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ABSTRACT

The Kaiser Bessel non-uniform Fast Fourier transform (NFFT) kernel balances accu-
racy and computational cost, and we present an application of this NFFT for seismic trace
interpolation. Application of the Bessel kernel for non-uniform samples is not a new algo-
rithm, but it is an approximation scheme that can be used to calculate an approximate spec-
trum. In one dimension, computational complexity of KaiserBessel NFFT isO(NlogN)
which is a dramatic improvement from theO(N2) complexity of the Discrete Fourier trans-
form (DFT), and it is comparable to Fast Fourier transform (FFT). This algorithm can be
easily extended to higher dimensions. Least squares is usedto refine an approximated
spectra followed by simple Inverse Fast Fourier transform (IFFT). The applicability of the
proposed method is examined using synthetic seismic data.

INTRODUCTION

During seismic data acquisition, the continuous wavefield is sampled as a discrete
wavefield on the survey grid. To reconstruct the continuous wavefield, the spatial sam-
ple rate in the inline and crossline directions axis must be selected based on the Nyquist
rule (Vermeer, 1990). When this rule is neglected, interpolation is required (Liu and Sacchi,
2004). The quality of the reconstruction directly affects the various steps of data processing
processing such as Migration (Spitz, 1991), AVO analysis (Sacchi and Liu, 2005) , imag-
ing (Liu and Sacchi, 2004), and noise removal (Abma and Kabir, 2005) (Soubaras, 1994).
Seismic reconstruction algorithms are divided in to two categories: those based on wave
equation analysis and those based on Parametric analysis.

Based on a velocity model, wave equation based methods comesunder category of a
regression approach that use wave propagation to guide reconstruction of the missing sam-
ples (Ronen, 1987; Bagaini and Spagnolini, 1999; Stolt, 2002; Trad, 2003; Fomel, 2003;
Malcolm et al., 2005; Clapp, 2006; Leggott et al., 2007).

Parametric analysis based reconstruction methods are based ona priori information in
seismic data, and most are based on the Fourier transform(Schonewille et al., 2003; Liu and
Sacchi, 2004; Schonewille et al., 2009; Naghizadeh and Sacchi, 2008b,c, 2009b,a, 2010).
The central assumptions are based on the stationarity of theprocess or based on the fact
that most of the power in the power spectrum is concentrated on the lower frequencies,
analysis based on this fact known as bandlimitness. Bandlimitness enforces only the use of
certain set of frequencies (Feichtinger et al., 1995). These algorithms performs efficiently
even in situations where assumptions in not satisfied exactly (Trad, 2008).

Seismic data reconstruction is based on data mapping, generally mapping of spatial do-
main data to the Fourier domain. The most common bases for obtaining high resolution
reconstruction techniques are the Fourier transform (Sacchi et al., 1998; Xu et al., 2005;
Liu and Sacchi, 2004; Naghizadeh and Sacchi, 2007b, 2008a, 2009b, 2007a) and the Radon
transform (Darche, 1990; Verschuur and Kabir, 1995). In theparabolic Radon transform,
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two CMP gathers are combined to improve offset sampling and thus differences between
midpoint positions are ignored (Duijndam et al., 1999). Similarly hyperbolic and linear
Radon transforms (Thorson and Claerbout, 1985) as well as theparabolic radon transform
are suitable for estimating frequencies at irregular nodes, but they suffer aliasing problem
due to sparse sampling (Hugonnet and Canadas, 1995), the local Radon transform and the
curvelet transform (Hennenfent and Herrmann, 2006b, 2007,2006a). Another group of sig-
nal processing interpolation methods rely on prediction error filtering techniques (Wiggins
and Miller, 1972). Spitz (1991) and Porsani (1999) introduce seismic trace interpolation
methods using prediction filters. These methods operate frequency-space (f-x ) domain.
The low frequency in a regular spatial grid are used to estimate the prediction filters needed
to interpolate high frequency components. This regular spatial grid make prediction filter
methods restricted to regular sampling.

In this paper we introduce the use of Kaiser Bessel window function for the seismic
data reconstruction. Combining the window function with Fast Fourier transform will give
us the Kaiser Bessel non-uniform Fourier kernel. The need ofthe non-uniform kernel
is based on the constrain that Fast Fourier transform (FFTs)need regular spacing for its
application. Non uniform Fast Fourier transforms (NFFT) which are generalizations for
the FFT are discussed by many authors in the past (Dutt and Rokhlin, 1993; Steidl, 1998;
Duijndam and Schonewille, 1999; Lee and Greengard, 2006). It is important to stress that
the Non uniform Fourier kernel is been used for seismic data reconstruction by Duijndam
and Schonewille (1999) using B - spline and Gaussian window functions, but Kaiser Bessel
window has never been tested. Proposed Kaiser Bessel based Kernel balances between the
computational resources and reported to give better resultthan Gaussian and B- Spline
window based kernels, and already been tested in Medical imaging (Knopp et al., 2007).

THEORY

In the case of non-uniform sampling, direct discretizationof the forward transformation
corresponding to the irregular grid at hand will be highly erroneous. A Better approach
will be taking the exact inverse transform from the regularly sampled domain to irregularly
sampled domain and use this as a forward model in an inverse problem. The general form
can be written in term of matrix vector notation as

Am = d, (1)

where,Amxn is the forward model, d is the observation vector in time domain consist of
true values and m represents Fourier components. Observation vector is irregular sampled
spatial value in case of Seismic data reconstruction and finally x is a unknown solution. In
Band limited approach, it will always be a over determined problem. General least square
solution for such approach will be

m = (A∗A)−1
A∗d, (2)

where A is mapping matrix from one domain to another domain, and A* is its complex
conjugate transpose.

This is basic the approach for hyperbolic Radon transform and linear Radon transform
by Thorson and Claerbout (1985). If desired, data estimated in the Fourier domain can be
transform back to a regular grid in the spatial domain using inverse fast Fourier transform.
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Discrete Fourier Transform

The general form of the forward discrete Fourier transform in case of the regular sam-
pling can be defined as

P̂m =
N−1
∑

j=0

Pje
−2πinm/N (m = 0, · · · , N − 1), (3)

wherePm are the Fourier coordinates, andPj is the input signal.

Assuming the regular sampling the transform can be easily inverted as,

P̂j =
N−1
∑

n=0

P̂me2πinm/N . (4)

Here,e2πinm/N is known as the data mapping kernel. All entries of this data mapping kernel
are orthogonal to each other in case of regular sampling.

The forward Discrete Fourier transform (DFT) for regularlysampled seismic data (Dui-
jndam et al., 1999) can be written to include sample spacing as

P̂ (kx, ω) = ∆x

N−1
∑

n=0

P (n∆x, ω) e−ink∆x, (5)

whereω is the temporal frequency,∆x is sample interval in spatial domain andkx is the
wave number. Regular sampling in the spatial domain enforces periodicity.

In Equation 5, to avoid aliasing after the Fourier transform, it is required to keep∆x

small. For avoiding aliasing and maintaining economics of seismic survey, it is always
better to restrict the sampling based on Shannon sampling theory. DFT is the mapping of
N point signal(x1, x2, · · ·xN) in to N Fourier coefficientsXK . In matrix vector form the
DFT can be denoted as

X = DFT ∗ x, (6)

where DFT is the Fourier kernel. From equation 6,DFT is a Fourier Matrix that mapsN
dimensional vector x in to anotherN dimensional vector X. To transform back to the spatial
domain, we needDFT−1, which is inverse DFT Matrix. The Inverse discrete Fourier
Transform is defined by

P (x, ω) =
∆k

2π

m=M
∑

m=−M

P̂ (m∆k, ω) e−im∆kx, (7)

where∆k is the sampling interval in Fourier domain,N = 2M + 1, and∆k = 2π
N∆x

. The
matrix vector form of Equation 7 is

x = DFTH ∗X, (8)
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whereDFTH is the Hermitian adjoint of the DFT. Since sampling is regular, DFTN×N is
orthogonal, which implies

DFTH ∗DFT = NIN , (9)

whereIN is anN dimensional identity matrix. Equation 9 shows that DFT is anorthogonal
transformation, and that the inverse is computed using a Hermitian operator. The cost of
invertingN×N Hermitian operator isO(N2) instead ofO(N3). Cost is further diminished
toO(NlogN)using the fast Fourier transform (FFT) instead of matrix vector multiplication.
However, FFT can’t be applied in the case of irregular sampling

DFTH ∗DFT 6= NIN , (10)

Equation 10 shows that when sampling is irregular, its not simple to invert the DFT matrix,
since columns of the DFT matrix are no longer orthogonal. Theapproximation converging
closest to DFT for irregular sampling is the weighted Fourier Transform (DFT)

P (m∆k, ω) =
N−1
∑

n=0

P (xn, ω)ejm∆kxn∆xn, (11)

where∆k is the regular sample interval in Fourier domain.xn represents the positions
of the irregular nodes, and∆xn is the weighting factor which depends upon the distance
between the samples in spatial domain according to

∆xn =
xn+1 − xn−1

2
, n = 0, · · · , N − 1. (12)

The DFT in Equation 11, however, is not a unitary transformation, as it fails the dot prod-
uct test (i:e the dot product of two vectors before the transformation should be equal to
dot product after the transformation). For this reason, it is not possible to reconstruct the
original domain by a simple inverse FFT (IFFT).

Feichtinger et al. (1995) suggests an approach to handle theirregular grid problem by
putting a band limitation restrain on the data. If∆k is the sampling interval in Fourier
domain than the data is band limited to between[−M∆k,M∆k]. Accordingly, Equation
4 for N irregular samples(x0, x1 · · · , xN−1) can be denoted in matrix vector notation as

y = Ap̂, (13)

where,
yn = P (xn, ω), (14)

yn represents the values on the non-uniform grid,

p̂m = P̂ (m∆k, ω), (15)

and

Anm =
∆k

2π
e−jm∆kxn , (16)

wherep̂m is the solution for the linear least square problem, andAnm is the data mapping
kernel. However, real data is never band limited; there willalways be some spatial frequen-
cies above the restricted bandwidth. It can be treated as noise in the forward model and can
be included in Equation 13 as

y = Ap̂ + Noise. (17)
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Further,p̂ can be estimated by

p̂ =
(

AHWA + k2I
)−1

AHWy, (18)

whereW is a weight matrix,k is the stabilization factor, andAH is the complex conjugate
transpose of A. From equation’s 14, 15, and 16, the last term of equation 18 can be written
as

AHWy =
∆k

2π

N−1
∑

n=0

P (xn, ω)ejm∆kxnWnn, (19)

whereWnn = ∆xn. Here, except for constant∆k
2π

, equation 19 is equivalent to equation 11,
which represents weighted DFT. Estimated Fourier spectrump̂ can be transformed back to
the spatial domain by direct inverse transform. The DFT is a major computational task for
the forward transform, as computational complexity of the DFT isO(N2). Many inversion
schemes that are use in data processing Sacchi et al. (1998);Sacchi and Ulrych (1996) rely
on the solution of normal equations the right hand side of which is DFT.

The Kaiser Bessel kernel is a solution that can replace slow DFT with faster algorithm.
Fast algorithm will make many algorithms where DFT is used aspractical for industry.

METHODOLOGY

Methodology is divided in to two categories Forward problemand Inverse Problem.
Both is calculated using NFFT Kaiser Bessel Kernel. Methodology can be divided in Fol-
lowing steps

1. AHWy = b, calculates direct forward transform using NFFT kernel.

2. U = (AHWF + k2I) is the deconvolution operator using NFFT and adjoint NFFT
kernels.

3. UÃ = b, calculates least squares system forp̃.

4. y = IFFT (p̃) calculates direct backward transform on regular grid usingFast IFFT.

Forward problem

The non-uniform Fast Fourier gridding algorithm can be numerically expressed in fol-
lowing steps: gridding, FFT, deconvolution. The gridding is obtained by convolution of the
sampled signal values with a convolution function followedby re-sampling onto a Carte-
sian grid. Convolution with Kaiser Bessel functionkb(x) is carried out to make the signal
approximately band-limited according to

pg(m) = kb(x) ∗ p(x), (20)

wherepg(m) is the result of spatial convolution. Equation 20 can be written as multiplica-
tion in the Fourier domain as

Pg(m) = KB(m)× P (m), (21)
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wherePg(m) is the Fourier spectrum ofpg(m) in Fourier domain. For efficiency Kaiser
Bessel need to be truncated, thus generating n samples forpg(m) where

n = −int

(

q + 1

2

)

+ 1, · · · , N + int

(

q + 1

2

)

− 1, (22)

and whereint(x) truncates to the largest integer smaller thanx for x ≥ 0. The algorithm
is initialized atpg̃(n) = 0, where subscript̃g indicates we apply a Kaiser Bessel filter and
keep updating by summation of theN shifted filters. This summation ofN shifted filter
can be given by

pg̃(n)← pg̃(n) + ∆xpnkb(n∆x− xn). (23)

Equation 23 for spreads the irregular samples on to a regulargrid. The samplingpg̃(n) =
∆xp1(n∆x) is similar to equation 24 in Fourier domain which can be written as

Pg(m) =
∑

I∈Z

P (m + IN)KB(m + IN). (24)

WhenPg(m) is broadband, aliasing will occur whenKB(m + IN) 6= 0 for anyI 6= 0.
It is suggested by (Duijndam and Schonewille, 1999) that to remove the aliasing, there is
requirement of making the signal periodic according to

pg̃(n) =
∞

∑

I=−∞

pg̃(n + IN), n = 0, 1, 2, · · · , N − 1, (25)

wherepg̃(n + lN) = 0 is outside the interval given by equation 22. Convolution of the
signal followed by the discrete transform can be represented by

Pg(m)FFT =
N−1
∑

n=0

pg̃(n)ej2πnm/N , m =
N

2
, · · · ,

N

2
− 1, (26)

wherePg(m)FFT is the spectrum obtained using the FFT. Finally correction for convolution
is carried out by deconvolution in the Fourier domain according to

P (m) =
Pg(m)FFT

KB(m)
, (27)

whereP (m) is the approximate spectrum, andKB(m) is the spectrum obtained by equa-
tion’s 11 and 27.

Window function

NFFT algorithms are based on convolution of sampled signal with a band limiting filter,
and several different names are indicated in the literature. Jackson et al. (1991) discuss
these algorithms in terms of image processing and refer to them as griding algorithms.
Beylkin et al. (1991) proposes a similar as the irregular Fourier transform algorithm where
convolution with B-spline is carried out to make the signal approximately band limited.
Jackson et al. (1991) discuss several forms of filters which can be used, and a truncated
Gauss filter is introduced by Dutt and Rokhlin (1993).

Most of the recent development in these algorithms deals with optimization of above
windows functions, but still Kaiser Bessel window functiongives best result (Knopp et al.,
2007).
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Kaiser Bessel window function

Prolate Spheroidal wave function (PSWF) have finite time support and maximum con-
centration of Energy within a given bandwidth. The closet window function which provides
good approximation is Kaiser Bessel function. The PSWF is theeigenfunction having the
largest eigenvalue of the operation of repeatedly low-passfiltering a function and band-
limiting it. It is difficult to compute but the Kaiser-Besselfunction is a close approximation
of the PSWF. For a given filterq∆x and Bandwidth B, the least amount of energy outside
desired passband i:e minimization of

∫

|m|>B
|g̃(m)|2dm

∫ ∞

∞
|g̃(m)|2dm

. (28)

The Kaiser Bessel function can be represented as Knopp et al.(2007)

g(x) =
1

q∆x
Ioβ

√

1−

(

2x

q∆x

)2
−q∆x

2
≤ x ≤

q∆x

2
, (29)

whereIo is the zeroth order modified Bessel function of its first kind.In Frequency domain,
its Fourier transform is used for deconvolution purpose. Fourier domain representation of
Kaiser Bessel function

g̃(m) =
sin(

√

π2(q(∆x)2m2 − β2)
√

π2(q(∆x)2m2 − β2
. (30)

Figure 2a represents Kaiser Bessel window for various valueof β in spatial domain.β is
the parameter for Kaiser window, which gives control over trade off between mainlobes
width and sidelobes level. Largeβ gives wider main lobe but lower side lobes as shown
in Figures 2a and 2b. For maximum frequency resolution, always narrowest main lobe is
preferred. Jackson et al. (1991) carried out detailed analysis of the various convolution
functions leading to the approximation for the prolate spheroidal function. Different value
of β is suggested for 30 in (Jackson et al., 1991). For all calculation purpose value of q is
taken as6 and value ofβ = 2. These values are taken as a optimum by Knopp et al. (2007).

Inversion

In general the linear system we will solve in this problem, sothe solution can only be
approximated up to a residual of the form

r = y − Ap̃. (31)

In order to compensate for the missing samples it is important to incorporate a weight
function W,W > 0 and the problem becomes a

argmin||y − Ap̃||2W =
M−1
∑

j=0

wj|yj − f(xj)|2→ min, (32)

where W =diag(wj)j=0,··· ,M−1.
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EFFICIENCY

The problem of regularization in the least squares NFFT framework is divided in two
categories: forward method and inversions. The Direct forward transform is been computed
using NFFT which isAH and for the inversion purpose operatorU = (AHWA + k2I) is
computed. For computing the inversion operator, the forward Fourier kernelAH and its
adjointA is already computed using NFFT. It has already been that NFFTgive a computa-
tional advantage over DFT. Further more iterative solutionof 32 has been analysis in detail
in large number of papers (Feichtinger et al., 1995). The adaptive weights conjugate gradi-
ent Toeplitz method (ACT) applies the conjugate gradient method to the weighted normal
equation which can be written as

AHWAp̃ = AHWy. (33)

SYNTHETIC TESTS

Purpose of any reconstruction algorithm can only be solved if it is tested as general
algorithm. Its important stress that not all the methods arecapable of dealing with regular as
well as irregular sampling. In fact, most of the Parametric signal reconstruction technique
fails to deal with irregular sampling (Naghizadeh and Sacchi, 2008b,c, 2009b; Hennenfent
and Herrmann, 2008, 2007).

Synthetic 1D examples

Figure 1 demonstrates effect of the sampling on seismic data. Synthetic hyperbolic
events (Figure 1a) and its Fourier domain representation (Figure 1b). In case of regular
decimation (Figure 1d), strong coherent noise (Figure 1d) will be created due to acquisi-
tion. Noise is highly structured with strong amplitudes. Most of the regular interpolation
techniques is based on the idea of using non aliased low frequency and de-alias higher
frequency. Abma and Kabir (2005) pointed out that most interpolation method based on
regular sampling whereas irregular sampling generate weaknoise. In irregular sampling
(Figure 1e), Power is focused at few Fourier coefficients andnoise is spread whole trans-
form domain (Figure 1f). Sparser the signal, straightforward will be the reconstruction.

For examining the performance of Kaiser Bessel NFFT algorithm with various sam-
pling operators, we created a simple sin signal in Figure 3 aswell as another signal in
Figure 4 which is composed of two harmonics. Detailed analysis with varying gaps, ex-
trapolation, random sampling and uniform sampling is carried out.

For 1 dimension examples we will take case of simple sinusoidal with 256 samples, at
sampling rate of 10ms. Top panel will show the Decimated spatial domain and panel below
it is reconstructed missing samples. Figure 3a shows the the30 % randomly decimated
signal and reconstructed sinusoidal. Even with 50% randomly decimation in Figure 3b
algorithm seems to do pretty well. On implementing high decimation sampling functions
of 60% in Figure 3c results are good, all missing samples havebeen successfully recon-
structed. On going further decimation in Figure 3d due to lost of the Fourier coefficients its
is not able to recons truct the same amplitude back, except atone point where it is missing
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most of the samples.

Gaps

In the previous test, it is observed that algorithm fails some time when more number of
Fourier coefficients are missing from a single location. This behaviour is further tested in
gap test. In this different gaps will be created by taking more number of Fourier coefficients
from a single location. Algorithm is tested for all size of gaps. Input signal composed of
two harmonics , with sampling interval of 10ms for 256 samples. In the case of small gaps
in Figure 4b, reconstruction is perfect. Even in the presence of large gaps in Figure 4d,
algorithm works effectively.

Extrapolation

Extrapolation test is done for the reconstruction algorithm, purpose of algorithm is to
extrapolate the missing samples. Extrapolation is been tested on combination of two har-
monics for two categories, small gaps and large gaps in Figures 4e and 4g. Reconstructed
extrapolated harmonics can be seen in Figures 4f and 4h. Algorithms can easily handle
the stationary harmonics with large gaps. Algorithm can also be applied on simple non
stationary harmonics when taken small windows, and events are assumed to be stationary.

SYNTHETIC 2D EXAMPLES

In the case of 2D data reconstruction, the Fourier reconstruction is iterative on each fre-
quency slice in fk domain. NFFT least square will be applied on each frequency slice, with
iteratively moving to next slice. In Figure 5, there are three seismic events with different
dips and amplitudes. The seismic wavelet is Ricker wavelet with peak frequency of 50 Hz.
Sampling rate for seismic data acquisition is 4ms. Figure 5 is the an original synthetic sec-
tion. Figure 6 represents Fourier domain representation for original section. Before testing
algorithm for heavy decimation operators, its been tested for 10% random decimation in
Figure 6. NFFT Least squares works perfectly in Figures 5 and6 for the small random
decimation.

Randomly decimated Dipping Events

Random sampling in the spatial domain (Figure 7a) can resultin low amplitudes artifact
like in Figure (7c) along with the original Fourier events. The artifacts are the resultant of
random sampling operator which is50% resultant due to decimation in original data in
Figure 7a. Reconstructed data in Figure 7b in case of50% random decimation is as good
as original. Figure 7b proves that algorithm works for the seismic section with half of the
missing samples. Even Fourier domain in Figure 7c shows all the energy concentrated on
the dipping events, with no energy getting dissipated.

Further moving to higher decimation of80% in 7e low amplitudes artifacts are more
dominant. Along with the dominant artifacts, aliasing for the dips can be seen in Figure
7g. Noisy artifacts are observed in Figure 7f as compared to Figure 7f, its because of
the big gap in Figure 7e. It was seen before that algorithm works for big gaps in case
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of simple harmonics in Figures (4b, 4d), but it is effective even in case of linear dipping
events. Its important to test when algorithm fails for knowing its limitation. Therefore final
data is tested using random sampling operators of80% decimations in Figure7f. Figure
7e shows80% decimated data, with its Fourier domain in Figure 7g. It should be notice
that Fourier domain of80% decimation in Figure 7g has more aliased events than with
50% decimation, its again due to the presence of more gaps in the decimated section in
Figure 7e as comparison to50% decimation in Figure 7a. Algorithm started to fails with
80% decimation as seen in reconstructed section in Figures 7f, there are low amplitudes
artifacts in the recovered Fourier domain (Figure 7h) as well. Events in recovered section
are still well defined (Figure 7f) but with the high amplitudenoise in the section. Both
reconstructed, t-x domain and f-k domain in Figure 7f and Figure 7h demonstrates the
limitation of the algorithm.

Uniform decimation for dipping Events

In order to generalize the algorithm for the interpolation,we will be testing it with the
uniformly decimation operators. Parametric reconstruction technique seems not to perform
very well, when implemented on the uniformly decimated seismic section. In case of uni-
form decimation, replicas of events are created in the Fourier domain which is difficult to
separate. But with the band-limiting approach like Least square NFFT, replicated spectrum
of event can be isolated in the low frequency of data. It is because of the higher power
spectrum at low frequencies. Uniform decimation factors of2 in Figure 8a and 4 in Figure
8e are implemented.

2D Synthetic section is decimated by a factor 2 in Figure 8a. Exact replicas of planar
and dipping events are created in FK domain of Figure 8c. Reconstructed data in Figure
8b and its Fourier domain in Figure 8d is recovered. On increasing the decimation factor
to 4 in Figure 8e, we have more replicas of planar and dipping events in Figure 8h as
compare to 8d. But the recovered data in Figure 8f has well define events like in Figure 8f,
setting reputation of algorithm to work on uniformly decimated data as well. Further for
uniform sampling, like random sampling there is need of minimum number of samples so
that algorithm can recover the data.

Hyperbolic events

In case of hyperbolic events in Figure 9, data can always be windowed thus assuming
that events are linear. But, we already seen the applicationof LS-NFFT on linear events.
Applying LS-NFFT on the decimated data without windowing inFigure 9a. In upper part
of reconstructed data in Figure 9b apexes are successfully reconstructed. But still some
high amplitude noise is observed.

CONCLUSIONS

Low computational cost of LS-NFFT make it a robust and practical algorithm. This
method successfully reconstruct the missing samples. Thisalgorithm is effective both in
case of random sampled data as well as uniform sampling. Algorithm can be easily ex-
tended to higher dimensions, and it will prove to be cost effective even for it. Though it
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is able to reconstruct the curved events. But a good windowing strategy which enforces
linearity for curved events will sure provide better results in that case. NFFT and Adjoint
NFFT is a strong tool and can be use as a effective tool in otherseismic processing steps.
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FIG. 1: Effect of sampling on Seismic data. a) Hyperbolic events in spatial domain. b)
Fourier domain for Hyperbolic events. c) Uniform decimation for Hyperbolic events. d)
Fourier domain for uniformly missing samples. e) Random decimation for Hyperbolic
events. f) Fourier domain for Randomly missing samples.
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FIG. 2: Kaiser Bessel filter. a) Kaiser window in spatial domain. b) Kaiser window in
Fourier domain.
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FIG. 3: Reconstruction for Harmonics. a) Harmonics with 30 %decimation. b) Harmonics
with 50 % decimation. c) Harmonics with 60 % decimation. d) Harmonics with 80 %
decimation.
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FIG. 4: Reconstruction and extrapolation of Gaps. a) Small size gaps. b) Reconstructed
small gaped harmonic. c) Medium size gaps. d) Reconstructedmedium gaped harmonic.
d) Small side gaps. e) Extrapolated small gaps. f) Big side gaps. g) Extrapolated big gaps.
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FIG. 5: Synthetic seismic data. a) Synthetic original data.b) Missing traces section with
10 % decimation. c) Reconstructed traces for synthetic data.
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FIG. 7: Reconstruction of random sampled Seismic data. a) 50% Decimated data. b)
Reconstructed data for 50 % decimated data. c) Fourier domain for 50 % decimated data.
d) Fourier domain for Reconstructed data with 50% decimation . e) 80 % Decimated data.
f) Reconstructed data for 50 % decimated data. g) Fourier domain for 80 % decimated data.
h) Fourier domain for Reconstructed data with 80% decimation.
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FIG. 8: Reconstruction of uniformly sampled seismic data. a) Decimation by factor of 2. b)
Reconstructed data. c) Fourier domain for decimation by factor of 2. d) Reconstructed data
in Fourier domain for factor of 2 decimation. e) Decimation by factor of 4. f) Reconstructed
data. g) Fourier domain for decimation by factor of 4. g) Reconstructed data in Fourier
domain for factor of 4 decimation.
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FIG. 9: Reconstruction of Hyperbolic events. a) Hyperbolicevents with 20 % uniform
decimation. b) Reconstructed Hyperbolic events for 20 % decimated data.

22 CREWES Research Report — Volume 22 (2010)


