid -
                             .
                              bulk modulus of the fluid.
          

s

s b

f

K
K K

K

−
>

−

            Inverse is the related compressibility coefficient.

 (B12) 

 Lamé's coefficient in the elastic limit.λ −  (B13) 

 ( ),  pressure in the solid phase ( ) and fluid phase ( ).ip i s f s f= −  (B14) 

 2  stress tensor for an elastic medium.ik ik ikeτ δ λθ μ= + −  (B15) 

 ( )( )Tortuosity, often defined as:    1 2 1 1T φ= +  (B16) 

  component (   1,  2,  3) of the particle displace-
      ment vector.

th
iu i i− =  (B17) 

 
, ,  volume.  where  is the volume actually 

                     filled by the solid phase and  the volume occupied

                     by the liquid phase in a porous medium.

s f s f s

f

V V V V V V V

V

− = +

 (B18) 

 , ,  variation of volume - total, porous medium, fluid.s fV V VΔ Δ Δ −  (B19) 

  particle displacement in the porous medium.−u  (B20) 

  particle velocity in the solid phase.s t= ∂ ∂ −v u  (B21) 

  mean flow velocity of the fluid phase.f −v  (B22) 

 

( ) ( )

 proportionality constant which together with porosity,
       , specifies the mechanical properties of the dry porous

      medium. 1s f b sV V K K

α
φ

α α

−

Δ = Δ = −

 (B23) 

 ( )
1

1
β

φ α
=

+
 (B24) 

 ( )1 1 f

s

K
K

β β′ = + −  (B25) 

 
 exponential damping function assuming plane wave incidence.

       (See .)
δ

χ
−

 (B26) 
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 1f b

s s

K K
K

ε φ
γ

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 (B27) 

 f

f

ρ
ϕ

ρ
Δ

=  (B28) 

 
( ) ( )( ) componentsof elastic force in a unit volume

                                   for the solid phase.

s s ik
i

k kx
τ∂Φ = −

∂∑Φ
 (B29) 

 ( ) ( )( )  force acting of the fluid phase in a unit volume.f f
i fpφΦ = − ∇ −Φ  (B30) 

 
( )

s f

, effective density - density of the rock matrix with
                     pores ( ). Effective fluid density ( ).

i i s fγ
γ γ

= −
 (B31) 

 ( )( )*

a parameter introduced to specify the damping of a wave's

      amplitude, given plane wave propagation. exp 2x

χ

δ

−

⎡ ⎤−⎣ ⎦
 (B32) 

 porosity normalized permeability. (See .)k kκ φ= −  (B33) 

 wave length.λ −  (B34) 

 
2

viscosity - a property of fluids that indicates their
      resistance to flow, defined as the ratio of shear stress
      to shear rate. Measured in poises (dyne-sec/cm ) or
      centipoise - 1/100 o

η −

f a poise. One centipoise equals
      one millipascal-sec. Viscosity must have a stated or
      understood shear rate in order to have meaning.

 (B35) 

  where  is particle displacement in the solid phase.θ = ∇ ⋅ u u  (B36) 

 
( )

s

, grain density - the density of a rock with no
                     porosity ( ). Fluid density ( ).

i

f

i s fρ
ρ ρ

= −
 (B37) 

 ( )
( )

4 3
2 2
λ μ

σ
μ λ μ
+

=
+

 (B38) 

 1
2

ϑ
μ

=  (B39) 

 
2   is the circular frequency related to the

                     vibrational  frequency .  
f

f
ω π ω= −

 (B40) 

 ( )viscosity/permeability [effective]ζ η κ=  (B41) 
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 ( )χ ωη κ=  (B42) 

 and dilation of solid and fluid phases, θ ϕ θ→ = ∇⋅u  (B43) 


