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Dispersion and the dissipative characteristics of surface waves 
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ABSTRACT 

Wave number, group velocity, phase velocity and frequency dependent attenuation 

characterize the propagation of surface waves in dispersive, attenuating media. Here, a 

mathematical model is developed based on the generalized S transform to simultaneously 

estimate these characteristic parameters of surface waves from a seismic record. We use a 

scaling factor in the generalized S transform to enable application of method in highly 

dispersive medium. We introduce a cost functions in the S domain to estimate an 

optimum value for the scaling factor.  We also use the cost function to generalize the 

application of the method for noisy data, especially data with a low signal to noise ratio at 

low frequencies. In that case, experimentally we find that estimated wave number is 

perturbed. As a remedy, we estimate wave number perturbation by minimizing the cost 

function using Simulated Annealing. We present synthetic and real data to show the 

efficiency of the method for the estimation of the propagation parameters of highly 

dispersive and noisy media. We anticipate that, through inversion of the characteristic 

parameters of surface waves, near surface shear wave velocity will be obtainable. 

INTRODUCTION 

Accurate estimation of shear wave (S-wave) velocity for near surface material such as 

soil, rocks and pavement is very important for many engineering and environmental 

purposes, as shear wave velocity is one of the essential properties used in stiffness 

coefficient determination (Xia et al., 2002a). Though seismic refraction methods are 

widely used for shear wave velocity studies (Palmer, 1980), they fail to estimate S-

velocity where geological structure is complex (Xia et al., 2002b) or where hidden layers 

(a layer whose velocity is less than its upper layer) are present (Sheriff and Geldart, 

1986).  

An alternative to refraction analysis is surface wave analysis. Surface wave analysis is 

a well-known procedure where phase and group velocity of dispersive surface waves are 

inverted to estimate shear wave velocity structure (e.g. Evison et al., 1959; Stokoe et al., 

1988; Keilis-Borok, 1989; Lay and Wallace, 1995; Xia et al., 1999). The usefulness of 

surface waves lies in their interaction with elastic and density discontinuities in the 

subsurface. Velocity varies with wavelength where discontinuities have an order of 

magnitude relationship to wave length (Park et al., 1999). This variation, known as 

dispersion, is observable on seismic records as a change in the period of successive wave 

cycles with time (Kennett, 1983).  

Shear wave velocity is estimated from the inversion of phase and group velocity. 

Therefore the analysis of dispersion data to link phase and group velocity to frequency is 

a crucial step. Some algorithms have been developed to address these issues in different 

transform domains such as FK transform (Yilmaz, 1987),     transform (McMechan 

and Yedlin, 1981) the phase shift (Park et al., 1998) and the wavelet transform (Kulesh et 
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al., 2005; Holschneider et al., 2005; Kulesh et all, 2008) for phase velocity, and narrow 

band-pass filtering (Herrmann, 1973)  and the wavelet transform (Kulesh et al., 2005; 

Holschneider et al., 2005) for group velocity. 

In this study, the generalized S transform (Pinnegar and Mansinha, 2003a) is used to 

estimate wave propagation parameters (phase velocity, group velocity and the attenuation 

function) for a highly dispersive medium and noisy data. The advantage of the S 

transform (Stockwell et al., 1996) and its generalized versions (e.g. Mcfadden et al., 

2002; Pinnegar and Mansinha, 2003a; Pinnegar and Mansinha, 2003b; Pinnegar and 

Mansinha, 2004) lies in the fact that they provide frequency-dependent resolution while 

maintaining a direct relationship with the Fourier spectrum. Using this property, wave 

number and phase velocity are obtained directly from the absolute phase value of the 

ridges of the S domain, and group velocity is also computed from the time difference of 

the ridges of the transform. Frequency-dependent attenuation is estimated by the absolute 

amplitudes of the ridges of the transform. Kulesh et al. (2005) and Holschneider et al. 

(2005) propose a method for the estimation of the characteristic parameters of moderately 

dispersive surface waves based on the wavelet transform. Using a scaling factor 

introduced in the generalized version, we significantly improve estimation of the 

characteristic parameters of surface waves for highly dispersive data. Experimentally we 

find that estimated wave number is perturbed for noisy data when signal to noise ratio is 

small at low frequencies. As a remedy, we estimate wave number perturbation by 

minimizing a cost function using Simulated Annealing. 

THEORY 

The S transform is a time-frequency spectral localization method that is similar to the 

short-time Fourier transform (Gabor, 1946). The Gaussian window in the S transform is a 

function whose width and height scale, respectively, inversely and directly with 

frequency. The S transform is given by Stockwell et al. (1996) as 
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where as an operator S transforms h into a function of frequency   and time  . Time   
controls the position of the Gaussian window on the output time axis. The scaling 

property of the Gaussian window is reminiscent of the scaling property of continuous 

wavelets (Mallat, 1999) because one wavelength of the frequency   is always equal to 

one standard deviation of the window (Stockwell et al., 1996). The S transform, however, 

is not a wavelet transform, because the oscillatory parts of the S transform ―wavelet‖ 

(provided by the complex Fourier sinusoid) does not translate with the Gaussian window 

when   changes. As a result, the shapes of the real and imaginary parts of the S transform 

―wavelet‖ change as the Gaussian window translates in time. True wavelets do not have 

this property because their entire waveform translates in time with no change in shape 

(Pinnegar and Mansinha, 2003b). Phase measured by the S transform is the localized 

value of absolute phase with respect to the Fourier spectrum (Pinnegar and Mansinha, 

2003a). Thus, the S transform is conceptually a combination of short-time Fourier 

analysis and wavelet analysis. 
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A more general version of the S transform allows arbitrary variation in the window. 

The generalized S transform is 

 
                                        

  

  

  (2) 

where the Gaussian window of  the S transform is generalized into the modeling window 

w whose width and shape are now a function of parameter p. A version of the generalized 

S transform that has particular usefulness in our analysis is defined using 

 
           

   

    
 
 
        

     (3) 

where, compared with the Gaussian window in equation (1), a scaling factor   is 

introduced (Pinnegar and Mansinha, 2003a). Using  , the generalized S transform is 

written  
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where the scaling factor   controls time-frequency resolution by changing the number of 

oscillations within the window. Figure 1 shows the Gaussian window for the scaling 

factors   1, 0.25 and 4 at a frequency of 10HZ respectively. When   is smaller than 

one, the Gaussian window is tightened in the time domain and the time resolution 

increases. In the other hand, for   larger than one, the Gaussian window is expanded in 

the time domain and therefore the frequency resolution increases. Figure 2a shows a 

signal which consists of three Ricker wavelets with central frequencies of 50HZ at 0.25s, 

150HZ at 0.50s and 250HZ at 0.75s respectively. Figures 2b, 2c and 2d show the 

generalized S transforms of the signal for  =1, 0.25 and 4 respectively. Figure 2c 

presents a better time resolution whereas Figure 2d presents a better frequency resolution. 

This phenomenon, as explained earlier, is pertinent to time-frequency expansion of the 

Gaussian window which is controlled by the scaling factor  . In anticipation of the use of 

wave propagation operators cast in the Fourier domain, equation (4) is written (Pinnegar 

and Mansinha, 2003a) 
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where   is a frequency variable and  
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is the Fourier transform of     . 

THE WAVE PROPAGATION OPERATOR 

Assuming geometrical spreading correction has been applied on surface wave data, if 

h1(τ) is the wavelet at station 1, the wavelet h2(τ) recorded at station 2 can be expressed  
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                               (7) 

where      is an attenuation function, and      is a spatial wave number that controls 

wave propagation from station 1 to station 2. This wave number characterizes horizontal 

propagation of surface wave and is a function of elastic properties of the medium, and   

is the distance between, the two stations. This relation is written in the S domain as 
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Klush et al. (2005) assume that attenuation function      and phase function      
vary slowly with respect to the effective size of the spectrum of the wavelet transform. 

We make the same assumption for the generalized S transform. For instance, for fixed 

point (t, f) on the time-frequency plane, we may develop   and   around the central 

frequency f. For moderate dispersion, the wave number term      on the right-hand side 

of equation (8) can be approximated by the first two terms of its Taylor series around f.  

So,        and        can be expressed 

                   (9) 

and 

                            (10) 

where       indicates a frequency derivative of     . Upon inserting the above 

approximations into the integral (8), we obtain 

                                                    
 
     

  
  

        
  

  

 

                                                        
 
     

  
  

                 
  

  
 

                                                                                               (11) 

where                    is the generalized S transform of h1 shifted by        . 

Considering 

               (12) 

where    is phase velocity that is the velocity of each frequency component of surface 

wave, and also 

                    (13) 

where group velocity    is the velocity of a wave pocket (envelope ) of surface wave 

around frequency f, equation (11) is expressed as 
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                                                           (14) 

Based on equation (14), any point at time-frequency plane (t, f) of station 1, is 

equivalent to the time shifted-frequency plane (t-       , f) of station 2 whose phase 

difference is             , and whose amplitude is proportional to         that of 

station 1. Thus, the group velocity can be obtained from the time difference of the ridge 

of the transforms for any frequency, and the phase velocity can be computed from their 

phase difference. Figure 3 is given to show how to use equation (14) in order to obtain 

the propagation parameters. Figures 3a and 3b show the amplitude spectra of the 

generalized S transform of two stations respectively. Figure 3c and Figure 3d show their 

phase spectra respectively. At the first step, ridges of the amplitude spectra of the 

transform are found (Figures 3a and 3b) at any specific frequency (here f =150HZ) with 

respect to the time axis. Attenuation is obtained as 

 
     

                  

 
  

          

(15) 

where     and    are the absolute, maximum amplitudes of the ridges of the stations 

receptively. Group velocity is obtained as 

 
   

 

  
      (16) 

where         (from Figures 3a and 3b) is the time difference between two ridges. 

Wave number      is computed  

 
     

  

   
      (17) 

where    is phase differences between two ridges (Figures 3c and 3d). Finally phase 

velocity is calculated using equation (12).  

Comparing equation (14) with that proposed by Kulesh et al. (2005) for the wavelet 

transform, one observes that the phase velocity obtained from the generalized S transform 

is directly related to the phase spectrum because the phase in the generalized S transform 

is a localized value of the absolute phase with respect to the Fourier spectrum, whereas 

the phase in the wavelet transform is instant. Equation (14) takes advantage of calculating 

the phase velocity independently from the group velocity, so any error in calculating the 

group velocity does not impact on the estimation of phase velocity.  

At first glance, the assumption applied in equations (11) and (12) might lead us to the 

conclusion that any propagation parameter estimation based on the generalized S 

transform would make sense only for wave propagation in weakly dispersive media at 

low frequencies where there is a linear phase process. In cases where the medium is 

highly dispersive, and a signal has a wide band of frequencies, there is more uncertainty 

to accurately estimate amplitude and phase spectra of high frequencies due to low 

frequency resolution which is indicated by Heisenberg boxes (Mallat, 1999). However, 

the generalized S transform improves frequency resolution of high frequencies by 

selecting a larger value of  . So it provides a better estimation of amplitude and phase 
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spectra of high frequencies. Thus it is able to estimate propagation parameters of surface 

wave for highly dispersive and attenuating media. 

Figure 4 shows a wavelet signal dispersed in a relatively high dispersive medium with 

a dominant frequency of 125 HZ. Geophone spacing is assumed to be 250 m. As seen in 

Figures 5a, 5b, 3c and, 5d wave number, group velocity and attenuation obtained using 

scaling factor  =20 are poorly estimated for higher frequencies. This error implies the 

phase and amplitude spectra of high frequencies are poorly estimated. If a larger scaling 

factor is chosen, the Gaussian window expands in the time domain, and frequency 

resolution increases. So, we expect to improve results by choosing larger values for   for 

this example. The dotted lines in Figure 5 show the estimated propagation operators 

based on  =100. The wave number and phase velocity are now well estimated for all 

frequency components. The group velocity for lower frequencies (0-4 HZ) is not poorly 

estimated due to low time resolution for low frequencies. But for higher frequencies the 

result is acceptable. The estimated attenuation function is well computed for frequency 

ranges from zero to 220 HZ, and for frequency ranges from 220 HZ to 250 HZ, the 

attenuation function is underestimated. One approach to get a better estimation of the 

attenuation function is to select higher values of  . When a higher value of   is selected, 

the time resolution is weakened, so the possibility of the time-frequency overlap of higher 

modes increases. Thus, we are limited to choosing higher values of   in practice. To 

compare amplitude and phase spectrum of signals based on different values of the scaling 

factor, the amplitude and phase spectrum of traces (1) and (7) for scaling factors  =20 

and  =100 are shown in Figure 6. Figure 7 shows the predicted data based on the 

estimated wave number and attenuation function based on the scaling factor  =100 for 

traces (2), (4) and (6) respectively (the dashed lines). The estimated wave number and 

attenuation function are able to predict data close to that of the reference model.   

An optimum value for   is obtained using a cost function 
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where       is the calculated attenuation and       is the calculated wave number based 

on a specific value of   respectively,     
 is the generalized S transform of the i

th
 

geophone,    
 is the generalized S transform of a reference geophone which could be the 

first geophone and Di is the distance between the reference and i
th

 geophones. Figure 8 

shows the cost function for the data. As seen the cost function converts to zero for   

larger than 70. It implies we should choose   larger than 70 to have good estimations of 

the attenuation and the wave number. 

Figures 9a and 9b show two dispersed synthetic data sets with different dispersivities. 

In the both models, a Ricker wavelet is with a dominant frequency of 125 HZ is used as 

the seismic wavelet and geophone spacing is assumed to be 250 m. Figures 9c and 9d 

show phase velocities for Figures 9a and 9b respectively. Phase velocity for Figure 9a has 

velocity ranges from 760 m/s to 850 m/s whereas the velocity ranges for Figure 9b vary 

from 800 m/s to 1400 m/s. Therefore the second data set is more dispersed in comparison 

with the first data set. However it is less dispersed than the data used in Figure 1 where 

its phase velocity varies from 850 m/s to 1950 m/s. Figures 9e and 9f show the cost 
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function for the both data sets respectively. The cost function for the first data converts to 

zero at   = 5 and for the second data converts to zero at   = 22. It can be concluded for 

higher dispersive media, a higher value of   should be chosen. In other words,   is a 

function of the dispersivity of a medium.  

EXAMPLES 

Synthetic Data Example 

To investigate noise effect on the estimation of propagation parameters using the 

generalized S transform, two synthetic seismic records are analyzed. In the first model 

(Figure 10), a Gaussian wavelet with standard deviation 7 10
-3

 is used. The additive 

noise is white Gaussian with a standard deviation of .01, and where the geophones are 

irregularly spaced. The average distance between two adjacent geophones, however, is 

set to be 200m. In the second model (Figure 11) a Ricker wavelet with dominant 

frequency 22.5 HZ is used. All other parameters are identical with that used in the first 

model.  The theoretical propagation parameters correspond to the solid lines in Figure 12. 

The dashed lines in Figure 12 are the estimated parameters obtained from the first model. 

As may be seen in Figure 12, the wave number and the phase velocity are well estimated 

in comparison with the theoretical values. The group velocity and the attenuation 

function are relatively well estimated around low frequencies where the Gaussian wavelet 

has more energy (Figure 13). The estimated group velocity, however, seems distorted 

around zero frequency. As explained earlier, it can be referred to low time resolution at 

low frequencies. The dotted lines in Figure 12 are the estimated propagation parameters 

for model 2. The estimated wave number and phase velocity are not consistent with the 

theoretical values. The wave number of the model (km) can be expressed as 

approximately equal to the estimated wave number (ke) plus perturbation according to 

              (19) 

Equation (19) can be explained by the effect of noise at low frequency components 

where the signal to noise ratio is small because the Ricker wavelet has less energy at low 

frequencies (Figure 13). At those frequencies, initial values of phase (  ) are highly 

affected by noise, hence, any phase difference between two geophones is not directly 

proportional to the wave number. The group velocity and the attenuation function are 

better estimated around frequency 22.5 HZ where signal to noise ratio is high. The group 

velocity is more highly distorted around zero frequency due to the small amount of signal 

to noise ratio and also low time resolution at low frequencies. Based on the estimated 

parameters, the predicted traces for geophones (2), (9) and (15) for both models are 

computed. Figure 14 shows the predicted traces (the dashed lines) for the first model. The 

estimated wave number and attenuation function have been able to predict the model 

appropriately. Figure 15 shows the predicted traces (the dashed lines) for the second 

model. As seen, the envelopes for the predicted and the real traces seem to be the same, 

implying the group velocities are equal. This fact can be obtained by equation (19) too. 

However, they do not fit each other due to wrong estimation of the group velocity.  
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The problem can be solved using the least squares solution by finding an appropriate 

value for wave number perturbation  . The assumption is     1. The cost function is to 

be minimized.  

              
         

               
                            

 

        (20) 

where     
 is the generalized S transform of the ith geophone,    

 is the generalized S 

transform of a reference geophone which in this study the first geophone is assumed as 

the reference and Di is the distance between the reference and i
th

 geophones. Figure 16 

show the error function for 0< <.1. The cost function is highly non-linear and has lots of 

local minima, so it is impossible to solve it using some gradient methods such as Steepest 

Descent or Conjugate Gradient. In this paper, Simulated Annealing (Beaty et al., 2002) is 

used to find an optimum value for epsilon. Each step of Simulated Annealing replaces the 

current solution by a random "nearby" solution, chosen with a probability that depends on 

the difference between the corresponding function values and on a global parameter 

(called the temperature), that gradually decreases during the process. For the second 

model, the optimum value of   = 0.00189414 is obtained.  Figure 17 shows the wave 

number and the phase velocity corrected based on the computed value for epsilon. The 

corrected wave number and corrected phase velocity match very well with that of the 

theoretical. Figure 18 show the predicted traces based on the corrected wave number. As 

seen, the predicted traces match better to the data.  

The reason why the geophones are assumed to be irregularly spaced is that for 

distances larger than 100m, it is possible to find many values of small epsilons 

minimizing equation (20). For instance, if the distance between two adjacent geophones 

is 100m, ―     ‖ will give the same amount of error as epsilon because the 

multiplication of .01 by the distance will produce an integer multiple of 2 . In practice, in 

seismic exploration, geophone spacing is usually less than 100m, so it need not be 

irregularly spaced. In earthquake seismology the distance between two adjacent 

seismometers is much larger than 100m. Nevertheless, seismometers are usually 

irregularly spaced; hence, we can use the least squares solution to find an optimum value 

of epsilon for noisy data in the both seismic and seismological studies. 

Real Data 

Figure 19 (solid lines) shows a real seismic record consisting of dispersive surface 

wave with sampling frequency 1000 HZ and sampling distance one meter. Figure 20 

shows the estimated propagation parameters obtained from the generalized S transform. 

Based on the estimated wave number and attenuation function other traces are predicted. 

The dashed lines in Figure 19 show the predicted traces from the first trace (the first 

geophone). The predicted traces are well matched to the real data implying good 

estimation of the wave number and attenuation function.  

CONCLUSIONS AND DISCUSSIONS  

In this study we use a mathematical model to link the time-frequency spectrum of a 

signal based on the generalized S transform to its propagation parameters (wave number, 

phase velocity, group velocity and attenuation function) in dispersive and attenuating 



Dispersion and the dissipative characteristics ... 

 CREWES Research Report — Volume 22 (2010) 9 

media. The S transform and its generalized versions provide frequency-dependent 

resolution while maintaining a direct relationship with the Fourier spectrum. Using this 

property, wave number and phase velocity are obtained directly from the absolute phase 

value of the ridges of the S domain. Group velocity is also computed from the time 

difference of the ridges of the transform. Finally, frequency-dependent attenuation is 

estimated by the absolute amplitudes of the ridges of the transform. The advantage of the 

generalized S transform over the S transform lies in the fact that it manipulates time-

frequency resolution in the S domain using a scaling factor. Therefore results can be 

improved, especially for a highly dispersive and dissipative medium. According to the 

results of the synthetic data, for a highly dispersive medium, a larger value of the scaling 

factor must be chosen. In general, estimated parameters are more reliable where signal to 

noise ratio is high. However, group velocity estimated for frequency ranges (0-5) HZ is 

not satisfactory due to low time resolution of the transform at low frequencies. This limits 

the ability of the method to determine the group velocity at mentioned frequency ranges. 

In reality, a seismic signal usually consists of several modes of surface waves. If time-

frequency spectrum of different modes of the signal in the S domain is well separated, it 

is quite possible to simultaneously extract the propagation factors of different modes with 

respects to their time-frequency distributions. However, we are usually limited to 

choosing an appropriate scaling factor due to overlapping time-frequency spectrum of 

different modes for specific values of the scaling factor. We introduce a cost function to 

estimate a minimum optimum value for the scaling factor. We could make decision what 

ranges of the scaling factor should be chosen based on the minimum value of the scaling 

factor and also overlapping time-frequency spectrum of different modes.  

Experimentally we find that estimated wave number is perturbed for noisy data when 

signal to noise ratio is small at low frequencies. As a remedy, we estimate wave number 

perturbation by minimizing a cost function using Simulated Annealing. As discussed 

earlier, for receiver spacing larger than 100m, receivers must be irregularly deployed to 

have a unique answer for the cost function.  
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FIG. 1. The Gaussian window at the frequency of 10HZ for γ=1 (the solid line), γ=0.25HZ (the 
dashed line) and γ=4 (the dotted line). 

FIG. 2. (a) a signal. (b), (c) and (d) the generalized S transforms of (a) for γ=1, 0.25 and 4 
respectively. 
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FIG. 3. (a) the amplitude spectra of the first station. (b) the amplitude spectra of the second 
station. (c) the phase spectra of the first station. And (d) the phase spectra of the second station. 
The dashed line show how time and phase information of the ridges is estimated.  

FIG. 4.  A wavelet signal dispersed in a relatively high dispersive medium recorded at different 
geophones.  
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FIG. 5. The estimated propagation model parameters based on the scaling factors γ =20 and γ 
=100. (a) The wave number. (b) The phase velocity. (c) The group velocity. (d) The attenuation 
function. 
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FIG 6. (a) and (c) the amplitude spectrum; (b) and (d) the phase spectrum for traces 1 and 7 
respectively based on the scaling factor γ =20. (e) and (f) the amplitude spectrum; (g) and (h) the 
phase spectrum for traces 1 and 7 respectively based on the scaling factor γ =100. 
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FIG. 7. The dashed lines are the predicted model for traces (2), (4) and (6) respectively. 

 

FIG. 8. The cost function for the data in Fig. 7. 
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FIG. 9. (a) and (b) two different dispersed data sets. (c) and (d) the phase velocities for (a) and 
(b) respectively. (e) and (f) the cost functions for (a) and (b) respectively. 

FIG. 10. A noisy synthetic seismic record with a dispersive Gaussian wavelet. 
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FIG. 11. A noisy synthetic seismic record with a dispersive Ricker wavelet. 

FIG. 12.  The propagation model parameters. (a) The wave number. (b) The phase velocity. (c) 
The group velocity. (d) The attenuation function.  
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FIG. 13. The amplitude spectrum of the Gaussian wavelet (the solid line) and the Ricker wavelet 
(the dashed line). 

 

FIG. 14. The solid lines are traces for geophones (2), (9) and (15) of the first model and the 
dashed lines are the predicted traces based on the estimated wave number and attenuation 
function for geophones (2), (9) and (15) respectively.  

 

 

FIG. 15. The solid lines are traces for geophones (2), (9) and (15) of the second model and the 
dashed lines are the predicted traces based on the estimated wave number and attenuation 
function for geophones (2), (9) and (15) respectively. 
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FIG. 16. The cost function for 0<ε<.1. 

 

FIG. 17. (a) The wave number. (b) The phase velocity corrected based on computed optimum 
value for epsilon. 

 

FIG. 18. The predicted traces based on the corrected wave number. 
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FIG. 19. The real data (the solid lines) and the predicted (the dashed lines). 

FIG. 20.   Estimated propagation model parameters of the real data. (a) The wave number. (b) 
The phase velocity. (c) The group velocity. (d) The attenuation function.  

 


