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ABSTRACT

The phase-shift time-stepping equation (PSTS) is a wavefield propagator that allows

two-way in time propagation for the acoustic wave equation. PSTS is based an an exact

solution to the constant velocity acoustic wave equation. It is adapted to a variable velocity

wave equation by a windowed Fourier transform where in each window a constant velocity

solution is computed. We consider a correction to the phase-shift time-stepping equation

that corrects the wave propagators for variable velocity. The correction is based on a similar

Taylor-series expansion used to derive the split-step correction for one-way depth steppers

or to derive higher-order in time pseudospectral methods using the modified equation ap-

proach or Lax-Wendroff method. The computational properties of the split-step correction

to PSTS equation are similar to higher-order in time pseudospectral methods.

INTRODUCTION

Reverse-time migration (RTM) and forward modeling by finite-differenceing the two-

way acoustic wave equation (Baysal et al., 1983; McMechan, 1983) are computationally

expensive. However with an accurate velocity model they are a very effective methods for

migration and modeling. We consider a number of alterative methods to solve the acoustic

wave equation in the wavenumber domain. For a summery of solution methods for the

wave equation refer to Carcione et al. (2002).

To solve the wave equation, the one-way in depth wavefield continuation methods oper-
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ate typically in the frequency-wavenumber domain by recursively phase shifting the trans-

formed wavefield. The Gazdag phase-shift (Gazdag, 1978) is accurate but can only prop-

agate in a constant velocity medium. The phase-shift plus interpolation (PSPI) (Gazdag

and Sguazzero, 1984) algorithm introduces multiple constant reference velocities and in-

terpolates to accomplishing propagation in a heterogenous medium. It is much more nu-

merically intensive than the Gazdag phase shift because it must shuttle between the space

and wavenumber domains at every depth step. Additionally, it is limited to media with

small lateral velocity variations and is only accurate for small angles of propagation about

a preferred direction normally taken to be vertical. Split-step depth stepping (Hardin and

Tappert, 1973; Stoffa et al., 1990) corrects for strong lateral velocity variations but is inac-

curate at large angles of propagation. To correct for lateral velocity variations and wide an-

gles of propagation pseudoscreen (Jin and Wu, 1999), phasescreen (Wu and Huang, 1992),

and split-step Fourier finite difference (Biondi, 2002) have been proposed. For turning

waves, using curvilinear coordinates (Shragge, 2008) and multiple directions of propaga-

tions (Shan and Biondi, 2008) work well.

Similar to one-way in depth wavefield propagators, two-way in time wavefield prop-

agators are solutions that originated from solving the two-way in time wave equation for

the constant velocity acoustic wave equation. The constant velocity integral solutions are

adapted to heterogenous medium by replacing the constant velocity in the solution with a

variable velocity (Wards et al., 2008). These Fourier-like integrals, however, are too com-

putationally complex to be calculated explicitly and must be approximated. We consider a

number of approximations to this integral and compare them to higher-order pseudospectral

methods. We call these approximations split-step phase-shift time-stepping.

PSEUDOPSECTRAL METHODS

We first motivate the study of split-step phase-shift time stepping by reviewing higher-

order in time pseudospectral methods. Pseudospectral methods are numerically efficient

methods to solve the full two-way acoustic wave equation. They compute the spacial Lapla-
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cian by using the Fourier transform and as a result they allow larger spactial sampling rates

than finite-difference methods and reduce the memory requirements. However boundary

conditions cannot be as precisely implemented (Fornberg, 1975, 1987).

The following conventions are used for the forward and inverse Fourier transform of

the function ϕ : R2 → C,

ϕ̂(~k) = F~x→~k(ϕ) =

∫

R2

e2πi~x·~kϕ(~x)dxdz, (1)

and

ϕ(~x) = F−1
~k→~x

(ϕ̂) =

∫

R2

e−2πi~x·~kϕ̂(~k)dkxdkz, (2)

where R is the real line, i =
√−1, ~x = (x, z) ∈ R2, ~k = (kx, kz) ∈ R2 is the Fourier

domain coordinate conjugate to ~x.

The symbols F~x→~k, and F−1
~k→~x

are used to denote the forward and inverse Fourier trans-

forms as abstract operators, respectively. Later, the symbols F~x→~k, and F−1
~k→~x

are also used

to denote the Fourier-like integrals when ϕ or ϕ̂ depend upon ~k and ~x explicitly.

The acoustic constant-density variable-velocity wave equation is





∂2U
∂t2

= v2
(

∂2U
∂x2 + ∂2U

∂z2

)

U(0, ~x) = f(~x)

U(−δt, ~x) = g(~x)

, (3)

where U(t, ~x) is the amplitude of the wave at the point (t, ~x), x is the lateral coordinate, z

is the depth coordinate, t is the time coordinate, ∂2U/∂t2 is, for example, the second-order

partial derivative of the wavefield with respect to the time coordinate, and v, is the speed of

propagation. Assume ~x ∈ R2 and t ∈ R.

The pseudospectral method uses the Fourier transform over the spacial coordinates to
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numerically calculate the Laplacian. The resulting equation is

∂2U

∂t2
= −v2F−1

~k→~x
[(2π|~k|)2F~x→~k[U ]]. (4)

The second-time derivative is approximated by the second-order centered finite-difference

operator to derive a time-marching algorithm

Un+1 = 2(U)n − Un−1 − δt2v2F−1
~k→~x

[(2π|~k|)2F~x→~k[U ]], (5)

where the superscripts n refers to the approximation at timestep n.To deduce a higher-order

algorithm, a higher-order finite-difference approximation can be used for the second-time

derivative of U . However these algorithms are unconditionally unstable (Cohen, 2001).

Alternatively, the modified equation approach (Cohen, 2001) can be used. The Taylor

series expansion of the second-order time derivative is

(
∂2U

∂t2

)n

=
Un+1 − 2Un + Un−1

δt2
− δt2

12

(
∂4U

∂t4

)n

+ O(δt6) (6)

which is derived by adding together the Taylor series expansion of U(t + δt) and U(t− δt)

about t. Substituting equation (6) into the scalar wave equation gives the fourth-order time

approximation,

Un+1 = δt2v2(∆U)n − Un−1 + 2Un +
v4δt4

12

(
∆2U

)n
+ . . . , (7)

where ∆U refers to the 2-dimensional Laplacian of the function U and ∆2U is the bihar-

monic or the Laplacian applied twice to U . If the procedure leading to equation (7) is

iterated, then formally (Etgen, 1989; Dablain, 1986; Chen, 2007),

Un+1 = −Un−1 + 2
∞∑

k=0

(δtv)2k

(2k)!

(
∆kU

)n
. (8)

Taking the Fourier transform of both sides of equation (8) with respect to the spatial coor-
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dinates,

Ûn+1 = −Ûn−1 + 2
∞∑

k=0

(δtv)2k

(2k)!

(
(−2π|~k|)2kÛ

)n

= −Ûn−1 + 2 cos (2πv|k|δt) Ûn. (9)

As an alternative method to approximating cos (2πv|k|δt) with a Taylor series approxima-

tion Soubaras and Zhang (2008) uses an equiripple polynomial to implement a higher-order

pseudospectral method.

In the case that the velocity depends upon the spatial coordinates v(~x) the modified ap-

proach needs to be adjusted to insure convergence (Cohen, 2001). Substituting the variable

velocity wave equation into the fourth-order time derivative gives

∂4U

∂t4
= v4∆2U + v2∆(v2)∆U + v2∇(v2) · ∇(∆U), (10)

where ∆v is the Laplacian applied to the velocity v and ∇ is the gradient operator. The

equivalent of equation (7) for variable velocity is

Un+1 =δt2v2(∆U)n − Un−1 + 2Un +
δt4

12

(
v4∆2U + v2∆(v2)∆U + v2∇(v2) · ∇(∆U)

)n
.

(11)

A fourth-order in time, exponential-order in space, solution of the variable velocity

wave equation is then

Un+1 =− Un−1 + 2Un −
(

δt2v2 +
δt4v2∆(v2)

12

)
F−1

~k→~x

[
(2π|~k|)2F~x→~k[U

n]
]

+
δt4

12

(
v4

)F−1
~k→~x

[
(2π|~k|)4F~x→~k[U

n]
]

+
δt4

12

(
v2

)∇(v2) · F−1
~k→~x

[
2π~k(2π|~k|)2F~x→~k[U

n]
]
. (12)

When the velocity varies slowly or when we propagate the wavefields with smoothed back-
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ground velocity the term involving ∆v2 and ∇v2 can be ignored.

THE PHASE-SHIFT TIME-STEPPING EQUATION

We first derive the phase-shift time stepping equation. Applying the Fourier transform

over the spatial dimensions ~x = (x, z) to both sides of equation (3), reduces it to a collec-

tion of ordinary differential equations,





∂2Û
∂t2

= −(2π)2v2 (k2
x + k2

z) Û

Û(0, ~k) = f̂(~k)

Û(−δt,~k) = ĝ(~k)

. (13)

When ~k = 0, the solution is identically zero, if the initial wavefield and its derivative are

integrable functions. The resulting exact timestepper at time t = 0 of the constant velocity

wave equation is

U(δt, ~x) =− U(−δt, ~x) + 2F−1
~k→~x

[cos
(
2πv|~k|∆t

)
F~x→~k[U(0, ~x)]]. (14)

The fast Fourier transform can be employed because the kernel of the Fourier integral is

independent of the spatial coordinate ~x.

TIMESTEPPING IN A VARIABLE-VELOCITY MEDIUM

The variable-velocity acoustic wave equation is

∂2U

∂t2
= v2(x, z)

(
∂2U

∂x2
+

∂2U

∂z2

)
, (15)

where v(x, z) is the spatially dependent velocity. We now adapt equation (14) which

propagates an acoustic wavefield exactly in a constant velocity medium to propagate ap-

proximately in a variable velocity medium.
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As a result, the right hand side of equation (15), v2(~x) (Uxx + Uzz), can be approx-

imated locally near ~x0 by the solution to the frozen equation v2(~x0) (Uxx + Uzz). This

means that by replacing the constant velocity appearing in the dispersion relation in equa-

tion (14) by the variable velocity (i.e. unfreezing the velocity), we have an approximate

solution

U(δt, ~x) = −U(−δt, ~x) + 2F−1
~k→~x

[
cos

(
2πv(~x)|~k|δt

)
F~x→~k [U(0, ~x)]

]
. (16)

This is the freezing-unfreezing argument that appears in the literature in the context of

hyperbolic and elliptic partial differential equations e.g., (p. 230-231, Stein, 1993). Such

solutions are often called locally homogeneous approximations (e.g., Ma and Margrave,

2008) and they approximate the solution to the variable velocity wave equation by the

solution locally from the constant velocity wave equation.

Equation (12) is the fourth-order time pseudospectral method, comparing this to equa-

tion (16) with the cosine replaced by its fourth-order approximation we see that it does

not contain the term fourth-order in time containing ∆(v2). Therefore the fourth-order

pseudospectral method may be higher order method than equation (16).

SPLIT-STEP TIME STEPPING

A Taylor series can be used to approximate the variable velocity cosine operator about

the reference velocity v0. For some velocity functions this neighborhood can be extended

to the entire domain of computation if a small error in the velocity is accatable. The power

series expansion about the point v0 with the variation δv = v(x) − v0 for the function
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cos(2πv(~x)|~k|∆t) is

cos(2πv(~x)|~k|∆t) = cos(2πvref |~k|δt)

− sin(2πvref |~k|δt)δv(~x)2π|~k|∆t

− 1

2
cos(2πvref |~k|δt)

[
δv(~x)2π|~k|∆t

]2

+ H.O.T. (17)

where H.O.T. denotes higher order terms. Substituting the Taylor series expansion (17)

into equation (16) gives the second order splitstep correction

U(δt, ~x) '− U(−δt, ~x) + 2F−1
~k→~x

[
cos(2πvref |~k|δt)F~x→~k [U(0, ~x)]

]

− 2πδv(~x)∆tF−1
~k→~x

[
|~k| sin

(
2πv(~x)|~k|δt

)
F~x→~k [U(0, ~x)]

]

− 1

2
(2πδv(~x)∆t)2F−1

~k→~x

[
|~k|2 cos

(
2πv(~x)|~k|δt

)
F~x→~k [U(0, ~x)]

]
. (18)

Higher-order algorithms can similarly be derived by taking a higher-order approximation

in the Taylor series expansion in equation (17).

MULTIPLE REFERENCE VELOCITIES

For large velocity variations δv, the split-step correction can become inaccurate and

unstable. To eliminate this problem a windowed Fourier transform can be used with a

number of reference velocities about which a smaller split-step correction is needed.

Window functions are used to separate the wavefield into N regions each of which is

propagated with a reference velocity. In our method these regions need not be simply con-

nected. The wavefield in each region is then propagated with the corresponding reference

velocity and split-step correction. We call a set of windowing functions that sum up to

one a partition of unity. The windowing functions are taken to be positive and if they are

smooth they suppress reflections. To constuct the POU {Ω1(~x), . . . , ΩN(~x)} given a set of

reference velocities {v1, . . . , vN}, we first construct a simpler POU based on discontinuous
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indicator functions {I1(~x), . . . , IN(~x)} where

In(~x) =





1 : |vn − v(~x)| is a minimum for j ∈ [1, N ]

0 : otherwise
(19)

where the meaning of the right-hand side is that the indicator function is only unity when

|vn − v(~x)| assumes a minimum for the nth reference velocity, and is otherwise zero.

The POU is used to window the wavefield into regions at each timestep and the com-

bination of windowing and Fourier transformation results in the Gabor approximation to

equation (14) given by

U(δt, ~x) = −U(−δt, ~x) + 2
N∑

n=1

Ωn(~x)F−1
~k→~x

[
cos

(
2πvn|~k|δt

)
F~x→~k [U(0, ~x)]

]
, (20)

where Ωn(~x) is the windowing functions, and vn is the reference velocity used for propa-

gation in the nth window. Define the multiplier

M vn
m =





(−1)m/2(2π|~k|δt)m cos(2πvn|~k|δt) m even

(−1)(m+1)/2(2π|~k|δt)m sin(2πvn|~k|δt) m odd
. (21)

So that the wavefield propagator for N windows of order M is

U(δt, ~x) = −U(−δt, ~x) + 2
N∑

n=0

Ωn

M∑
m=0

(δvn(~x))m

m!
F−1

~k→~x

[
M vn

m F~x→~k [U(0, ~x)]
]
. (22)

The split-step correction equation (22) requires significantly fewer reference velocities than

using equation (20). As well, equation (20) is capable of modeling continuous velocity

gradients.
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SAMPLING ISSUES

Ideally it would be desired to timestep at the Nyquist sampling rate of the seismic data,

∆tnyq =
1

2fmax

(23)

where fmax is the maximum signal frequency. Reverse time migration methods however

often require finer sampling. For the PSTS equation, the smallest wavelength must be

sampled at least twice,

∆x <
Vmin

2fmax

, (24)

where Vmin is the minimum velocity of the model and δx is the gridspacing in the x and z

directions. The timestep must satisfy (Wards et al., 2007)

δt <
δx√
2Vmax

. (25)

For processing the seismic survey with [Vmin, Vmax] = [1500m/s, 5500m/s] and fmax =

50Hz, the sampling requirements are δx < 15m, δt < 0.0015s, and tnyq = 0.01s.

To minimize computation time, a multi-radix FFT is used. The computation domain

is padded to the next integer with a large number of prime factors. A pad is necessary to

prevent wraparound of the FFT and to enforce a free surface boundary condition.

NUMERICAL EXAMPLES

We compare pseudospectral methods to split-step PSTS methods by looking at some

snapshots at a particular time of a forward propagated wavelet through a portion of the BP

data set in Figure 1. The wavelet is inject at the center of the model. The BP data set Bil-

lette and Brandsberg-Dahl (2005) contains a number of saltdomes and is commonly used

to test velocity picking algorithms, wide angle depth continuation algorithms, and reverse

time migration algorithms. The BP data set contains a rigorous saltdome embedded in
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FIG. 1. A section of the BP data set showing the rigours salt dome.
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FIG. 2. (a) Second-order pseudo-spectral method. (b) Forth-order pseudo-spectral method. (c)
First order split-step PSTS with one window. (d) Second order split-step PSTS with one window.
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FIG. 3. (a) Forth-order pseudo-spectral method with correction term from equation 11. (b) First-
order split-step PSTS with three windows. (c) The PSTS equation with no split-step correction using
10 evenly spaced reference velocities. (d) Similar to (c) but using 20 reference velocities.
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algorithm Relative time time step (ms) grid spacing number of FT
PSTS 10 vels 5 1.5 12.5 11
PSTS 20 vels 10 1.5 12.5 21
pseudo 2nd order 0.8 1.2 12.5 3
pseudo 4th order 1.0 1.5 12.5 3
+∆(c2)∆(U) 1.0 1.5 12.5 3
splitstep 1st order 0.9 1.5 12.5 3
splitstep 2nd order 1.3 1.5 12.5 4
splitstep 1st order 3 windows 4.5 1.5 12.5 7

Table 1. Relative computation time and timestep size used to make Figure 2 and Figure 3

a background sediment whose velocity smoothly increasing with depth. Figure 2(a) is the

snapshot using second-order pseudospectral method derived in equation (5). The method is

computationally efficient but contains unacceptable dispersion. Figure 2(b) is the snapshot

using fourth-order pseudospectral method derived in equation (5). There is no observable

dispersion. Figure 2(c) is the first order split-step correction. Although the model does

not contain much dispersion there are large kinematic errors due to the low order of the

approximation. Figure 2(d) is the second order split-step correction. The kinematics are

much better than in Figure 2(c) but there is more dispersion than the fourth-order pseu-

dospectral method. Figure 3(a) is the first-order split-step correction using three reference

velocities. The kinematics are much improved over using one reference velocity. Figure

3(b) is the fourth order pseudospectral method with the correction term in equation (11).

The correction term had little noticeable effect. Figure 3(d) is the PSTS approximation

using 10 reference velocities. There are noticeable kinematic errors through there is little

dispersion. Figure 3(d) use 20 reference velocities but does not significantly improve the

poor image of Figure 3(c). Table 1 contains the relative computation times of all the meth-

ods. All of the computations where computed a the same spacial sampling rate. For a few

methods a smaller timestep was used to ensure stability.

For a further application we compare a forward modeled shot using the second-order

and fourth-order split-step PSTS equation and the fourth-order in time pseudospectral

method. An automatic gain control was applied to both shot records. Both fourth-order

methods are of comparable quality. The second-order split-step PSTS method suffers from

14 CREWES Research Report — Volume 21 (2009)



 

Distance (km) 

S
ec

o
n

d
s

1 2 3 4 5

1

2

3

4

FIG. 4. This shotrecord is generated using a fourth-order pseudospectral method with the BP
dataset ignoring density variations.

grid dispersion. This can be reduced by making the timestep smaller. However it is numer-

ically more efficient to use a higher-order method.

CONCLUSION

We presented a new method to approximate equation (16) which solves the acoustic

wave equation. It is similar to higher-order in time pseudospectral methods based on the

modified equation approach or the Lax-Wendroff method. This approximation scheme can

be used for acoustic modeling or reverse time migration. We also presented a windowing

scheme where a lower order approximations can be used about multiple reference veloci-

ties. However, due to the large number fast Fourier transforms (FFTs) needed to execute the

windowing scheme it is much more computationally efficient to use a higher-order method.
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FIG. 5. This shotrecord is generated using the second-order split-step PSTS equation with the BP
dataset ignoring density variations.

16 CREWES Research Report — Volume 21 (2009)



 

Distance (km) 

S
ec

o
n

d
s

1 2 3 4 5

1

2

3

4

FIG. 6. This shotrecord is generated using the forth-order split-step PSTS equation with the BP
dataset ignoring density variations.

CREWES Research Report — Volume 21 (2009) 17



REFERENCES

Baysal, E., Kosloff, D. D., and Sherwood, J. W. C., 1983, Reverse time migration: Geo-

physics, 48, No. 11, 1514–1524.

Billette, F., and Brandsberg-Dahl, S., 2005, The 2004 BP velocity benchmark., in 67th

Annual Internat. Mtg., EAGE, Expanded Abstracts, EAGE, B035.

Biondi, B., 2002, Stable wide-angle fourier finite-difference downward extrapolation of 3-

d wavefields: Geophysics, 67, No. 3, 872–882.

URL http://link.aip.org/link/?GPY/67/872/1

Carcione, J. M., Herman, G. C., and ten Kroode, A. P. E., 2002, Seismic modeling: Geo-

physics, 67, No. 4, 1304–1325.

URL http://link.aip.org/link/?GPY/67/1304/1

Chen, J.-B., 2007, High-order time discretizations in seismic modeling: Geophysics, 72,

No. 5, SM115–SM122.

URL http://link.aip.org/link/?GPY/72/SM115/1

Cohen, G. C., 2001, Higher-Order Numerical Methods for Transient Wave Equations:

Springer Verlag.

Dablain, M. A., 1986, The application of high-order differencing to the scalar wave equa-

tion: Geophysics, 51, No. 1, 54–66.

URL http://link.aip.org/link/?GPY/51/54/1

Etgen, J., 1989, Accurate wave equation modeling: SEP–60.

Fornberg, B., 1975, On a fourier method for the integration of hyperbolic equations: SIAM

Journal on Numerical Analysis, 12, No. 4, 509–528.

URL http://www.jstor.org/stable/2156171

18 CREWES Research Report — Volume 21 (2009)



Fornberg, B., 1987, The pseudospectral method: Comparisons with finite differences for

the elastic wave equation: Geophysics, 52, No. 4, 483–501.

URL http://link.aip.org/link/?GPY/52/483/1

Gazdag, J., 1978, Wave equation migration with the phase-shift method: Geophysics, 43,

No. 7, 1342–1351.

URL http://link.aip.org/link/?GPY/43/1342/1

Gazdag, J., and Sguazzero, P., 1984, Migration of seismic data by phase shift plus interpo-

lation: Geophysics, 49, No. 2, 124–131.

URL http://link.aip.org/link/?GPY/49/124/1

Hardin, R., and Tappert, F., 1973, Applications of the split-step Fourier method to the

numerical solution of nonlinear and variable wave equations: SIAM Review, 15, No.

423.

KEY: split

ANNOTATION:

Jin, S., and Wu, R.-S., 1999, Common offset pseudo-screen depth migration: SEG Techni-

cal Program Expanded Abstracts, 18, No. 1, 1516–1519.

URL http://link.aip.org/link/?SGA/18/1516/1

Ma, Y., and Margrave, G. F., 2008, Seismic depth imaging with the Gabor transform: Geo-

physics, 73, No. 3, S91–S97.

URL http://link.aip.org/link/?GPY/73/S91/1

McMechan, G. A., 1983, Migration by extrapolation of time-dependent boundary values:

Geophysical Prospecting, 31, No. 3, 413–420.

Shan, G., and Biondi, B., 2008, Plane-wave migration in tilted coordinates: Geophysics,

73, No. 5, S185–S194.

URL http://link.aip.org/link/?GPY/73/S185/1

CREWES Research Report — Volume 21 (2009) 19



Shragge, J. C., 2008, Riemannian wavefield extrapolation: Nonorthogonal coordinate sys-

tems: Geophysics, 73, No. 2, T11–T21.

URL http://link.aip.org/link/?GPY/73/T11/1

Soubaras, R., and Zhang, Y., 2008, Two-step explicit marching method for reverse time

migration: SEG Technical Program Expanded Abstracts, 27, No. 1, 2272–2276.

URL http://link.aip.org/link/?SGA/27/2272/1

Stein, E., 1993, Harmonic analysis : real-variable methods, orthogonality, and oscillatory

integrals: Princeton University Press.

Stoffa, P. L., Fokkema, J. T., de Luna Freire, R. M., and Kessinger, W. P., 1990, Split-step

Fourier migration: Geophysics, 55, No. 4, 410–421.

URL http://link.aip.org/link/?GPY/55/410/1

Wards, B. D., Margrave, G. F., and Lamoureux, M. P., 2007, High-fidelity time-stepping

for reverse-time migration: CREWES Research Report, , No. 48.

Wards, B. D., Margrave, G. F., and Lamoureux, M. P., 2008, Phase-shift time-stepping for

reverse-time migration: the marmousi data experience: CREWES Research Report.

Wu, R.-S., and Huang, L.-J., 1992, Scattered field calculation in heterogeneous media using

a phase-screen propagator: SEG Technical Program Expanded Abstracts, 11, No. 1,

1289–1292.

URL http://link.aip.org/link/?SGA/11/1289/1

20 CREWES Research Report — Volume 21 (2009)


