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ABSTRACT

Vertically fractured media are commonly described by an HTI (horizontal transverse
isotropy) model, which is a degenerate case of the more general orthorhombic symmetry.
To study the seismic effects of such a medium, a model from phenolic LE material, which
exhibits the orthorhombic symmetry, was constructed. To characterize the anisotropy of the
phenolic model the set of nine elastic constants is determined. Elastic constants are most
often found from measurements of the phase velocity in a variety of directions, but finding
this plane-wave velocity is problematic. Instead of the phase velocity, group velocity, which
can be measured easily and more reliably, is used. Scaled physical modeling experiments in
the laboratory in which ultrasonic elastic waves are propagated through the phenolic model
are used to measure the P- and S-wave group velocity in different directions in the principal
planes. A linear expression between the P-wave group velocity in an arbitrary direction and
elastic constants, has allowed us to estimate all nine elastic constants. Although actually
slightly orthorhombic, the phenolic model exhibits approximate HTI symmetry requiring
only five elastic constants to characterize the medium.

INTRODUCTION

Both academia and industry have tried to use laboratory measurements including ul-
trasonic wavespeed measurements or physical modeling scaled seismic data, for determi-
nation of the elastic constants (stiffnesses, Cij) of anisotropic solids. Elastic constants
characterize the anisotropy of a material which is essential when processing seismic data.
When conventional seismic processing does not take anisotropy into account the earth is
poorly imaged (Vestrum et al., 1999) leading to erroneous interpretations of the structure
of the earth and a lower likelihood of finding oil and gas.

Elastic constants of layered rocks can be measured using the pulse through transmis-
sion technique on sets of cylindrical cores cut at particular angles of 0◦, 90◦, and 45◦ to the
layering to determine elastic constants of the orthorhombic material, as employed in the
work of a number of researcher (e.g., Cheadle et al. (1991); Dellinger and Vernik (1994);
Vernik and Nur (1992); Lo et al. (1986); Jones and Wang (1981)). In this method, trans-
ducers are attached to the flat ends of the cores and the firstbreak traveltimes of P, SV, and
SH-waves are measured. Using the relation between the phase velocity and elastic con-
stants, the set of orthorhombic elastic constants are fit to the results. Every and Sachse
(1992) used a least-squares fitting procedure to obtain combinations of elastic constants
(C23 + 2C44), (C13 + 2C55), and (C12 + 2C66) from the P-wave phase velocities mea-
sured in a number of non-symmetric directions. Mah and Schmitt (2001) employing the
τ − p transform, measured the phase velocities in a variety of directions in an orthorhom-
bic material to determine the nine elastic constants. Mah and Schmitt (2002) extended
their method to determine the complete set of 21 elastic constants in a general anisotropic
material, while assuming no a priori information about the symmetry of the material or
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orientation of the summery axes. In the above mentioned experiments, the essential as-
sumption is that the recorded firstbreaks represented phase velocities. However, the phase
(plane-wave) velocities are sometimes difficult to measure experimentally. In the trans-
mission experiment, traveltime measurements yield the phase velocity if the transducers
are relatively wide compared to their separation, or the group velocity if the transducers
are very small compared to their separation (Dellinger and Vernik, 1994; Vestrum, 1994;
Auld, 1973). For an experiment with a source-receiver separation three times greater than
the transducer width, Dellinger and Vernik (1994) concluded that the experiments of this
kind should measure anisotropic phase velocity, not group velocity. The only possible way
to record phase velocity in a transmission experiment is to have the source and receiver
transducer width comparable to the source-receiver distance in order for the plane wave as-
sumption to be valid. Nevertheless, finding the phase (plane-wave) velocity is problematic;
due to the small size of sample there are rather large errors associated with picking the first-
break and consequently may result in phase velocity measurements with high error. Not
being able to measure phase velocities substantially complicates the determination of elas-
tic constants in pulse transmission measurements (Vestrum et al., 1999; Mah and Schmitt,
2001). With so much research done on this subject, experimentally determining the nine
independent elastic constants of the orthorhombic symmetry material remains challenging
(Mah and Schmitt, 2001). One approach to reduce the associated errors of elastic constants
is to measure the group velocity instead of the phase velocity.

In transmission experiments on a model with large enough dimensions, the measured
firstbreak determines the group velocity, which is not equal to the phase velocity except
for the principal directions. The group velocity, the velocity of energy propagation, is eas-
ier to measure and most likely to be found in an transmission experiment. Cheadle et al.
(1991) used the P-wave group velocity measured in the direction of 45◦ to principal axes to
determine the off-diagonal elastic constants. Their derivation for expressions relating non-
diagonal elastic constants to 45◦ group velocities is not mathematically correct. The calcu-
lated off-diagonal stiffnesses by Cheadle et al. (1991) differ from the stiffnesses that would
be calculated using their Thomsen anisotropy coefficients (ε, δandγ in Thomson (1986)).
In this paper we present a method to determine all nine elastic constants of the phenolic
LE material, that exhibits orthorhombic symmetry, using a set of group velocity measure-
ments. A linear expression derived by Daley and Krebes (2006) between the P-wave group
velocity in an arbitrary direction and elastic constants, has lead us to determination of all
nine elastic constants.

We have utilized a physical modeling experiment to measure the group velocity in
a number of different directions. The physical modeling is being carried out within the
CREWES project at the University of Calgary. Our velocity measurements, with the short-
est source-receiver distance more than six times the transducer’s width, represent the group
velocity in different directions. We implemented the acquisitions to measure the qP- and
qS-wave velocities for different directions in 3D. The qP- and qS-wave velocity measure-
ments along with the a linear expression between the qP-wave group velocity and elastic
constants are employed in a least-squares inversion to calculate all nine elastic constants.
In the experiment of determining all nine elastic constants, we found that the phenolic
LE material exhibits seismic anisotropy very close to transverse isotropy, and the P-wave
wavefront propagating through this material have the shape of an ellipsoid.
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ORTHORHOMBIC SYMMETRY

Orthorhombic symmetry with three distinct directions is one of the simplest realistic
symmetry systems for many geophysical problems. Fractures are commonly described by
horizontal transverse isotropy (HTI) which is just a degenerated orthorhombic symmetry
with only two distinctive directions. An orthorhombic model is characterized by three mu-
tually orthogonal planes of mirror symmetry. In the cartesian coordinate system associated
with the symmetry planes, the matrix of density normalized elastic constants (Aij = Cij/ρ)
for orthorhombic symmetry is written as in Voigt notation

Aαβ =


A11 A12 A13

A12 A22 A23 0
A13 A23 A33

A44

0 A55

A66

 . (1)

Describing an orthorhombic medium, nine independent density normalized elastic con-
stants are required, (Aii, i = 1 : 6) plus (A23, A13, A12). The velocity measurements related
to symmetry directions have simple expressions that allow particular elastic constants to be
obtained. For an orthorhombic solid, taking the symmetry axes of the sample as principal
axes, three P-wave velocities along principal axes determine the Aii(i = 1 : 3); three S-
wave velocities also along the principal axes determine Aii(i = 4 : 6). The off-diagonal
elastic constants (A23, A13, A12) can not be determined from P-wave velocity measurements
independently; they only can be determined in combination with other elastic constants.
Generally, experimental determination of elastic constants is facilitated by the relation be-
tween the phase and group velocity with elastic constants of a medium. The next section
discusses the phase expressions in terms of elastic constants.

Phase velocity expressions

The phase velocity, or wavefront velocity, is the velocity of seismic waves in the direc-
tion orthogonal to the wavefront. The theoretical equation for estimation of phase velocity
in a general anisotropic homogeneous medium comes with solving the Christoffel equation
(Schoenberg and Helbig, 1997; Tsvankin, 2001); see appendix A for derivation of phase
velocity for orthorhombic symmetry.

The first-order linearized approximation for qP phase velocity in a weekly anisotropy
medium is available in the literature for a range of disciplines of study (Backus, 1965;
Every and Sachse, 1992; Daley and Krebes, 2006). The linear expression for qP phase
velocity in geophysics discipline comes from the work of Backus (1965) as:

ρv2(~n) = cijklninjnknl (2)

where ρ is density, the cijkl is 3× 3× 3× 3 elastic constant tensor, v is the phase velocity,
and ~n = (n1, n2, n3) is a unit vector in the phase direction. Following Voigt’s recipe the
tensor cijkl will be represented by a 6 × 6 elastic constant matrix Cij . Equation (2) for
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orthorhombic symmetry reduces to (Every and Sachse, 1992; Daley and Krebes, 2006;
Helbig, 1983)

v2(~n) = A11n
4
1 + A22n

4
2 + A33n

4
3 +

2(A12 + 2A66)n
2
1n

2
2 + 2(A13 + 2A55)n

2
1n

2
3 + 2(A23 + 2A44)n

2
2n

2
3 (3)

Following Daley and Krebes (2006) adding and subtracting the quantity

n2
1n

2
2(A11 + A22) + n2

1n
2
3(A11 + A33) + n2

2n
2
3(A22 + A33), (4)

to equation (3), the following formula for phase velocity will result (Daley and Krebes,
2006),

v2(~n) = A11n
2
1 + A22n

2
2 + A33n

2
3 + E12n

2
1n

2
2 + E13n

2
1n

2
3 + E23n

2
2n

2
3. (5)

The quantities Eij are the linearized forms of the anellipsoidal deviation terms, defined as

E13 = 2(A13 + 2A55)− (A11 + A33), (6)

E23 = 2(A23 + 2A44)− (A22 + A33), (7)

E12 = 2(A12 + 2A66)− (A11 + A22). (8)

The E13, E23, and E12 are anellipsoidal deviations terms in y-z, x-z, and x-y plane respec-
tively. The exact anellipsoidal terms for the principal planes of x-z, y-z and x-y respectively
can be defined as follows:

Ẽ13 = (A13 + A55)
2 − (A11 − A55)(A33 − C55), (9)

Ẽ23 = (A23 + A44)
2 − (A22 − A44)(A33 − C44), (10)

Ẽ12 = (A12 + A66)
2 − (A11 − A66)(A22 − C66). (11)

To clarify the meaning of the anellipsoidal deviation terms, elliptic anisotropy must be
defined. Ellipsoidal anisotropy refers to the assumption regarding approximating the non-
spherical wavefront in anisotropic media to an ellipsoid. There are many arguments about
ellipsoidal anisotropy assumption in the geophysical literature. Thomson (1986) maintains
that elliptical anisotropy is an inadequate approximation most of the time. Schoenberg and
Helbig (1997) state that for transversely isotropic media, only the qSH wavefront is ellip-
soidal; the qSV wavefront is never an ellipsoid, and the qP wavefront is an oblate ellipsoid
(ellipsoid of revolution) if and only if the quantity Ẽ13, defined perviously, vanishes.

It can be shown mathematically that the exact anellpisoidal deviation terms,
(Ẽ13, Ẽ23, Ẽ12) are the area difference the wavefront and associated ellipse. There for the
exact anellipsoidal terms has the dimensions of squared velocity, so do their linear approx-
imations (E13, E23, E12).

The relation between the phase velocity and elastic constants, as in equation (3), has
been used by many researchers (such as Every and Sachse (1992)) to invert for off-diagonal
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elastic constants. However, the major problem is the fact that the measured velocity from
traveltime data is group velocity and not phase velocity. Unfortunately, group velocity di-
rection is not, in general, the same as the wavefront normal or phase velocity direction;
only for extreme directions (including vertical or horizontal propagation) does group ve-
locity equals phase velocity, see Appendix A. We can not make the simple substitutions
of group velocity into equation (3) for all directions. In fact the accurate way to invert
for elastic constants will be to use the relation between the group velocity and elastic con-
stants. In this paper, we aim to determine the phenolic LE elastic constants from qP and
qS travel time data based on the relation between group velocity and elastic constants. For
simplicity, the qP and two qS-waves is refered to as only P- and S-waves throughout this
report.

Group velocity

Figure 1 illustrates phase and group velocity in a homogeneous anisotropic medium.
The group velocity is aligned with the source-receiver raypath, while the phase velocity (or
slowness) vector is orthogonal to the wavefront. Group velocity, or ray velocity, determines
the direction and speed of energy propagation. The slowness vector, ~p, refered to as phase-
velocity slowness, is defined as ~p = ~n/v. Plotting the phase velocity of a given mode as

wavefront
ray

phase direction

source

FIG. 1: The wavefront and group (ray) and phase direction in a homogeneous anisotropic medium.

the radius-vector in all directions defines the phase-velocity surface. Likewise, plotting the
inverse value in the same fashion results in slowness surface. As discussed in Musgrave
(1970), Helbig (1983), and Červený (2001) the group velocity direction is orthogonal to the
slowness surface; also the slowness vector is perpendicular to the group-velocity surface.
A careful examination of the group velocity surface reveals that the group velocity surface
is actually displaying the wavefront at unit time, hence the normal to it determines the di-
rection of the slowness vector. This property has been used to drive the expression defining
the group velocity from the already known relation of the phase velocity (equation (3)).

For a material with elliptic anisotropy, for the slowness direction ~p = ~n/v

= (n1/v, n2/v, n3/v), and the group velocity direction, ~ξ = ~N = (N1, N2, N3), the pro-
jection of slowness surface in principal plane of x-y plane will have the form

v2(~n) = A11n
2
1 + A22n

2
2. (12)

Musgrave (1970) (equations 8.2.1 and 8.2.2b page 96) using the orthogonality between the
slowness surface and group velocity surface proved that the group velocity surface in x-y
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plane has the form of
1

V 2( ~N)
=
N2

1

A11

+
N2

2

A22

. (13)

where V is group velocity.

For a general (non-elliptical) orthorhombic medium, Daley and Krebes (2006) obtained
a reasonably accurate expression for qP group velocity by manipulating the eikonal equa-
tion, considering the phase velocity expression as in equation (3). They obtained a general
expression for qP group velocity in an orthorhombic medium as

1

V 2( ~N)
≈ N2

1

A11

+
N2

2

A22

+
N2

3

A33

− E12N
2
1N

2
2

A11A22

− E13N
2
1N

2
3

A11A33

− E23N
2
2N

2
3

A22A33

. (14)

A specified set of the P- and S-wave group velocity measurements is elaborated to
yield all nine elastic constants of an orthorhombic symmetry material. The measurements
of P- and S-wave group velocities in principal directions determine the diagonal elastic
constants Aii as in Table 1, see appendix (A) for the derivations. Determining the off diag-
onal elastic constants ofAij , the expression for group velocity (equation 14) given different
P-wave group velocity measurements will be inverted for anellipsoidal deviation parame-
ters (E23, E13, E12). Finally, using relation between anellipsoidal deviation parameters and
Aijs, equation 8-7, the off diagonal Aij will be determined.

Table 1: Relation between Cii and P- and S-waves group velocity in principal directions
P-velocity along x-axis V11

√
A11

P-velocity along y-axis V22
√
A22

P-velocity along z-axis V33
√
A33

S-velocity polarized in y-axis, propagating along z-axis V23 = V32
√
A23

S-velocity polarized in x-axis, propagating along z-axis V13 = V31
√
A13

S-velocity polarized in x-axis, propagating along y-axis V12 = V21
√
A12

PHYSICAL MODELING EXPERIMENT

Many theoretical predictions of wave propagation phenomena can be tested in labo-
ratory experiments. In particular physical modeling can be extremely useful in bridging
the gap between theory and the complexities observed in field seismic data (Cheadle et al.,
1991). The physical modeling system is designed to carry out simulated seismic surveys on
scaled earth-models. Physical modeling experiments have been continuing at the CREWES
Project for more than two decades now (Bland et al., 2006; Wong et al., 2008). Our phys-
ical modeling experiment has a scale (1 : 10000) for distance (1mm in model represents
100m in real earth), and scale of (10000 : 1) for frequency (1 MHZ in experiment repre-
sents seismic waves of 100 HZ). Also, the system is equipped with a robotic positioning
system to accurately position source and receivers to within 1mm (Wong et al., 2008).

The physical modeling experiment has been done on a model of LE-grade phenolic
material; the scaled seismic data is incorporated when estimating elastic parameters of the
phenolic material. Phenolic LE material is composed of laminated sheets of linen fabric,
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with alternating fabric sheets oriented approximately orthogonal to each other, bonded with
phenolic resin, and has a density of 1.39 kg/cm3; phenolic LE material is available com-
mercially. Previous research carried out in physical modeling laboratory of the CREWES
project has shown that the phenolic laminate exhibits seismic anisotropy with apparent or-
thorhombic symmetry (Cheadle et al., 1991; Brown et al., 1991). Observed shear-wave
splitting and azimuthal variation of NMO-velocity in Cheadle et al. (1991) confirmed that
the phenolic material is appropriate for orthorhombic symmetry evaluation. Brown et al.
(1991) used transmission shot gathers recorded by physical modeling to confirm the ob-
served group velocities from the scaled data only differ from exact theoretical values by
a maximum of about 1 percent; in calculation of exact theoretical velocities they used the
elastic parameters estimated by Cheadle et al. (1991).

x−axis

y−axis

z−
ax

is

FIG. 2: (right) A slab of phenolic material with dash lines displaying the fast velocity plane. (left) The
experimental model consisted of six slabs of phenolic glued on planes orthogonal to the symmetry axis (solid
blue). Y-axis is the slow direction, and the x-z plane is the plane of fastest velocities.

Two boards of phenolic LE material measuring approximately 60cm×60cmwith thick-
ness of 6cm were purchased for this study. The sheets of linen fabric are laid horizontally
so that a phenolic board resembles a VTI (vertical transverse isotropy) layer. To make a
model that resembles an HTI layer the two phenolic boards were cut along planes orthogo-
nal to the plane of linen layers. The first board was cut into six slabs; each slab was rotated
90◦ and glued together in the plane of linen fabric to make the model for this study. The
second phenolic board was cut into 12 slabs to make a second model that will be used
for future study. In total we had 18 phenolic slabs for which the P-wave velocity in three
principal axes was measured in a simple ultrasonic transmission experiment conducted on
each slab before gluing together, where just transmission time from the opposite sides of
the slabs are measured. Table 2 (third column) shows the average of the P-wave velocity of
the 18 phenolic slabs. Several repeated S-wave velocity measurements were done for only
two of these slabs; the average of the S-wave velocity for the two slabs are as in Table 2
(third column).

In summary, the model for this study consists of six slabs of phenolic LE material glued
together at their fast plane, to construct our sample fractured layer. Our model represents a
natural fractured layer with an area of 5740m×5740m and a thickness of 701m, where the
x-z plane is the fracture plane (plane of fast velocities) and the y-axis is the symmetry axis
(slow direction), see Figure 2. This report presents a new approach to estimate all required
nine elastic parameters of the assumed orthorhombic symmetry for phenolic LE material.

Laboratory set up

The set-up of the laboratory equipment used in this report experiment is very similar to
that described by Wong et al. (2008). Flat-faced piezoelectric cylindrical transducers are
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used as both source and receivers in the physical modeling experiment; they convert elec-
trical energy to mechanical energy and visa-versa. As a receiver, the P-transducer (Pana-
metric V103) is sensitive to displacement normal to the contact face (acting as a vertical
component geophone), and the S-transducer (Panametric V153) is sensitive to displacement
tangential to the transducer (acting as horizontal component geophone); both transducers
collect the particle displacement and convert it to electrical pulse. As a source both P-
and S-transducers approximate a circular seismic array with far-field radiation patterns ap-
proximating those for normal and tangential displacement point sources (Aki and Richards,
1980). Both transducer generates both P- and S-waves, with the stronger generated P-wave
from P-transducer and stronger S-wave from S-transducer along its polarization direction.
We were able to record both wave types with both sources. Both P- and S-transducer have
diameter of 13mm, with central frequency of 1.0MHZ. Data are recorded using a sam-
pling interval of 1ms.

Group velocity from transmission shot gathers

The linear P-wave group velocity expression (equation 14) is least-square inverted to
yield the off diagonal elastic constants of the phenolic LE model. The group velocity
measurements come from picking firstbreak traveltimes representing the direct arrival in
a transmission shot gather, where the source and receivers are located on opposite sides
of the phenolic model or the source and receivers at the same side of the model with the
source in a vertical distance from the receiver profile. In these shot gathers the traveltime
of the direct arrival from the source to each individual receiver gives the group velocity in
the direction of the source-receiver raypath.

Receiver profiles initially located along the x- and y-axis at the top face of model (see
Figure 3-top), with source at the bottom face gives group velocities in different directions
on the principal x-z and y-z planes. The group velocities of the x-y plane are measured
from receiver profiles along the x- and y-axis at the top surface with the source also at the
top surface (see Figure 3-middle), with the source-receiver vertical distance of 1000 m.
Additionally, the receiver profiles along ±45◦ azimuth line in the x-y plane provide group
velocities in ±45◦ azimuth planes as illustrated in Figure 3-bottom.

Considering our model as a homogeneous layer, the source-receiver ray path is a straight
line connecting them. Knowing the coordinates of source and receivers, the path length and
angle of incidence are determined using basic trigonometry; the firstbreak pick of every
trace gives the group velocity for the direction of the ray path connecting the source to that
receiver. Note, the effective path length is, in fact, shorter than the nominal distance be-
tween transducer centers. The piezoelectric transducer generates the seismic waves along
its entire element width. Hence elective path length equals to the distance between nearest
edges of transducer (the nominal element size is considered to define the edge of the trans-
ducer). With the P-data dominant frequency of 30HZ and the picking error of one eighth
of the dominant wavelength, the firstbreak picking has ±0.004 s error. Consequently the
calculated P-wave group velocity with ±1mm error in receiver positioning has ±25 m/s
error. Similarly, with the dominant frequency of 10HZ for the S-data, the S-wave group
velocity has ±10m/s error. The firstbreak picking was done on raw data, whose only had
trace normalization to boost the firstbreaks.
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FIG. 3: Receiver profiles. (top left) Receiver profile along x-axis to measure group velocity in x-y plane.
(top right) Receiver profile along y-axis to measure group velocity in y-z plane. (middle left) Receiver profile
along x-axis to measure group velocity in x-y plane. (middle right) Receiver profile along y-axis to measure
group velocity in x-y plane. (bottom left) Receiver profile along azimuth -45◦. (bottom right) Receiver profile
along azimuth +45◦.

This experiment has been applied on the vertical component data acquired by using
the P-transducers as both the source and receiver to provide the P-wave group velocity,
followed by radial and transverse component data to obtain S-waves group velocity.

P-wave group velocity

Utilizing P-transducers as both source and receivers has enabled measurement of P-
wave group velocities for different directions in three principal planes. Figure 4 shows
the vertical component data of the transmission shot gathers for receiver profiles shown in
Figure 3.

As discussed earlier, regardless of the type of transducer that was used as the source,
both P-wave and S-waves are generated. The vertical component data recorded by P-
transducers as the receiver, contains both P-wave and Sv-waves. Only, the Sv-wave does
not appear in zero-offset or some near offset traces (Figure 4-top). With the P-transducer as
the source the radial component data, recorded by radially polarized S-transducers as the
receiver, also contains both P-wave and Sv-wave; but this time the P-wave does not appear
in near-offset traces (Figure 11). Brown et al. (1991) implemented the P- and S-transducer
as source and receivers (nine component data) and show clearly (their Figure 8) that the P-
and S-waves are generated using both types of transducers. Note the discontinuity due to
the contact faces of the six glued phenolic slabs, appears as a seam in the study model, has
caused some diffractions specially in y-profile data (Figure 4-top left) which is marked in
the Figure. A polar graph of the P-wave group velocity versus group angle (angle of the ray
connecting source to receiver, here incident angle) provides the group velocity surface. The
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FIG. 4: Vertical component data of the shot gathers of Figure 3 profiles. Data has been filtered to [2 40]
HZ, and AGC’ed with 400 ms window.
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FIG. 5: The polar graph of group velocity surface versus group angle from firstbreak measurements of
transmission shots gathers of Figure (4). (top and bottom) The incident angle is the angle of ray connecting
source-receiver with z-axis. (middle) The incident angle with y-axis. For each plane the velocity read from
firstbreak picking for the zero and 90◦ directions, are considered as the major and minor axes of the ellipse;
using equation of an ellipse with known major and minor axes, the ellipse is plotted for each case.

group velocity surface for principal planes of x-z, y-z, x-y and also azimuth ±45◦ planes is
illustrated in Figure 5. The measured P-wave velocity in the principal directions of the x-
and y- and z-axis are 3560 (m/s), 3500 (m/s) and 2950 (m/s) respectively. These values are
compared to an average of the measured velocities from a simple ultrasonic transmission
experiment conducted on the 18 phenolic slabs. Comparing the third and forth column of
Table 2 shows that group velocity calculated from firstbreak picks is well estimated.

A group velocity surface is, in fact, a wavefront at unit time. To examine how elliptical
anisotropy assumptions can describe our phenolic material, an elliptical wavefront was
plotted for each plane. In Figure 5 the group velocity measured from firstbreak picking is
displayed by blue dots and the ellipse is displayed in red. For each plane the velocity read
from firstbreak picking for the zero and 90◦ directions, are considered as the major and
minor axes of the ellipse; using equation of an ellipse with known major and minor axes,
the ellipse is plotted for each case. For example, for principal planes the major and minor
axis of the ellipse are from measured group velocity in principal directions. Figure 6 shows
the P-group velocity versus group angle (equal to incident angle here).

Comparing the ellipse to measured group velocity for each case indicates whether the
elliptical anisotropy is adequate or not to describe the phenolic material anisotropy. For the
y-z and x-y planes, the group velocity surface almost follows the ellipse perfectly whereas
for the x-z plane there is a small deviation from ellipticity. In the x-z plane, the plane of
fast velocities (fracture plane), a close match of group velocity to ellipse was expected;
however, since the phenolic model is not a pure HTI medium and due to some inhomo-
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geneity minor deviation from ellipse is observed. For the x-z plane examining the P-wave
velocity versus incident angle (Figure 6) shows the variation of the velocity for this fast
velocity plane; which can be considered as the cause of mentioned minor deviation in x-z
plane. For the y-z and x-y planes, which are the planes containing slow-direction (y-axis),
such a close match to ellipse was rather surprising, and more deviation from ellipticity was
expected. The group velocity surface of the x-y plane, measured from the x-profile (Fig-
ure 5-middle left) and y-profile (Figure 5-middle right) are plotted on top of each other to
examine the ties of the two plots, see Figure 8-left.
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FIG. 6: P-wave group velocity versus incident angle. (top and bottom) The incident angle is the angle of
ray connecting source-receiver with z-axis. (middle left) Incident angle with y-axis, (middle right) Incident
angle with x-axis.

Table 2: P- and S-velocity in principal directions
Velocity Slab measurements Firstbreak picks
V11 3542± 77 3560± 25
V22 2926± 74 2950± 25
V33 3425± 80 3500± 25
V23 1525± 10 1530± 10
V13 1670± 20 1700± 10
V12 1500± 15 1510± 10

The group velocity surface of the x-y plane, measured from the x-profile (Figure 5-
middle left) and y-profile (Figure 5-middle right) are plotted on top of each other to examine
the ties of the two plots, see Figure 8 left. To confirm the observed elliptical anisotropy
of the x-y plane, we conducted another experiment to obtain the group velocity surface.
Seventeen reflection shot-gathers with receivers at 0◦, ±14◦, ±27◦, ±37◦, ±45◦, ±53◦,
±63◦, ±76◦, and ±90 ◦ azimuth were acquired with the source and receivers at the x-y
plane (top face of our model). Figure 7 shows these azimuth profiles on the top face of
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the phenolic model. In each azimuth reflection data, the dip of the firstbreak event (related
to direct arrival from source to receivers on that azimuth) in the reflection data gives the
group velocity along that azimuth; in each individual shot the firstbreak event is picked for
all traces, then least-squares fitting gives the fist-break fitted line and the slope of it gives
the velocity of that particular azimuth. The seventeen reflection azimuth data (vertical
component data) are shown in Figures 9 and 10. A polar graph of measured velocity for
these seventeenth azimuth data versus azimuth angle is depicted in Figure 8 at the top
velocity measurements from the transmission experiment. Figure 8 left shows the group
velocity surface in the x-y plane extracted from azimuth reflection data and confirms the
elliptical anisotropy in x-y plane that we observed before from firstbreak picking of the
transmission shot gathers; these two group velocities of the x-y plane are displayed in one
plot to confirm the good match to elliptical anisotropy, see Figure 8.

z−
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FIG. 7: Azimuth profiles to get the group velocity of x-y plane. Zero and positive azimuth profiles in red
and negetive azimuth profiles in blue.
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FIG. 8: (left) The group velocity surface of the x-y plane from the transmission shot gathers; blue dots
are measured from x-profile data, green dots are measured from y-profile data, and the black dots are mea-
sured from azimuth data. The group velocity measured from the seventeen azimuth data are displayed at
corresponding azimuths.
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FIG. 11: The radial component of shots gathers of Figure 3 profiles. Firstbreak picks are depicted by black
stars. Displayed data has been filtered to [2 40] HZ, and AGC’ed with 1400 ms window. The SV-wave after
hitting the surface, is converted to the P- compressional wave, which is detected by the radial-component as
shown in the section by "converted Sv-P" event.

S-wave group velocity

The ability to measure S-wave velocities in the laboratory significantly expanded the
scope of issues we could explore in natural materials. The S-waves group velocity sur-
faces in the principal planes are examined. The S-waves wavefronts in the principal planes
provide useful information on examining the orthorhombic symmetry material. Only the
S-wave velocity in the principal directions (V23, V13, and V12) will be used in our study to
determine elastic constants of the phenolic model.

Using an experimental procedure similar to that described for measuring the P-wave
velocity, for receiver profiles as in Figure 3 (top row and middle-left) radial and transverse
component data was acquired. The radial component data is acquired using the radially po-
larized S-transducer, and the transverse component data is acquired using the transversely
polarized S-transducer as the receivers. Figure 11 and 12 show the radial- and transverse
component data. The vertical component data (Figure 4) seems noisier compared to hor-
izontal component data (Figure 11 and 12) due to utilizing the amplifier in acquisition
process; the amplifier has boosted the noise level.
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FIG. 12: Transverse component of shots gathers of Figure 3 profiles. First break picks are depicted by black
stars. Displayed data has been filtered to [2 40] HZ, and AGC’ed with 1400 ms window.

With a similar procedure to the P-wave, S-wave group velocity in different directions
were measured; the SV and SH-wave group velocity surfaces were examined, Figure 13.
The SV-wave group velocity is measured from the first arrival traveltimes of the radial
component data (11), and SH-wave group velocity is measured from transverse component
data (12). Similar to the P-wave group velocity, compering the ellipse to the S-waves group
velocity surfaces show that elliptical anisotropy is very good approximation for anisotropy
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of the experimented phenolic material (Figure 11 and 12). Figure 11 shows that the Sv
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FIG. 13: (top) The polar graph of SV-wave group velocity surface versus group angle. (bottom) The polar
graph of SH-wave group velocity surface versus group angle

group velocity surface is very close to a circle as VSv(θ) ∼= VSv(θ = 0); hence the kinematic
of Sv-wave is not very influenced by anisotropy. The close match to ellipse for the SH-wave
was expected, as for the SH wave in transverse isotropy medium always shows the elliptical
anisotropy (Tsvankin, 2001).

In summary, the P- and S-waves velocity surfaces for the principal planes of x-z, y-z,
and x-y are illustrated in Figure 14.

Determination of elastic constants of the phenolic model

The diagonal elastic constants is directly determined from the P- and S-waves measure-
ments along the principal axes shown in Table 1, see Appendix A for the derivation. To
determine the off diagonal elastic constants, as discussed earlier in this report, the linear re-
lation between the P-wave group velocity and anellipsoidal deviation terms (E23, E13, E12)
is elaborated. Knowing the values of A11, A22, and A33, the redundant measurements of P-
wave velocity becomes the data vector in a least-squares inversion to estimate the E23, E13,
and E12 values. The P-wave measurements from the transmission experiments can be in-
verted for the three unknowns using linear equation 14. For the P-wave propagation in the
direction of ~N = (N1, N2, N3) linear equation 14 can be written as

BE23 + FE13 + LE12 = D. (15)
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FIG. 14: The illustration of the P- and S-waves group velocity surfaces of the phenolic model.

The coefficeints D, B, F, L are defined as follows

D = (
N1

2

A11

+
N2

2

A22

+
N3

2

A33

)− 1

V ( ~N)
2 ,

B =
N2

2N3
2

A22A33

,

F =
N1

2N3
2

A11A33

,

L =
N1

2N2
2

A11A22

. (16)

Incorporating n P-wave measurements, the linear equation 15 can be used to express a
linear system of n equations with three unknowns: B1 F1 L1

...
...

...
Bn Fn Ln

 E23

E13

E12

 =

 D1
...
Dn

 . (17)

Or in a matrix form, GE = D. The unknown vector E will result from a damped least-
squares inversion, as E = (GTG + µ)−1GTD where the µ is the damping factor. The

Table 3: Normalized anellipsoidal deviation terms for phenolic LE model. As they have been normalized
to A22, they are dimensionless.

E23/A22 E13/A22 E12/A22

-0.132 -0.556 -0.261

phenolic LE material showed the anisotropy rather close to elliptical anisotropy; thus, we
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expect to obtain very small relative deviation terms. The P-wave velocity measured in
different directions of the x-z, y-z, x-y and±45◦ planes are used as data in this least-squares
inversion. The normalized anellipsoidal deviation terms resulted from the least-squares
inversion are −0.132,−0.556, and −0.261 for E23, E13, and E12 respectively, as listed in
Table 3. As we observed before from the P-wave group velocity surfaces, a higher deviation
term (E13) for the plane x-z was estimated, and the y-z and x-y planes have similar small
divination terms. Finally using equations 8-7, the off diagonal density normalized elastic
constants are calculated. Table 4 shows all nine density normalized elastic constants of the
phenolic LE model.

Table 4: Density normalized elastic constants of the phenolic LE model. TheAij have the units of (km/s)2.
12.67± 0.006 6.13± 0.003 6.68± 0.003 0 0 0

8.70± 0.006 5.79± 0.003 0 0 0

12.25± 0.006 0 0 0

2.34± 0.001 0 0
2.89± 0.001 0

2.28± 0.001

Having three very small deviation terms, all three deviation terms can be set to zero
in estimation of off-diagonal elastic constants. All E23, E13, and E12 were set to zero, the
nine density normalized elastic constants are calculated; there were almost no change in
estimation values of off-diagonal elastic constants. Therefore, we conclude that only six
diagonal elastic constants are enough in characterizing the phenolic LE model.

Since the strength of anisotropy is hidden in the elastic constants, we need to calculate
the Thomsen anisotropy parameters. Now that all nine elastic constants of the phenolic LE
material are determined, the Thomsen anisotropy coefficients (ε, δ, γ) can be calculated; the
conventional measures of anisotropy for the transverse isotropy case are given by Thom-
son (1986). The dimensionless Thomsen parameters (Thomson, 1986) which characterize
the anisotropy of a medium are industry standard and is used in many commercial soft-
ware. The dimensionless Thomsen parameters for an orthorhombic symmetry are given
by Tsvankin (2001). Following Rüger (2001), the relationship between elastic constants
to generic Thomsen parameters (for the principal planes of x-z, y-z, and x-y) are as in
Table 5. Note, the calculated Thomsen parameters are exact values valid for any strength
of anisotropy, which is different from week-anisotropy Thomsen parameters introduced by
Thomson (1986). The small values of Thomsen parameters shows that the phenolic model
has week anisotropy with ε ∼= δ for every principal planes (Table 5).

Table 5: The relationship between elastic constants to the generic Thomsen parameters. All the relations
are valid for any strength of anisotropy.

Thomsen parameter ε γ δ

x-z plane A11−A33

2A33

A66−A44

2A44

(A13+A55)
2−(A33−A55)

2

2A33(A33−A55)

y-z plane A22−A33

2A33

A66−A55

2A55

(A23+A44)
2−(A33−A44)

2

2A33(A33−A44)

x-y plane A22−A11

2A11

A55−A44

2A44

(A12+A66)
2−(A11−A66)

2

2A11(A11−A66)
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Table 6: Measured Thomsen anisotropy parameters.
ε γ δ

x-z plane 0.0173 −0.0130 0.0175

y-z plane −0.1448 −0.1055 −0.1318

x-y plane −0.1567 0.1173 −0.1417

CONCLUSIONS

Employing the group velocity measurements, was a straightforward method in deter-
mining all nine elastic constants for a material with orthorhombic symmetry. Considering
the transducer and a rock sample’s dimensions, measuring the group velocity for different
directions are easy and more reliable than the phase velocity measurements. With knowing
the relation between the group velocity and all nine elastic constants in an orthorhombic
material, this method can be applied in laboratory experiments as a robust method in deter-
mining all elastic constants of an orthorhombic material.

The P- and S-wave velocity examination of the physical modeling data showed that the
phenolic LE material exhibits transverse anisotropy. The experimental model resembled a
HTI layer or more accurately a vertically fractured transversely isotropic layer. Examining
the P- and S-wave group velocity surfaces, revealed that the model has elliptic anisotropy
for which the P- and S-wave have ellipsoidal wavefronts; therefore only six elastic con-
stants are enough in characterizing the phenolic LE model. The Thomsen parameters values
calculated from elastic constants, showed that the phenolic LE model has week anisotropy
with very close values for the ε and δ parameters.
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APPENDIX A

This appendix follows Cheadle et al. (1991) and Tsvankin (2001) to provide the relationship between
elastic constants and phase velocity in an anisotropy medium of orthorhombic symmetry.

Christoffle equation describes the wavefront propagation in the direction of orthogonal (or phase direc-
tion) to wavefront. The velocity in the direction of the normal to wavefront, is known as phase velocity, v.
If ~n = (n1, n2, n3) to be the unit vector in phase direction, the slowness vector ~p = ~n/v. The phase veloc-
ity results from solving the Christoffle equation. The following briefly explains the derivation of Christoffle
equation. Consider the elastic wave equation,

ρ(∂2ui/∂t
2) = cijkl(∂

2ui/∂xj∂xl). (A-1)

Substitute a trial plane wave solution of

uk = Uke
iω(njxj/v−t), (A-2)

(where ~n is normal to the wavefront, ~U is polarization vector) into the wave equation, which leads to the
following system of equations G11 − ρv2 G12 G13

G21 G22 − ρv2 G23

G31 G32 G22 − ρv2

[ U1

U2

U3

]
=

[
0
0
0

]
. (A-3)

where Gik = Cijklnjnl. The equation (A-3) that solves for the phase velocity, v, and polarization vector ,
U , is the known as the Christoffle equation (?Tsvankin, 2001).

The Christoffle equation describes a standard eigenvalue problem for the matrix G. The eigenvalues
are found from setting the det

[
Gik − ρv2δik

]
= 0. The symmetric matrix G is positive definite (Mus-

grave, 1970), therefore has three real positive eigenvalues, ρv2. For an arbitrary slowness direction ~n in the
anisotropic media, solving this determinant yields three possible values of phase velocity, which corresponds
to one qP-wave and two qS-waves.

Solving equation (A-3) for an arbitrary wave propagation direction results in nonlinear expressions (with
respect to elastic constants) for the three phase velocities. However for wave propagation along a principal
direction, the equation (A-3) result in linear phase velocities that only depend on one diagonal element of
elastic constants. As an example propagation in one principal direction is given.

Propagation along a principal direction

Following Cheadle et al. (1991) for propagation along the x-axis, equation (A-3) becomes: A11 − v2 0 0
0 A66 − v2 0
0 0 A55 − v2

[ U1

U2

U3

]
=

[
0
0
0

]
; (A-4)

where the three eigenvalues of the above matrix are v2 = A11 related to P-wave polarized in x-axis, and
v2 = A55, v2 = A66 related to S-waves polarized along z-axis and y-axis respectively. In other words,
for the wave polarizing on the x-axis (U1 6= 0), the phase velocity will be v =

√
A11; this describes P-

wave propagating along x-axis with the velocity of V11. Similarly, the wave polarized along the z-axis with
the velocity of v =

√
A66, is the S-wave propagating along the x-axis and polarized along z-axis with the

velocity of V13. For the third eigenvalue, the wave polarized along the y-axis with the velocity of v =
√
A55
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is the S-wave propagating along the x-axis and polarized along the y-axis with the velocity of V12. For
principal directions, and at other maxima or minima of the phase velocity, the group velocity and phase
velocity coincides (Tsvankin, 2001); hence measurements of group velocity of P- and S-waves along the x-
axis can result in knowledge ofA11,A55, andA66 respectively. In a similar fashion, the other diagonal elastic
constants A22, A33, and A44, can be obtained from measurements of the group P-and S-waves velocities in
other principal directions. Table (1) summarizes the diagonal elastic constants relations.

Linearizing the solutions of phase velocity has been done by numerous people see Backus (1965); Ev-
ery and Sachse (1992); Daley and Krebes (2006) among others. The linearized P-wave phase velocity for
orthorhombic symmetry has the form of (Tsvankin, 2001; Daley and Krebes, 2006)

ρv2 = A11n
4
1 +A22n

4
2 +A33n

4
3 +

2(A12 + 2A66)n
2
1n

2
2 + 2(A13 + 2A55)n

2
1n

2
3 + 2(A23 + 2A44)n

2
2n

2
3 (A-5)
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