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ABSTRACT 
The Bayesian inference is used to estimate model parameters in a synthetic example. The 
model is a thin bed that follows a wedge shaped trend. However rather than a uniform 
trend, the model’s thickness at each lateral position across the wedge is randomized. 
Additionally, the velocity at each model location is normally random with a specified 
mean and variance. Synthetic seismic data are generated with a zero-offset convolutional 
model and are then used to invert for bed-thickness. The Bayesian likelihood function is 
defined using the known relationship between bed-thickness, wedge velocity, wavelet 
tuning frequency, and seismic amplitude. Population of the amplitude/bed-thickness joint 
probabilistic density likelihood function is achieved using Monte Carlo methods, and the 
Bayesian prior is weighted by the known geostatistical trend of the wedge. The inversion 
result is a probabilistic density function describing the probabilities of wedge thicknesses. 
Results show that the maximum a posteriori  parameter estimate is more accurate than the 
estimate found with the raw statistical trend or with a deterministic method of data 
inversion. Additionally, the posterior probabilistic density function can be used to 
perform statistical analysis, opening a pathway for quantified analysis of parameter 
uncertainty.  

INTRODUCTION 
This paper explores the use of the Bayesian inference to solve for model parameters in 

a simple example problem. Bayes’s theorem is stated in equation (1) where P(A) is the 
probabilistic density function (PDF) that describes the event A.  P(B) is similarly defined. 
P(A|B) is the probabilistic density function that describes event A given the occurrence of 
event B. P(B|A) is similarly defined.    
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The Bayesian inference can be used to solve for the probabilistic distribution of a 
parameter estimate.  The inverse problem is formalized as: 
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where m is the model parameter(s) to be solved for and d is the data. 

Each of the PDF’s of Bayes’s theorem has a name. The PDF P(m|d) of Bayes’s 
theorem is called the ‘posterior’ distribution. P(d|m) is called the ‘likelihood’ function 
and P(m) is called the ‘prior’ probability distribution. The denominator in equation (2) is 
a constant that can be calculated as: 
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where c normalizes the right hand side of (2) so that the integral of the PDF ∫
∞

∞−

P(m)dm 

over all models is unity.  

A PDF of the possible models m can be found if the likelihood function can be 
established and data has been “measured”. This paper explores a method of populating 
the likelihood function as a joint PDF (JPDF) between the model space and the data 
space.  

To evaluate the likelihood P(d|m), the functional relationship between d and m must 
be known. In the case that the inverse problem to be solved is an Earth parameter and the 
data is a seismic attribute, the likelihood function encapsulates the physics relating the 
Earth property to the seismic response. For example, a rock physics model might relate 
porosity to the seismic amplitude at the top of a sandstone reservoir. However, since the 
amplitude will depend not only on the porosity, but also on fluid content, shale content, 
fluid pressure, etc., there is no unique mapping from porosity to amplitude. Any given 
porosity value might give a range of amplitude values. This covariance between seismic 
attribute and Earth parameter is captured by the likelihood JPDF P(d|m).   

In addition to the likelihood function, the Bayesian inference requires a prior PDF for 
the model. The prior can be treated as “uninformative”, where all model parameters are 
equally likely. However, if a reliable prior estimate of the model PDF can be established, 
the resulting posterior can be designed to lend favor to results that are more probable 
given the prior knowledge (Scales and Tenorio, 2001). In the case of subsurface 
properties, such a priori information might come from a geological model or 
geostatistics.  

THE EXAMPLE PROBLEM 
The example problem solved in this paper is an estimate of the thickness of a thin bed. 

The data are synthetic zero-offset seismograms synthesized from a velocity model that 
has a wedge shape. However, the thickness of the wedge, as well as the P-wave velocity 
of the wedge material is modelled with some random variation. At each lateral position 
across the wedge, the bed-thickness and velocity are assigned a mean value and a 
Gaussian variance. From these statistical parameters, the wedge thickness and velocity 
are randomly assigned.  

The model, which is 100m across, is illustrated in FIG. 1. 50 m of homogeneous 
overburden with a constant density and velocity of 2400 kg m-3 and 3300 m s-1, 
respectively. The wedge has an average trend of increasing in mean thickness from 8.0 m 
thick on the left side to 18.0 m thick on the right side. The lateral distance x runs from 
x=1m to x=100m. However, the thickness is allowed to vary normally about the mean 
trend with a standard deviation of 2 m.  The velocity is also set to vary normally with a 
mean of 2500 m s-1 and standard deviation of 100 m s-1.  The density in the wedge is 
uniformly 1700 kg m-3.  The layer under the wedge has the same velocity and density as 
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the overburden layer and extends to 120 m of depth. Finally, a synthetic density and sonic 
log at each lateral position is created. 

 

FIG. 1. The velocity model of the wedge. The color bar indicates the sonic values (microseconds).   

The data fabricated from the model, is a set of zero-offset synthetic seismograms. 
Convolving each reflectivity log with a 40 Hz Ricker wavelet generates the data 
illustrated in FIG. 2. The tuning thickness for a Ricker wavelet is (Kallweit and Wood, 
1982): 

 df
thicknesstuningtime

6.2
2__ =   (4) 

where fd is the dominant frequency. For a 40 Hz Ricker wavelet the tuning thickness in 
time is 19 ms.  Considering that two standard deviations from the mean thickness at the 
wedge end (18m) is 24 m and two standard deviations below the mean velocity is 2300 
m/s, a reasonable estimation of greatest time thickness of the wedge is 10.4 ms. Therefore 
the model wedge is both below the tuning thickness and below the Widess (1973) criteria 
for resolution of T/2 where T is the tuning thickness of the wavelet in time.  

When the thickness of a bed is less than the resolution limit, the seismic reflection 
amplitude (A) of the event at the bed top and bed bottom is given by Widess (1973): 
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where Ao is the amplitude of the reflection if there was a single reflection (i.e. a two layer 
model), t is the bed-thickness, ft is the tuning frequency of the wavelet, and v is the 
velocity of the bed. For the 40 Hz Ricker wavelet, the tuning thickness can be found with 
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equation (4) and is 52 Hz. The data is therefore a single amplitude at each lateral position 
along the model. 

 

FIG. 2. The zero-offset synthetic seismogram data set. 

 

To execute the inversion, several assumptions are made:   

• The dominant frequency of the wavelet is known. 

• The overall trend in the wedge thickness is known. 

• The variance (standard deviation) of the wedge thickness is known. 

• The mean velocity in the wedge layer is known. 

• The variance (standard deviation) of the wedge velocity is known. 

The trend in the thickness of the wedge and the variance are representative of data that 
might come from geostatistical analysis. Likewise, the mean and variance in the velocity 
of the model could also be representative of statistical information derived from wells in 
a field data set. 

THE PRIOR 
The prior, P(m), can be calculated because the overall trend in the wedge thickness is 

known. The variability is normally distributed, with a mean or expected value that is 
given by the lateral location along the model length. Thus the prior is evaluated 
individually at each lateral model location. For example, FIG. 3 illustrates the prior at the 
lateral location of x = 5 m. 

Lateral distance (m)
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FIG. 3. An example prior PDF of bed-thickness (at lateral location x = 5 m).  The expected mean 
thickness at this location is 8.5 m. 

THE LIKELIHOOD 
The likelihood, P(d|m), is the JPDF of the bed-thickness and the corresponding reflection 
amplitude. A Monte Carlo sample of the bed-thickness and velocity is drawn from the 
PDF of each. The PDF for each is illustrated in FIG. 4. Then, using equation (5), the 
associated amplitude is calculated for each random draw. With repeated sampling, the 
JPDF between bed-thickness and amplitude is built as illustrated in FIG. 5.  The JPDF 
has been slightly smoothed using a Gaussian filter. 

  

(a)      (b) 

FIG. 4. The PDF of (a) the bed velocity and (b) the bed-thickness used to generate the 
simulations. 



McCrank, Margrave, and Lawton 

6 CREWES Research Report — Volume 20 (2008)  

 

FIG. 5. The likelihood JPDF of bed-thickness and seismic amplitude.  

Although it is easiest to randomly select from a Gaussian function, the PDF for the 
thickness and velocities need not be normal. Also, in the case of real field data, the 
underlying PDF of the data might not be known and may not be Gaussian. Field data 
might be distributed in a skewed or multimodal distribution and are very likely to be 
sparsely sampled. However, Silverman (1986) shows that a general PDF can be generated 
from a sparse, discrete data set by taking the summation of a set of normal distributions, 
each with a mean centered on the individual data sample values. The method is illustrated 
in FIG. 4 where the general PDF (turquoise curve) is built by summing the Gaussian 
curves associated with three discrete data points. A random draw could be sampled from 
the general PDF by randomly sampling from each of the discrete Gaussians and taking 
the average of the samples.  
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FIG. 6. An example of building a general PDF from three discrete data samples. The turquoise 
curve is the summation of the discrete normal curves centered on each discrete data point. 

As illustrated in FIG. 4b, the PDF of bed-thickness is treated as a variable that has 
equal probability of occurring between 8 and 18 m, and with a drop off in probability 
beyond these bounds. Monte Carlo sampling is drawn from a set of underlying, equally 
spaced bed-thickness Gaussian distributions.  

THE POSTERIOR 
In Bayes’ theory, the posterior is proportional to the product of the likelihood and the 

prior as in equation (2). An example of the posterior at one lateral location along the 
model is illustrated in FIG. 7. 
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FIG. 7. An example of the product of the prior and the likelihood at a lateral location along the 
model (x=5m). 
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THE INFERENCE 
At each location x, the amplitude from the data set picks out the appropriate 

distribution for the possible bed-thicknesses. The resulting PDF is normalized to account 
for constant c of equation (3). FIG. 8 illustrates the inverted PDF of bed-thickness at each 
lateral location across the survey.  

(a)  

(b)  

FIG. 8. Inversion PDF of bed-thickness at each lateral location. (a) and (b) are different views of 
the same data. 
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For comparison, an inversion was generated with a uninformative prior; where all 
thicknesses are equally probable.  The result is shown in FIG. 9. Especially at the thick 
end of the model, the posterior PDF is much broader than in the inversion conducted with 
the informative prior (compare with FIG. 8). 

(a)  

(b)  

FIG. 9. The inversion PDF calculated using a non-informative prior. (a) and (b) are different views 
of the same data. 
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DISCUSSION 
The result of the inversion is the posterior PDF which requires further analysis to 

understand completely. For example, FIG. 10 shows the prior PDF and the posterior at 
location x=95m where the velocity and thickness of the wedge are both very anomalous 
relative to the expected velocity and thickness. The actual velocity is 2788 m s-1 whereas 
the expected velocity is 2500 m s-1; and the actual thickness is 13.7 m whereas the 
expected thickness based on the prior is 17.5 m. Therefore, the prior over predicts the 
bed-thickness. Also, the seismic data at this location would imply a very thin bed-
thickness. Using equation (5) and assuming the wedge has the average velocity, the 
predicted bed-thickness would be 9.8 m which is a large underestimation of the true bed-
thickness. Here Bayes triumphs. The thickness of maximum probability from the 
posterior PDF using the weighted prior is 12.7 m. Although this is not the exact solution, 
it is certainly closer than the estimate made by the prior or the deterministic estimate. 
Additionally, while the Bayesian inference result does show a significant probability of 
the true thickness. 

 

FIG. 10. The prior PDF and the inversion PDF for bed-thickness at x=95. The actual model 
thickness at this location is 13.3 m with an anomalously high velocity of 2815 m/s. 

While the largest value of P (m | d), called the maximum a posteriori (MAP), can be 
used as the most probable single value estimate of m (FIG. 11), additional insight can be 
found in the statistics of the model PDF or the model cumulative probability function 
(FIG. 12). For example, the percentile distribution of possible thickness values can be 
found. Also, the PDF can be used to establish the probability that the bed-thickness is at 
least as thick as a given value. 
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FIG. 11. An example of the maximum a posteriori.  

 

FIG. 12. An example of the cumulative probability function. 

 

Illustrating these forms of analysis using the results from the example problem, FIG. 
13 shows the estimated probability that the bed-thickness is greater than a 15 m at each 
location across the model and FIG. 14 shows the 60th percentile thickness estimate across 
the wedge.  
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FIG. 13. The probability that the wedge is greater than 15m thick at each survey location. 

 

FIG. 14. The model has a 60% chance of being at least this thick at each model location. 

There are four methods to estimate bed-thickness in this example: 

1. Using the prior statistical estimate alone; where the mean is the best estimate. 

2. A deterministic estimate using the seismic data amplitudes and equation (5) 
with the assumption of the average velocity. 

3. Using the Bayesian inference with the uninformative prior. 
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4. Using the Bayesian inference with the informative prior. 

Table 1 contains an example comparison of the various method of estimating the bed-
thickness. It shows the number of times that the estimated bed-thickness was greater than 
15 m, when the bed-thickness actually was greater than 15 m (a true positive). The table 
also counts the number of false positives; when the estimated bed-thickness was greater 
than 15 m but the bed was not actually that thick.  Likewise, the table shows the count of 
true negatives and false negatives.  In addition, the table shows the results from the 
posterior PDF for probability thresholds of 70%, 60%, and 30% probability (that the 
wedge is at least 15m thick).   

The informative prior Bayesian inversion finds more true positives and fewer false 
positives than the estimate using the prior alone, using the deterministic inversion or 
using the Bayesian inference performed with the uninformative prior. Bayes wins again. 
Also, although the probabilistic estimates of “when the bed-thickness is greater than 15m 
with 60% or 70% probability” identify fewer true positives, they also identify fewer false 
negatives.  This last result could be significant if the purpose of the model inversion is to 
quantify and reduce risk associated with false positives.  

Table 1. Comparison of the various methods to estimate the number of times that the wedge 
exceeds 15m in thickness. 

 

Times the estimate was 
less than 15m when the 
wedge actually was less 

than 15m 

Times the estimate was 
less than 15m when the 

wedge was actually 
greater than 15m 

Times the estimate was 
greater than15m when 
the wedge was actually 

less than 15m 

Times the estimate was 
greater than 15m when 
the wedge was actually 

greater than 15m 

Informative prior     

Prior estimate only 60 9 8 23 

Linear inversion 58 6 10 26 

MAP 65 4 3 28 

PDFprobability>0.7 68 11 0 21 

PDFprobability>0.6 67 8 1 24 

PDFprobability>0.3 60 3 8 29 

Uninformative prior     

MAP 66 9 2 23 

PDFprobability>0.7 66 12 2 20 

PDFprobability>0.6 66 9 2 23 

PDFprobability>0.3 53 4 15 28 
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OTHER EXAMPLES FROM LITERATURE 
Sava and Mavko (2007) derived a JPDF of fracture density and seismic data signature 

using a Monte Carlo simulation of the rock physics parameters. The JPDF related crack 
density to seismic AVAZ (amplitude variation with azimuth). The PDFs of the rock 
properties such as crack density, crack aspect ratio, fluid properties in the cracks were 
known and the JPDF of P-wave speed, S-wave speed, and density are derived from log 
data. Monte Carlo sampling was used to populate the JPDF between the crack density 
and AVAZ seismic response. The prior was established with the assumption that the 
probability of encountering fractured rock would decrease with increasing distance from 
a known fault. Multiplying the crack density/AVAZ JPDF with the prior that was 
established based on geological trends generated the posterior JPDF. 

When inverting for porosity, shale content, and water saturation in a reservoir, Spikes et 
al. (2007) constructed the likelihood PDF by comparing the seismic traces to an 
exhaustive set of synthetic traces generated from a complete but discretized set of rock 
property values. The subset of synthetic traces that had a sufficiently high cross 
correlation with the real traces were included in the PDF calculation. The result was a 
PDF for the possible geological models that could have yielded the measured trace. 
Mukerji et al. (2001) used a Monte Carlo simulation to generate a PDF relationship 
between seismic facies and offset dependant amplitudes. The inversion result was a PDF 
of facies models. Further discussion of these techniques can be found in Aster et al. 
(2005). 

CONCLUSIONS 
The Bayesian inference provides a powerful technique to integrate geostatistical 

information into a parameter estimate based on geophysical data. Geostatistics can be 
used to weight the prior in the inference and thus move the posterior PDF toward the a 
priori more likely solutions. This yields an improved maximum probability parameter 
estimate and the posterior PDF can be used to perform probabilistic analysis of model 
scenarios and possibilities.  
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