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ABSTRACT 

As a continuation of earlier near-field investigations into homogeneous situations we 
expand our analysis to an inhomogeneous example. We show that depth locations of so-
called wrap-around points where spectral ratio method Q-estimates change from large 
negative values to large positive values are controlled by P-wave velocities and intrinsic 
Q-factors. A velocity-step model and Q-factors derived from these velocities by empirical 
equation are used to demonstrate near-field Q-factor recovery by inversion. Because VSP 
model data and forward models are computed with the same multi-interface Sommerfeld 
integral it is found that, in this noise-free situation where velocities and densities are 
assumed to be known exactly for the forward modelling step, Q-factors can be recovered 
exactly also. Even though this VSP model approach is a simplification in many respects it 
does include near-fields, far-fields and geometrical spreading in the analysis. 

INTRODUCTION 

The near-field of a seismic source can cause significant Q-estimation errors when the 
spectral ratio method is employed (Haase and Stewart, 2008). Figure 1 shows near-field 
log-magnitude spectra for the depth range from 15m to 61m computed with the 
Sommerfeld-integral (Figure 5 of the 2008 Report); note that relative amplitudes are 
retained by global scaling to zero dB. The parameters for this earth model are 

   Vp = 2000m/s, 

   Vs = 879.88m/s, 

    ρ  = 2400kg/m3 and 

   Qp = 100. 

Figure 2 demonstrates what the spectral ratio method “sees” (Figure 6 of the 2008 
Report); all spectra are equalized to their maximum amplitudes (zero dB scaling applied 
individually). The down going wave in Figure 2 appears to gain high frequency strength. 
This implies negative Q-factors. For completeness, far-field log-magnitude spectra with 
zero dB scaling applied individually are given in Figure 3 (Figure 12 of the 2008 Report). 
At 61m depth, and below, amplitudes decay with depth and frequency as expected by the 
spectral ratio method which implies positive Q-factors. A near-field region spectral ratio 
can be seen in Figure 4 (Figure 7 of the 2008 Report); frequency dependence of Q-
estimates is evident. Figure 5 finally shows the depth dependence of spectral ratio method 
Q-estimates (Figure 9 of the 2008 Report); the near-field region is characterized by 
negative Q-factors and the model Q-factor of 100 is approached deeper into the far-field 
region independent of the estimation frequency range. Large Q-factors are caused by 
spectral ratios in the transition region between near-field and far-field where the log-
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magnitude spectra in Figure 2 are almost parallel. Of particular interest is the wrap-
around look at the depths where the quality factor Q changes polarity. 

The results reviewed above are obtained for a homogeneous model. A more realistic 
inhomogeneous situation is investigated in this report. 

THE INHOMOGENEOUS NEAR-FIELD MODEL 

A first indication of spectral ratio method Q-estimates in inhomogeneous media is 
given in Figure 6. This real-data heavy oil sand Q-estimation example (Ortiz-Osornio and 
Schmitt, 2008) appears to suffer from wrap-around effects similar to the constant 
velocity case of Figure 5. The depth scale of Figure 6 seems to confirm the expectation of 
near-field effects in this situation. Details of these measurements are not known but the 
presence of several wrap-around features suggests that wrap-around points can be 
repeated at increasing depths as velocities increase. What, then, is the velocity 
dependence of these wrap-around points? To answer this question the near-field spectral 
compensation introduced by Haase and Stewart (2008) is utilized. Normalizing by near-
field multiplier magnitudes 

                                               𝑀୬ୣୟ୰ = ට1 + V୮ଶ/(ω z ) ଶ                                            (1) 

leads to a modified spectral ratio which is a first order approximation: 

                                        

𝑙𝑛
⎣⎢⎢
⎢⎢⎡𝐴(𝜔)௭ା∆௭/ඨ1 + ( 𝑉௣𝜔(𝑧 + ∆𝑧))ଶ

𝐴(𝜔)௭/ට1 + ( 𝑉௣𝜔𝑧)ଶ ⎦⎥⎥
⎥⎥⎤ = − 𝜔2𝑄𝑉௣ ∆𝑧 

                                                                                                                                         (2)   

Equation 1 shows that relative near-field strength is controlled by velocity, depth and 
frequency. Near-field strength is diminished by increasing frequency and increasing 
depth but an increase in velocity has the opposite effect by boosting it. At wrap-around 
points the slope in Equation 2 is zero because the amplitude ratio is independent of 
frequency; amplitude spectra can still be functions of frequency but their ratios are not at 
these depth locations. Assuming that, for wrap-around points, amplitude ratios are the 
same at different frequencies we derive from Equation 2 
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∆𝑧 (𝜔ଵ − 𝜔ଶ)2𝑄𝑉௣ + 12 𝑙𝑛 ൦ 1 + ( 𝑉௣𝜔ଵ𝑧)ଶ1 + ( 𝑉௣𝜔ଵ(𝑧 + ∆𝑧))ଶ
1 + ( 𝑉௣𝜔ଶ(𝑧 + ∆𝑧))ଶ

1 + ( V୮ωଶz)ଶ ൪ = 0 

                                                                                                                                    (3) 

When Vp, Q, Δz, ω1 and ω2 are given, trial solutions for a range of depth values z can be 
computed from Equation 3; the approximate wrap-around location in depth is indicated 
by the trial solution zero-crossing. Repeating these computations for a range of velocities 
and Q-factors leads to the curves given in Figure 7. We see that wrap-around point 
locations are shifted to larger depths with increasing velocities and increasing Q-factors 
in homogeneous situations. On inspection of the near-field multiplier given in Equation 1 
this velocity dependence makes intuitive sense. 

Next we investigate the velocity step model shown in Figure 8. Velocities are seen to 
increase in the near-surface region but are constant below about 100m depth at 2400m/s. 
Model Q-factors for the constant velocity depth region below about 100m are also 
assumed to be constant at Q = 150. An empirical equation of Waters (1978) is utilized to 
compute P-wave Q-factors from P-wave velocities in the near-field region above 100m 
depth according to 

                                                  𝑄௭ି∆௭ = 𝑄௭ ቂV౰ష∆౰V౰ ቃଶ
 .                                                  (4) 

Q-factors computed with Equation 4 for the near-field velocity model of Figure 8 are 
plotted in Figures 9 and 10 for comparison purposes. 

When the spectral ratio method of Q-estimation is applied to VSP-traces computed 
with a multi-interface Sommerfeld integral (Haase, 2008) for the velocity step model 
introduced above, the Q-factors displayed in Figure 9 are obtained. Model Q-factors are 
clearly not recovered. In comparing the model result of Figure 9 to real-data spectral ratio 
method Q-estimates shown in Figure 6 a similarity in multi wrap-around behavior is 
observed. As noted previously, the spectral ratio method is a far-field method and, 
depending on relative near-field strength, significant estimation errors can be present. A 
spectral compensation approach for homogeneous near-fields (Haase and Stewart, 2008) 
does not work for this inhomogeneous situation. The same multi-interface Sommerfeld 
integral that is used to generate VSP-traces for the above stepped velocity model is used 
next to recover Q-factors by inversion. 

Q-ESTIMATION FOR THE INHOMOGENEOUS NEAR-FIELD MODEL 

From using the Sommerfeld integral to compute VSP-traces for a 1D-earth model, it is 
only a short step to an inversion algorithm for Q-factors when the assumption is made 
that velocities and densities are known. According to Cheriff’s Encyclopedic Dictionary, 
inversion means 

“deriving from field data a model to describe the subsurface that is consistent with the     
data”. 
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Field data in this situation means the VSP-traces generated from the velocity/density/Q 
model. Q-factors are the only unknowns when velocities and densities are assumed to be 
given. For every depth step, forward model VSP-traces are computed with Q-factors in 
the range from 10 to 150 as a first attempt to find Q(z). The presumed correct answer is 
determined by the least square difference between data and forward model at every depth 
and plotted in Figure 10. Even though far from ideal, this first attempt is a substantial 
improvement when compared to the spectral ratio equivalent in Figure 9. Squared 
differences are computed in the frequency domain, one frequency point at a time for a 
predetermined bandwidth, by summing the squared differences of the real parts and the 
imaginary parts. Figure 11 shows the result of an exhaustive search at two adjacent depth 
levels across the first (shallowest) velocity step. Clearly, the correct model Q at the 
minimum location could be recovered in this ideal model situation but at considerable 
computational cost. Parabolic assumptions are valid only in the immediate vicinity of the 
minimum and the challenge in this situation is to find a starting point within this 
parabolic range. When the differences between data and model are summed directly 
(without squaring) and separately for real and imaginary parts of the corresponding 
frequency points the curves in Figure 12 result. The sums of the real parts and of the 
imaginary parts of the differences are zero when the trial Q approximately equals the 
model Q. Departures are caused by the assumption of effective Q-factors below the 
current layer. For the computation of the black curves in Figure 12 the current layer is at 
z = 44m depth and for all layers deeper than 44m Q = 100 is assumed; the blue curves at 
z = 42m are exact because there are no discontinuities shallower than 44m and the down-
going wave at z = 42m is undisturbed in this model situation. The advantage of the 
hyperbolas in Figure 12 lies in the fact that, with only three function evaluations, curves 
can be fitted and initial Q-estimates obtained. The coefficients of 

                                                𝑦 = 𝑎 + ௕௫ + 𝑐/𝑥ଶ                                                              (5) 

are determined from the sums computed at trial Q-factors of 10, 40 and 160 (separately 
for real parts and then imaginary parts) and the initial Q-estimates are calculated from 
Equation 5 by setting  y = 0 and x = Qz giving 

                                   𝑄௭ଵ,௭ଶ = − ௕ଶ௔ ± ට( ௕ଶ௔)ଶ − ௖௔     .                                                (6) 

The average of Qz-real and Qz-imaginary is used as input for the next iteration. Assuming that  

                                   𝑄௜௡௜௧ = (𝑄௭ି௥௘ + 𝑄௭ି௜௠)/2                                                       (7) 

is within parabolic range of the true minimum we make two more function evaluations at 
Qinit-ΔQ and Qinit+ΔQ with ΔQ set to 0.1 and determine the minimum of the parabola; 
only if the summed squares at Qinit-ΔQ and Qinit+ΔQ are at least moderately asymmetric 
do we make a second parabolic pass to find the optimum Q. Figure 13 compares Qinit as 
obtained from the hyperbolic pass and Qoptimum as obtained from the parabolic pass (or 
passes) to the original model Q. The Q-estimation error of the hyperbolic fit is seen to 
increase with depth but the remaining error after additional parabolic correction is 
sufficiently small even for this model situation of stepped velocities. 
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CONCLUSIONS 

Based on near-field multiplier normalized spectral ratios it is shown that locations in 
depth of large negative and positive spectral ratio method Q-estimates with wrap-around 
appearance are controlled by P-wave velocities and intrinsic Q-factors; wrap-around 
depths increase with velocity increases and also with intrinsic Q-factor increases.  

A velocity-step model is introduced to provide multiple wrap-around points and test 
Q-recovery techniques. We show that model Q-factors can be recovered exactly when 
both, VSP model data and an exhaustive-Q-search forward model are generated with the 
same multi interface Sommerfeld integral and assuming all velocities as well as densities 
(but not Q-factors) are known for the forward modelling step. In this approach we are 
seeking to minimize the sum of squared differences between data and forward model. 
Computational efficiencies can be gained by hyperbolic fitting of the sum of differences 
(without squaring) to obtain an initial guess for the Q-factor as a function of depth that is 
within parabolic range of the sum of squared differences minimum. Results for a real data 
situation are expected to be less than perfect because, firstly, velocities and densities are 
not exactly known and, secondly, field data is noise contaminated.  
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FIG.1. Near-field log-magnitude spectra for the depth range from 15 m to 61 m computed with a 
Sommerfeld-integral algorithm (global scaling to zero dB with relative amplitudes retained).

FIG.2. Near-field log-magnitude spectra with all spectra equalized to their maximum amplitudes 
(zero dB scaling applied individually. The down going wave appears to gain high frequency 

strength. Note the vertical scale differs from Figure 1. 
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FIG.3. Far-field log-magnitude spectra with zero dB scaling applied individually. 

FIG.4. Straight line fit to log spectral ratios between depth levels 15m and 38m. 
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FIG.5. Apparent near-field frequency dependence of Q. Note the polarity change of Q. 

 
FIG.6. Heavy oil sand Q-factors [Ortiz-Osornio and Schmitt, 2008: a) the traditional spectral ratio 
technique, and b) their inversion algorithm]. 
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FIG.7. Wrap-around depth as function of velocity and Q-factor. 

 

FIG.8. Vp and Vs versus depth for stepped-velocity near-field VSP model. 
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FIG.9. Spectral ratio method (SRM) Q-estimate compared to stepped velocity model Q. 

 

FIG.10. Inversion Q-estimate compared to stepped velocity model Q. 
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FIG.11a. Sum of squared differences between data and forward model (linear scale). 

 

FIG.11b. Sum of squared differences between data and forward model (log scale). 
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FIG.12. Sum of differences between data and forward model. 

 

FIG.13. Q versus depth for stepped-velocity near-field VSP model. 


