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ABSTRACT 

Correction filtering of the finite-difference elastic wavefield has been found to be a 
practical and efficient process. In a particular case shown, the cost of the beneficial 
effects was obtained by using a minimal convolution filter with an overall size of 3 by 3 
points, and this resulted in a 80 percent increase in run times. Comparable results 
obtained by reducing sampling intervals required a one third reduction, which cost a 180 
percent increase in run times. Further tests showed that the particular corrections filter set 
used was still quite effective when used on models with velocities 25% lower than the 
design velocities. 

INTRODUCTION 

The theory and practice of wavefield filters was introduced by the author in his PhD 
thesis (Manning, 2008). Each filter (of a set of filters) was designed to be convolved with 
the appropriate finite-difference calculations which represented partial differential 
equation terms of the wave equations. It was shown that when these corrections were 
applied, the wavefield extrapolation became far more accurate for a practical range of 
frequencies. 

The limitation of this theory was that each region within a model required a unique set 
of filters, which depended on the velocity of the pressure and shear waves within the 
region. Another limitation of the correction filters tested was that they were usually quite 
large, and although they showed advantages over the simple technique of using finer 
sample rates, the advantages were not huge. Also, it was not clear how much damage was 
done when the filter edges operated on regions beyond those for which they were 
designed. 

This paper developed after running finite-difference models for micro-seismic 
purposes. In some micro-seismic models the source and receivers are relatively near, and 
there are limited ranges of seismic velocities which need to be represented. The sampling 
rates could then be chosen for accurate modelling of these pressure wave velocities. The 
problem that then became obvious was that these sample rates were far from ideal for the 
lower velocity shear waves in the same regions, and they showed numerical dispersion 
that masked everything else once they arrived at a recording point. 

Use of correction filters then proved very effective for reducing the numerical 
dispersion of the shear wave events to minimal levels. The main reason for this is that 
correction filters are designed separately and specifically for the local shear wave 
propagation. This is in contrast to the higher accuracy derivative calculations used (for 
example) in Levander (1988). 
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MODEL TESTING 

Several models were run to obtain objective comparisons between corrected and 
uncorrected results. It was found that there was little difference between using the 
absolute minimum size of correction filter of 3 by 3 (since the filters are symmetrical 
zero-phase) and larger ones, so all tests used the small filters. The source was a 300 Hz 
zero phase Ricker wavelet on the symmetric (left) edge, with an explosive character but 
reduced energy in the horizontal directions. This resulted in source energy of both 
pressure and shear nature, but dependent on the propagation direction. 

Two geological models were used for testing; the first with an almost constant velocity 
region of 4000 m/sec for Vp and  2500 m/sec for Vs, the second with an almost constant 
velocity region of 3000 m/sec for Vp and 1875 m/sec for Vs. 

One set of finite-difference parameters sampled the geological model at intervals of 
0.75 metres in X and Z, and time sampled at 0.0001 seconds through 900 steps. These 
parameters were used for ordinary second order calculations, and for corrected 
calculations. The corrected calculations required run times approximately 80% longer 
than the second order calculations. 

The second set of parameters sampled the geology at 0.5 metres in X and Z, and at 
intervals of 0.000067 seconds through 1350 steps to reach the same total time as the first 
set. These parameters were used only for ordinary second order calculations, and 
executed in an elapsed time about 180% greater than the coarsely sampled models. 

The first three Figures show the wave displacements after the last propagation step on 
the high velocity model. There is a plot for each of the propagations run on this model. 

Figures 4 to 9 show vertical displacement seismograms obtained .through time at 300 
metres depth and from 0 to 200 metres offset. There is a plot for each of the propagations 
run on both models. 

 

RESULTS 

The first six Figures give comparisons between the modelling improvements of using 
custom designed correction filters compared to the improvements of using finer sample 
rates. It is quite obvious that the corrected propagation snapshot in Figure 2 is higher 
quality than the finer sampled snapshot in Figure 3. The wavelets in Figure 3 are not 
quite as sharp, and do not have the zero-phase character of the wavelets in Figure 2. 
Figure 3 shows the first subtle signs of dispersion. The same conclusions may be reached 
by comparing the seismograms in Figures 5 and 6. 

Figures 7, 8, and 9, display results from the lower velocities model. They allow 
comparisons between the finer sample rates as above, and correction with a filter set 
which is much less than optimum. Even so, similar conclusions may be reached when 
comparing the two cases in Figures 8 and 9. There is a little less obvious dispersion to be 
seen in Figure 8, even though the corrections used were not designed for this 
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environment. The wavelets in Figure 8 are not really zero-phase, so extended propagation 
under these conditions would lead to problems. 

CONCLUSIONS 

There is no doubt that the use of optimum correction filters is a highly effective and 
efficient way to improve the results of finite-difference modelling. The author has 
reached this conclusion  before, but not for the minimal version of the filters used here. 

There is also a strong indication that a correction filter set may be effectively used for 
a range of velocities. This was shown for velocities that range lower than the design 
velocities. 

FUTURE WORK 

It may be feasible to relate velocity ranges and the corresponding accuracies of a given 
filter set. 
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FIGURES 

 

FIG. 1. Snapshot of uncorrected finite-difference wavefield propagation. Numerical dispersion 
may be seen as wave-fronts that are spread out and ringing. 
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FIG. 2. Snapshot of corrected finite-difference wavefield propagation. The reduced dispersion of 
the wave-fronts shows them as having narrow width, and preservation of the initial zero phase 
character shows them as having a symmetric colour pattern. 

 

 

FIG. 3. Uncorrected finite-difference wavefield propagation with fine sampling. There is much less 
dispersion compared to Figure 1, but a little more than in Figure 2. The zero phase character is 
not well preserved. 
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FIG. 4. Uncorrected finite-difference wavefield propagation presented as seismic traces. The 
pressure wave arrives earlier and has minimal dispersion. The shear wave arrives later, but has 
definite dispersion. 

 

FIG. 5 Corrected finite-difference wavefield propagation using the exact velocities of the model. 
The wavelets are not dispersed and are almost exactly zero phase. Notice that the waves arrive 
earlier, as shown by comparison with the coloured moveout lines. 
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FIG. 6. Uncorrected finite-difference wavefield propagation with fine sampling. The wavelet 
dispersion is much less than in Figure 4, but is not reduced to the level seen in Figure 5. 

 

FIG. 7. Uncorrected finite-difference wavefield propagation in a 3000 m/sec medium. Dispersion 
is minimal on the pressure wave, but the shear wave has a very significant amount. 
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FIG. 8. Finite-difference wavefield propagation through a 3000 m/sec medium, but corrected as if 
it was a 4000 m/sec medium. The wavelets here have had most of the dispersion eliminated, but 
they do not have the clean zero-phase character of a very accurate correction, as in Figure 5. 

 

FIG. 9. Uncorrected finite-difference wavefield propagation in a 3000 m/sec medium, but with a 
fine sample rate The pressure wave is almost zero-phase, but the shear wave still has some 
dispersion. 

 


