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ABSTRACT 
We examine the key concepts in full waveform inversion (FWI) and relate them to 

processes familiar to the practicing geophysicists.  The central theoretical result behind 
FWI is presented as a mathematical theorem, the Fundamental Theorem of FWI. This 
theorem says that a linear update to a migration velocity model can be obtained from a 
reverse-time migration of the data residual (the difference between the actual data and 
data predicted by the model).  Critically, this migration is only proportional to the 
required update and the proportionality must be estimated.  We argue that in many cases 
this proportionality factor will be complex-valued and frequency dependent, or in the 
time domain, a wavelet.  The estimation of the velocity update from the migrated section 
is closely related to the common process of impedance inversion.  Then we argue that 
FWI can be viewed as a cycle of data modelling, migration of the data residual, and 
calibration of this migration to deduce the velocity update.  We present an extended 
example using the Marmousi model in which we use wave-equation migration of the data 
residual and we calibrate the migration by matching it to the velocity residual (the 
difference between actual velocity and migration velocity) at a well.  Our example 
produces an encouragingly detailed inversion but raises many questions.   

INTRODUCTION 
Full waveform inversion (FWI) was introduced to the exploration seismology 

community by Lailly (1983) and Tarantola (1984), although its use in whole-earth 
seismology is much older (Virieux and Operto, 2009).  As originally proposed by Lailly 
(1983) the procedure required a sequence of pre-stack migrations each one using a 
velocity model improved upon by the previous migration.  More recently, FWI is 
formulated as a generalized inverse problem and a numerical iterative solver (usually a 
gradient method) is used, can proceed using only a forward modelling code and its 
adjoint.  While general and efficient, this loses the perspective of FWI as a sequence of 
migrations, and we return to that perspective here.  We suggest that FWI can be viewed 
as an iterative cycle involving forward modelling, pre-stack migration, impedance 
inversion, and velocity model updating in each iteration. 

Seismic migration has been used in exploration seismology as an imaging technique 
since at least the 1950's and was cast on firm theoretical grounds beginning with the work 
of Claerbout (1971 and 1976) and proceeding to the present.  The computation of 
impedance traces from a merging of migrated traces and well information was introduced 
by Lindseth (1979) and has subsequently been called impedance inversion (e.g. Cooke 
and Schneider, 1983, Oldenburg et al., 1983).  Migration methods have been the key 
process in seismic imaging since Claerbout's groundbreaking work and have evolved into 
methods of ever increasing physical fidelity and algorithmic complexity.  Typically, a 
migration is followed by an inversion for rock properties under the assumption that the 
migration estimates reflection coefficients.  Thus, practically, migration followed by 
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impedance inversion can be viewed as a two-step more general inversion.  Twenty years 
ago, the migrations were almost always post-stack and the subsequent inversions 
estimated p-wave impedance only.  Today, the migrations are usually pre-stack, giving 
angle-dependent reflectivity estimates, and the inversions estimate p-wave and s-wave 
impedance and sometimes density.   

More recently, FWI has seen increasing use.  Although originally posed in the time 
domain (e.g. Tarantola, 1984), effective frequency-domain implementations, especially 
with wide-angle refracted data, are demonstrated by Pratt and Worthington (1990), and 
Pratt (1990 and 1999).  In either domain FWI uses an iteration where each linearized step 
reduces the objective function (or data misfit function: the sum-squared error between the 
actual data and forward modelled synthetic data) by deriving a model update; and the 
updated model is used in the subsequent step.  An initial model of earth properties, in the 
simplest context this is a p-wave velocity model, is used to start the process and is 
updated with each iteration.  Ideally the initial model should be very smooth with detail 
being added during the iterations.  While each step in the iteration proceeds from a linear 
approximation, the entire process is a nonlinear inversion (Tarantola, 1984).  The nature 
of the assumed physical model determines what is inverted for, for example a constant-
density acoustic model allows inversion for p-wave velocity only while a variable-
density, isotropic, elastic model allows inversion for p-wave and s-wave velocities and 
possibly density.  Many other inversions are possible. 

Viewed as a "black-box", or generalized process characterized only by its input and 
output, FWI is functionally a replacement for pre-stack migration plus inversion.  The 
original proposal by Lailly (1983) was for a sequence of migrations although the 
connection with impedance inversion was not drawn.  The link between FWI and 
migration is very strong and follows from the fundamental result that the model update is 
deduced directly from a migrated image by a simple scaling (Tarantola, 1984).  However, 
in contrast with standard practice, only the data residual (the difference between actual 
data and that predicted by forward modelling) is migrated while standard practice is to 
migrate the data itself.  Thus, if the velocity model is almost correct, then it will predict 
most features in the data and the data residual will be "small".  Migration of this residual 
will predict a "small" update.  In impedance inversion, an impedance model is deduced 
directly from the migrated section, typically with assist from well control, which has an 
analogy to the scaling step in FWI.  However, the impedance model deduced from 
impedance inversion is almost never compared with the migration velocity model and no 
attempt is made to make them consistent.  We could say that standard migration and 
impedance inversion are a mutually inconsistent set.  FWI improves upon this in that a 
model update is deduced from the migration of the data residual and this update is then 
added to the existing model. Thus the velocity model is incrementally updated and is 
always consistent with both migration and the data.  However, there is usually no attempt 
to harmonize FWI with well control as is commonly achieved with impedance inversion. 
In another parallel, FWI requires very low frequency signal in the seismic data, while 
impedance inversion obtains these low frequencies from well control. 

In this paper we investigate the link between pre-stack migration, impedance 
inversion, and FWI.  All of these methods are related by a common theme which is to 



FWI by WEM 

 CREWES Research Report — Volume 22 (2010) 3 

estimate subsurface properties from seismic data.  However, they are algorithmically 
diverse and the conceptual and theoretical linkages between them are not always 
apparent.  We begin by first summarizing important results from FWI theory and making 
a conjecture about their possible generalization.  In particular, we conjecture that any 
standard depth migration and impedance inversion methods can be used in an FWI 
iteration with the proviso that the data residual is migrated and then matched at well 
control locations to the velocity residual.  We have already defined data residual and by 
velocity residual we mean a similar thing: the difference between the exact velocity and 
the migration velocity.  Since this velocity residual can only be known at wells, that is 
where we attempt a match and we call this process calibration of the migration.  Then we 
present an extended exploration of an iterative migration scheme, using pre-stack wave-
equation migration (WEM) and matching to well control.   

THEORY AND METHOD 

FWI (full-waveform inversion) can be viewed as an iterative forward modelling 
technique where at each stage of the iteration the earth model is updated and the updated 
model is used in the next iteration.  In this paper we will only address the simplest FWI 
scheme which assumes constant-density acoustic waves.  Therefore, the earth model is 
simply the velocity model.  We let [ ], 0,kv k N∈  denote the velocity model after the kth 
iteration, with the initial model 0v  assumed to be very smooth.  Then let 

( ) ( ) [ ], 1, , 1,k s r ks r M v k Nψ −= ∈  be synthetic data for the kth iteration where ,s rM  is a 
forward-modelling operator and ( ),s r  denotes the complete set of source and receiver 
locations for our seismic survey.  Then the FWI objective function (also called the misfit 
function) is 

FTFWI: Fundamental Theorem of FWI (Lailly, Tarantola): Given real data 
from a constant-density acoustic medium and an approximate velocity model, ( ),kv x z
, at the kth step of an iteration, then a linearized update to the velocity model, vδ , is 
given by 

 ( )
2 *

,
,

ˆ ˆ( , ) ( , , ) ( , , )k s r s k
s r

v x z x z x z dδ λ ω ψ ω δψ ω ω= ∑∫ .  (1)
 

where  λ  is a scalar constant, the hat (^) over a variable indicates its temporal Fourier 
transform, ( )ˆ , ,s x zψ ω is a model of the source wavefield for source s  propagated to 

all ( ),x z , ( ) ( ),ˆ , ,r s k x zδψ ω  is the kth data residual for source s back propagated to all 

( ),x z , ∗ is complex conjugation, and ω  is temporal frequency.  Specifically 

( ) ( ) ( ) ( ) ( ) ( ), ,ˆ ˆ ˆ, , , , , ,r s k r s r s kx z x z x zδψ ω ψ ω ψ ω= −  where ( ) ( )ˆ , ,r s x zψ ω  is the real data at 

receivers ( )r s  as back propagated into the medium and ( ) ( ),ˆ , ,r s k x zψ ω  is the kth data 
model for the same. 
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 ( )2

,
k k

s r

φ ψ ψ= −∑ , (2) 

where the sum is taken over all sources and receivers.  Thus the objective function 
measures the difference between the recorded data and modelled data at the kth iteration.  
FWI seeks the optimal velocity model optv  which minimizes equation 2, that is an 
iteration is sought such that minkφ →  as k optv v→ .  This iteration is driven by a famous 
result (equation 1) which we formulate here as a theorem in two spatial dimensions.  This 
theorem, which we term the fundamental theorem of FWI (FTFWI) was first proven by 
Lailly (1983) and Tarantola (1984) and has since been demonstrated many times. A 
particularly transparent derivation may be found in Hammad (2010, see section 2.4.2 and 
equation2.35). The derivation proceeds by calculating the gradient of the objective 
function with respect to the velocity model. This remarkable calculation has the result 
that, for a monochromatic wavefield, 

 ( ) ( )
2 *

,
,

ˆ ˆ( , , ) , , ), , (sv r s k
s r

k x z x zx z ω ψ ω δψ ωφ ω∇ = ∑  (3) 

where v∇  denotes the gradient with respect to the velocity model, and the other various 
symbols are defined in the box containing the FTFWI.  If equation 3 gives the gradient of 
the objective function, then it follows that we know the direction to step in a gradient 
search for the minimum of equation 2, but we do not know how far to step.  This "step 
length" is essentially the constant λ  in equation 1.  To derive equation 1 from equation 3 
the step length is symbolized a ( )λ ω  and we then integrate over all frequencies.  If the 
step length is assumed to be independent of frequency, the result is equation 1.  The 
derivation further assumes that the source wavelet is known, and if this is not the case 
then the step length becomes frequency dependent with ( )λ ω  possibly complex. 

Interpretation of equation 1 is very important at this stage.  Essentially, equation 3 is a 
monochromatic pre-stack migration where a cross-correlation imaging condition is used 
and both the source and receiver fields have been time-differentiated resulting in the 
factor 2ω .  Letting T denote record length, equation 3 is often written in the time-domain 
as 

 ( ) ( ),
,

( , ,, ) ( , , )t s t r s kv
s

k
r

x z t x z T t dtx z ψ δφ ψ∂∇ ∂ −= −∑∫  (4) 

where it is recognizable as a pre-stack reverse-time migration (RTM) with a cross 
correlation imaging condition between time-differentiated wavefields, which is then 
stacked over all sources and receivers.  Thus we can interpret equation 1 as saying that 
the kth update to the migration velocity model is proportional to an RTM of the kth data 
residual ( ),r s kδψ .  This is a very beautiful result that makes a great deal of sense in the 
light of experience with seismic migration.  A "successful" depth migration is usually 
morphologically similar to the velocity model.  Moreover, the many years of 
demonstrated success of impedance inversion of migrated sections is consistent with this.  
If a migrated section can be inverted for impedance, then it should be possible to deduce 
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a velocity model from the impedance estimate and re-migrate the data with improved 
results (this is rarely done).  These observations suggest the direction of investigation 
taken in this study that any migration, not just the double-differentiated RTM can be used 
to update the velocity model. 

  
Fig. 1.  The cycle of acoustic FWI (full waveform inversion).  The cycle has external inputs at a) 
the initial velocity model, and b) the actual (or recorded) seismic data.  The counter k begins at 1 
and increments to N when some stopping criterion (not shown) is met.  Step 1) Velocity model 

1kv −  is used to predict synthetic seismic data matching the acquisition geometry.  Step 2) The 
data residual (real data - synthetic) is pre-stack migrated and stacked.  Step 3) The pre-stack 
migration is "calibrated" to estimate a velocity perturbation kvδ .  Step 4) The velocity model is 

updated by adding the perturbation to 1kv −  to estimate kv . 

Figure 1 shows the cycle of FWI in the acoustic, constant-density context considered 
here.  The cycle consists of four steps that are iterated until completion.  There are two 
external inputs: the initial velocity model and the real seismic data.  An ordinary 
migration does a single iteration of step 2) and bypasses step 1).  Also, migration 
commonly uses a highly detailed initial model.  In contrast, FWI uses a very smooth 
initial model but one which contains at least regional gradients.  Step 1) uses velocity 
model 1kv −  to predict synthetic data using the same recording geometry as the real data.  
Then, in step 2), the data residual, , ,r k r r kδψ ψ ψ= − , is pre-stack migrated, again using 
velocity model 1kv − , and stacked.  The FTFWI states that this migrated stack can be used 
to predict an update to the velocity model.  Step 3) shows the calibration process which 
turns the migrated stack into a velocity perturbation.  Under the ideal circumstances of 
the FTFWI, this is a simple scaling but under more realistic conditions it involves 
estimation of frequency-dependent residual amplitude and phase adjustments.  In industry 
practice, this step is approximated by post-migration impedance inversion.  Finally, step 
4) adds the velocity perturbation to velocity model 1kv −  to produce the updated velocity 
model kv .  There is no guarantee that this cycle converges to the correct answer mostly 
because the seismic inverse problem is nonlinear.  This means that equation 2 has 
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multiple minima and, if the initial model is not sufficiently close to the true model, then 
the process may find a local minimum at best. 

To help clarify matters, it has been useful for us to ask, and answer, the question:  

When can an ordinary industry depth migration be expected to yield a useful velocity 
model update? 

Since an ordinary depth migration migrates the data directly and not the data residual, 
the answer is: 

When the velocity model is so smooth that the predicted data from it is essentially 
negligible, then the ordinary depth migration can possibly be used to update the velocity 
model. 

This condition is often not met in practice since it is common to use initial velocity 
models that have abrupt discontinuities.  However, the best practice in FWI uses very 
smooth initial models.  Furthermore, it is common to migrate only very low frequencies 
first and then proceed to higher frequencies using a velocity model updated by the low-
frequency result (Pratt, 1999).  The smoothness of the initial model is directly linked to 
the need for low frequency signal in the data.  Generally, the very lowest frequencies 
become low wavenumbers after migration and give low detail velocity perturbations.  
Pratt's scheme of progressing through the frequency band from low to high means that 
the velocity model gets progressively more detail as the FWI iteration proceeds.  Pratt 
(1999) suggests that this allows the nonlinear inversion to avoid local minima. 

The potential use of a conventional depth migration in an FWI iteration raises several 
questions.  Can we expect the simple proportionality of equation 1 to hold?  Can a 
deconvolution imaging condition be used?  How should the migration be converted to a 
velocity model update?  Can we easily iterate from low to high frequencies? 

It seems unlikely that the simple proportionality of a frequency-independent scalar 
will hold in this generalized context.  There is the issue already mentioned of an unknown 
source waveform giving rise to a complex-valued, frequency-dependent ( )λ ω .  
Furthermore, it may be that a code is available that does depth migration with a cross 
correlation imaging condition but without the double time differentiation of equation 4 or 
the 2ω  factor of equation 3.   

If a deconvolution imaging condition is used (which is a better estimate of reflectivity) 
then further corrections can be expected.  The general relation between a reflectivity 
estimate and an impedance perturbation is complicated and is explored in detail in 
Bleistein et al (2000).  However, it is common practice to compare migrated seismic 
sections to synthetic seismograms created from well control and then to estimate acoustic 
impedance.  In the constant-density, acoustic context an impedance estimate is essentially 
a velocity estimate.  The common algorithm involves wavelet estimation by matching the 
seismic data to a synthetic seismogram, computation of bandlimited impedance from the 
matched data, and merging of low frequency information from the well log.  The main 
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point here is that there is a long and successful history of estimating impedance (or 
velocity when density is known or constant) from depth migrated seismic data. 

While the FTFWI gives a very simple formula for converting a specific kind of 
migration to a velocity perturbation, there is every reason to believe that this can be 
generalized to other migration algorithms.  Rather than say that we are estimating a "step 
length" we prefer to call this process calibrating the migration.  We propose to calibrate 
the migration by some sort of matching to well control.  More specifically, we will match 
the stacked migrated data residual to the velocity residual at the well.  In detail, we will 
match the stack of pre-stack migrated data residuals, after smoothing with a selected size 
Gaussian smoother, to the velocity residual at the well.  By velocity residual we mean the 
difference between the migration velocity at the well and the velocity measured in the 
well.  That being said, there are many ways to do this matching and we have only begun 
this process.  Whatever the matching process, it must be designed at the well over the 
limited range of the well log and then applied to the entire migrated stack.  We have 
investigated Wiener match filters and found that they produce a very good estimate at the 
well but tend to produce artefacts when applied away from the well.  A more stable 
method has been to estimate a least-squares amplitude scalar and a least-squares constant-
phase rotation.  This can be done on narrow frequency bands to accommodate the 
expected frequency dependence. 

Our choice of migration algorithm is constrained by the codes that we have readily 
available.  However, we are confident that any depth migration can be made to work in 
this context.  In this paper we have chosen a pre-stack PSPI (Gazdag and Squazerro, 
1984) shot-record migration (hereafter simply called WEM (wave-equation migration)) 
because we know it works well on the Marmousi model and because it migrates each 
frequency independently.  This last point is a nice advantage over RTM because it allows 
the easy production of migrations limited to any desired frequency band.  Pratt (1999) 
prefers frequency domain FWI because it allows the velocity model to be updated first 
with low frequencies and then with progressively higher frequencies.  Using WEM 
allows us to do something similar while still doing time-domain modelling. 

In deriving the FTFWI it is assumed that the source wavelet is known.  This wavelet is 
then used in the forward modelling which then optimizes the cross correlations in 
equation 1.  In the next section we make this same assumption and so bypass any such 
difficulties.  In practice, we anticipate that industry standard deconvolution methods will 
be useful to estimate and compress the natural wavelets in the raw data and also to 
remove trace-to-trace variations.  Our final matching to well-control should then be able 
to cope with the residual wavelet. 

TESTING 

We have conducted a numerical experiment using the Marmousi model (Figure 2), 
where we created our own finite-difference (acoustic, constant density) data so that there 
would be no doubt about either the source waveform or the details of the modelling 
algorithm.  We created 40 shot records using finite-difference modelling (second order in 
time and space), with sources at the surface beginning at 4000 m, incrementing by 100m, 
and extending to 7900m.  Each source record has a split-spread receiver pattern with 
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offsets ranging from -2000m to +2000m at increments of 8.333m.  We show sample 
source records in Figure 3.  The source wavelet was chosen to be minimum phase with a 
5 Hz dominant frequency, even so the dominant frequency of the recorded data is higher 
at about 10 Hz (Figure 4). 

A starting velocity model was created by convolving the exact velocity model with a 
Gaussian smoother whose width was taken to be the nominal wavelength at 5 Hz, 
computed as /nom dom meanf vλ =  which works out to be about 580 m.  This starting model 
is shown in Figure 5.  In Figure 6 is a comparison of shot 20 (see Figure 3) as modelled 
through the true Marmousi model and through the smooth model.  It is apparent that the 
main feature in the record from the smoothed model is the first breaks and there is very 
little apparent reflection energy.  However, extremely low frequency reflection events are 
very difficult to identify visually. 

 

 
FIG. 2.  The Marmousi 2D model is shown with colour indicating acoustic wavespeed in 
meters/sec.  There is a 2:1 vertical exaggeration.  

 
FIG. 3:  Three of the 40 modelled shots used in this experiment. a) Shot 1, b) Shot 20, c) Shot 40. 
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FIG. 4:  a) Amplitude spectrum of the source wavelet used in the modelling. b) Average amplitude 
spectrum of shot 20 (see Figure 3). 

 
FIG. 5: The Marmousi velocity model of Figure 1 after convolution with a Gaussian smoother of 
width 580 m.  This is the initial model in the FWI simulation. 

 
FIG. 6:  a) Shot 20 of the test dataset (same as Figure 3b). b) A shot at the same location but 
modelled through the smoothed model of Figure 5. 

As a migration algorithm, in this study we use a pre-stack PSPI (phase-shift-plus-
interpolation) algorithm (Gazdag and Squazerro 1984) implemented by us (Ferguson and 
Margrave, 2005).  PSPI is a space-frequency algorithm which means that each frequency 
is migrated independently.  This has proven to be a very useful property because it 
facilitates an inversion process that is progressive in frequency by which we mean the 
low frequencies are inverted first and higher frequencies are inverted using the model as 
updated by the lower frequencies (as done by Pratt 1999).   
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PSPI is also a one-way depth-stepping algorithm and images primaries only whereas 
RTM, as is typically used in FWI, images all multiples.  However, the cross-correlation 
imaging condition used in RTM produces many artefacts which can be generally 
described as events which correlate in space but cannot possibly be reflections.  An 
example of such events would be a wave moving in a certain direction on the forward 
propagated source model and an event moving in nearly the same direction on the back-
propagated data.  Such events will correlate, often over a large areal extent, but one 
cannot possibly be the reflection of the other as they are moving in the same direction.  
The character of such an artefact is a low-frequency (i.e. very smooth) blurring of the 
image.  On the other hand, a one-way depth-stepping method such as PSPI will only 
correlate events moving down against those moving up and so will not produce similar 
artefacts.  So, while we cannot migrate multiples, we expect cleaner images of primaries 
than RTM. 

We have investigated both cross-correlation and stabilized deconvolution imaging 
conditions in our PSPI migrations.  If ( ), ,s x zψ ω↓  is the frequency-domain, downward-

traveling shot model at depth z  and ( ) ( ), ,r s x zψ ω↑  is the upward-traveling receiver data 

from that same shot at the same depth, then the cross-correlation image is given by 

 *
, ( )( , ) ( , , ) ( , , )cc s s r sI x z x z x z dψ ω ψ ω ω↓ ↑= ∫  (5) 

and the stabilized deconvolution image is given by 

 
*

( )
, *

max

( , , ) ( , , )
( , )

( , , ) ( , , ) ( )
s r s

dec s
s s

x z x z
I x z d

x z x z I z
ψ ω ψ ω

ω
ψ ω ψ ω μ

↓ ↑

↓ ↓

=
+∫  (6) 

where ( ) *
max

,
( , , ) ( , , )max s s

x
I z x z x z

ω
ψ ω ψ ω↓ ↓⎡ ⎤= ⎣ ⎦ .  In both of these equations, integration is 

over all migrated frequencies.  In equation 6, μ  is a small non-negative constant which 
we have taken to be 410− .  Note that equation 6 has the two limiting forms 

 

( ) *
, max

* *
, max( )

max

( , ) ,

1( , ) ,

r s
dec s s s

s

dec s r s s s s

I x z d I

I x z d I
I

ψ
ω μ ψ ψ

ψ

ψ ψ ω μ ψ ψ
μ

↑
↓ ↓

↓

↑ ↓ ↓ ↓

∫

∫  (7) 

so that when maxIμ  is negligible we get the ratio of reflected to incident fields which is an 
estimate of a reflection coefficient while in other extreme we get a simple, stable cross-
correlation.  

When used in a shot-record migration as in the present context, the cross-correlation 
imaging condition results in an image that must be gained to approximate a reflection 
coefficient.  Consider the simple case of normal incidence on a planar reflector beneath a 
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homogeneous medium of velocity v .  Then we can approximate both the incident and 
reflected fields at the image point as 2D Green's functions with the asymptotic forms 

( ) 1/2 /4, , ik i
s x z e ρ πψ ω ρ − +
↓  and ( ) 1/2 /4

( ) , , ik i
r s x z R e ρ πψ ω ρ − +

↑ , where /k vω= , ρ  is the 
2D distance from source to image point, and R is the normal incidence reflection 

coefficient.  Then, in this special case, we find  , ( , ) ~cc s
aRI x z
ρ

 and , ( , ) ~dec sI x z a R′  

where a dω= ∫  and 1 1
maxa I dμ ω− −′ ∫  are constants.  So the deconvolution image is 

proportional to R  while the cross-correlation image must be gained by ρ  to achieve 
simple proportionality.   

While it is theoretically possible to calibrate individual migrated shots into velocity 
perturbations, we have elected to stack the shots and calibrate the migrated stack.  Thus 
we ignore any AVO effects and also any misalignment in common image gathers. 
Therefore, the pre-stack migrations discussed here will all be stacked into a final image. 

It is interesting to compare migrations of the data only (standard practice) with 
migrations of the data residual as required by the FTFWI.  Figure 7 shows the migrated 
stacks using frequencies 0-5 Hz and the velocity model of Figure 5.  In panel 7a), is the 
image ,dec dec ss

I I=∑  formed using the data only while panel 7b) is a similar image 
formed by migrating the data residual, i.e. the difference between the actual data and that 
predicted by the migration model (Figure 6).  The large horizontal black event at the top 
of 7a) is an artefact formed by the first breaks.  In panel 7b) this artefact is suppressed 
because the data residual reduces the first breaks (see Figure 6).  In panel 7c) is the image 

,cc cc ss
I I=∑ formed from the data only while panel 7d) is a similar image formed with 

the data residual is in 7d).  The ccI
 
image in 7c) shows the first-brek artefact mentioned 

previously but is also clouded by a very-low frequency, white, pervasive artefact of 
unknown origin. Interestingly, this artefact is also not found in the data-difference 
migration.  While ccI  and decI  are quite different when only the data is migrated, when 
migrating the data residual they are quite similar.  This observation may well be specific 
to the particular frequency band used in this test, nevertheless, for the remainder of this 
test, we will only show decI  images of the data residual. 
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FIG. 7: Comparison of migration of the data versus migration of the data residual.  All migrations 
used only 0-5 Hz.  a) Deconvolution imaging condition migration of data only, b) As in a) except 
migration of the data residual, c) Cross-correlation imaging condition migration of data only, d) As 
in c) except migration of the data residual. The vertical red line on each panel is the location of 
the assumed well and log. 

As discussed previously, standard FWI uses a "line search" to find a single scalar to 
calibrate the migrated image into a velocity perturbation, and we feel that the WEM stack 
produced by PSPI will require a more detailed procedure. In particular, since we feel this 
step is closely approximated in practice by tying to well control and inverting for 
impedance, we simulate this process using a single column of velocity values from 

6000x =  m in the exact velocity model to simulate a well log.  Moreover, we limit the 
depth span of this log to the interval [ ]500, 2500 m (Figure 7).  

Figure 8 shows the result of the calibration process at the well. In detail, we first 
smooth the migrated stack with a 2D Gaussian smoother whose half-width is related to 
the shortest wavelength.  Secondly we determine the best (least squares) scalar required 
to match the migrated trace in panel 8a) to the velocity residual at the well, which is the 
difference between the blue and red curves in panel 8b). Thirdly, we determine the best 
(least squares) constant phase rotation to match the scaled, migrated trace to the velocity 
residual.  Finally, this amplitude scalar and phase rotation are applied to the entire 
smoothed migrated stack of Figure 7b) to create the velocity perturbation. This 
perturbation is the added to the migration model to form the velocity model for the 
second iteration, as shown in Figure 9. 
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FIG. 8: The calibration process at the well location (red line in Figure 7) is shown. a) The migrated 
trace from panel 7b at the well. b) The well velocity (blue) and the migration velocity at the well 
(red). c) the calibrated migration trace has been added to the migration velocity in the interval 
[500,2500] m over which the well was "logged". 

 
FIG. 9: a) The exact Marmousi velocity model (same as Figure 2). b) The smoothed starting 
model used in the migrations of Figure 7 (same as Figure 5). c) The velocity model after updating 
with the calibrated migration stack. The update was a scaled and phase rotated version of that in 
Figure 7b. The phase rotation and scaled factor were constant for the entire stack and are 
illustrated at the well in Figure 8. 

There are many ways that an iterative scheme can be constructed from these basic 
ideas.  Pratt (1999) inverts single frequency data using a number of iterations for each 
frequency.  Beginning with a very low frequency, in the range 2-5 Hz, Pratt then 
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proceeds to a higher frequency only after the inversion at a lower frequency has 
stabilized.  Pratt and co-workers have demonstrated very high resolution results using as 
few as 3 frequencies.  We have not yet been able to obtain results with so few frequencies 
but we have used the basic idea of beginning with low frequencies and moving up the 
spectrum.  Figure 10 illustrates one such iteration where we begin with the frequency 
band 0-4 Hz and progress towards higher frequencies in non-uniform steps.  In each case 
only one iteration was taken at each frequency band and the starting model for each 
frequency band was the result from the previous band.  Using a space-frequency 
migration algorithm like PSPI facilitates the selection of any desired frequency band, 
although in the modelling stage we are still modelling all frequencies. 

 
FIG. 10:  A sequence of velocity models resulting from a frequency-dependent iteration.  Narrow 
frequency bands were inverted sequentially beginning with the lowest frequencies.  The starting 
model for each iteration was that deduced by the previous iteration.  Most of the changes occur in 
the first few iterations but changes are still apparent on the last iteration (e.g. near 
(x,z)=(7200,500).   

In our calibration step, we smooth the migrated stack with a 2D Gaussian smoother of 
a selected size as the initial action.  In Figure 10, the smoother half-width was 
programmed to steadily decrease according to max/ (6 )w meanh v f=  where 2850meanv =  m/s 
is the mean velocity of the Marmousi model and maxf  is the maximum frequency in each 
iteration.  An investigation of the effect of this smoother half-width is shown in Figure 
11.  Here we fixed the frequency band at 1-40 Hz and varied the smoother on each 
iteration.  As before, each iteration provides an update to the the model determined by the 
previous iteration.  On each the twelve iterations, the smoother half-width was [1000 750 
500 400 300 200 100 50 40 30 20 10] in meters.  Figure 11 only shows the results from 6 
selected iterations.  Through iteration 6, very little has happened, then at iteration 7, with 
a smoother half-width of 100 m, the result comes sharply into focus.  Further 
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improvements through iteration 12 are present but subtle.  Using meanv  to estimate the 
mean wavelength, we find that the 200m smoother width is comparable to the mean 
wavelength at 15 Hz, which is essentially the dominant frequency (Figure 4b).  Figure 12 
shows the 2L  norm of the data residual corresponding to the experiment in Figure 11.  
The data residual is seen to decrease sharply on the iteration after the model sharpens. 

 
FIG. 11: A sequence of velocity models resulting from an iteration in which the frequency band is 
kept constant (1-40Hz) but the size of the 2D Gaussian convolutional smoother applied to the 
migrated stack is varied.  The smoother size is noted above each image. 

 
FIG. 12.  The 2L  norm of the data residual of the experiment in Figure 11. 

The experiments shown so far use a programmed mute in the migration stack.  Figure 
12 shows a sample CIG (common image gather) at the location of shot 40.  This gather 
was formed on the first iteration and hence used the velocity model of Figure 5.  It is 
apparent that stacking all offsets will not be optimal and three different mute trajectories 
are shown.  The normal mute represents a 1:1 offset:depth curve truncated by a maximum 
offset of 1500 m (here offset means the distance from the image point to a given source 
location).  The narrow mute is a 1:2 offset:depth curve and the wide mute is a 2:1 curve.  
Both are also limited by the maximum of 1500m.  The normal mute was used so far and 
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thus specifically in Figure 11.  We repeat the experiment of Figure 11 with the wide mute 
in Figure 14 and with the narrow mute in Figure 15.  The wide mute has allowed some 
clear artefacts into the solution but has also resulted in slightly higher spatial resolution.  
The narrow mute produces a smoother image with fewer artefacts and overall lower 
resolution. 

 
FIG. 13.  A CIG (common image gather) formed at the location of shot 40 on the first iteration of 
the experiment of Figure 11.  Three mute trajectories are shown: normal (h1), narrow (h2), and 
wide (h3).  For any depth, only samples at offsets less than the mute trajectory are allowed into 
the stack. 

 
FIG. 14: Similar to Figure 11 except that the wide mute (Figure 13) was used. 
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FIG. 15: Similar to Figure 11 except that the narrow mute (Figure 13) was used. 

As a final experiment, in Figure 16 we show an experiment similar to the previous 
ones except that the smoother was fixed at 12m for all iterations and the wide mute was 
used.  Here the image sharpens right away and is essentially stable after 3 iterations.  The 
resolution seems quite high.  Figure 17 shows the 2L  norm of the data residual for this 
experiment and we see that it does reach a minimum at the third iteration.  In Figure 18 
we compare the original shot 20 with the prediction of shot 20 after the third iteration.  
While these shots have many similar features, there are also clear differences. 

 
FIG. 16:  An experiment similar to those of Figures 11, 14, and 15 except that the smoother was 
held constant at 12m and the wide mute was used. 
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FIG. 17:  The 2L  norm of the data residual for the experiment of Figure 16 is plotted versus 
iteration number. 

 
FIG. 18.  a) Shot 20 of the test dataset (same as Figure 6a). b) A shot at the same location but 
modelled through the velocity model Figure 16 (iteration 3). 

DISCUSSION AND CONCLUSIONS 
We have presented an investigation into the foundations of FWI (full waveform 

inversion) in which we have isolated the four essential steps in the FWI iteration and 
compared them to standard practice.  External inputs to the iteration are the recorded data 
and an initial velocity model, which should be very smooth.  The first step in the iteration 
is a forward modelling step to predict the recorded data given the initial velocity model.  
Then the data residual, the difference between the recorded and predicted data is migrated 
and stacked.  Theory seems to call for a reverse-time migration but we have demonstrated 
the use of a standard wave-equation migration (PSPI) is possible.  The third step in the 
cycle, which we call calibration, is designed to convert the migrated stack into an 
estimate of a velocity model update.  Theoretically, this is expected to be a simple 
frequency-independent scaling that is accomplished by a simple forward modelling 
iteration called a line-search.  However, we have argued that this simple scaling is not 
likely true when the source waveform is unknown and when a wave-equation migration 
is used.  We have argued that this calibration step is comparable to the standard process 
of impedance inversion by matching to well control.  We have tested the implementation 
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of calibration using well control where, at each step in the iteration, we calibrate to the 
velocity residual which is the difference between the well velocity and the migration 
velocity.  We implemented a three-step calibration procedure: (i) smooth the migration 
with a selected convolutional smoother, (ii) determine the best (least-squares) scalar to 
match the smoothed migration to the velocity residual, and (iii) determine the best (least-
squares) phase rotation to match the scaled and smoothed migration to the velocity 
residual. 

We demonstrated these concepts using 40 shots created from the Marmousi model 
using time-domain, acoustic finite-difference modelling.  Our starting velocity model was 
created from the exact one by 2D smoother with a 590m wide Gaussian.  We show a 
variety of iterations in which we varied the frequency band from low to high, varied the 
smoother length, and varied the mute used in the migration stack.  In all cases, we were 
able to get reasonable results after only a few iterations.  Examination of the 2L  norm of 
the data residual showed that it tends to decrease sharply and then either level off or 
increase.  The number of useful iterations was generally less than 12. 

This study raises a number of questions including: 

• What is the best way to calibrate the migration when well control is available? 

• How does calibration to well control compare to calibration without well 
control using a line search? 

• How does the type of migration algorithm influence the calibration step? 

• What limitations are imposed by using one-way migration instead of reverse 
time migration?  What advantages are gained? 

• What is the optimal iteration procedure?  Should the iteration proceed from 
low to high frequency or should the smoother be varied?  Or perhaps another 
process altogether. 

We hope to report soon on further investigations into these issues. 

ACKNOWLEDGEMENTS  

We thank the Sponsors of CREWES for their continued support and also thank 
NSERC, MITACS, and the sponsors of POTSI.  We thank Hussain Hammad for an 
excellent thesis and informative discussions. 

REFERENCES 
Bleistein, N., J. K. Cohen, and J. W. Stockwell, 2000, Mathematics of multidimensional seismic imaging, 

migration, and inversion: Springer, Interdisciplinary Applied Mathematics Series, 13. 
Claerbout, J., 1971, Towards a unified theory of reflector mapping: GEOPHYSICS, 36, 467-481. 
Claerbout, J., 1976, Fundamentals of geophysical data processing: McGraw-Hill.  
Cooke, D.A., and W. Schneider, 1983, Generalized linear inversion of reflection seismic data: Geophysics, 

48, 665-676. 



Margrave, Ferguson, and Hogan 

20 CREWES Research Report — Volume 22 (2010)  

Ferguson, R. J., and Margrave, G. F., 2005, Planned seismic imaging using explicit, one-way operators: 
Geophysics, Society of Exploration Geophysicists, 70, S101 - S109. 

Gazdag, J., and Squazerro, P., 1984, Migration of seismic data by phase shift plus interpolation: 
Geophysics, 49, 124-131. 

Hammad, H. I., 2010, Waveform inversion for areas with complex near surface, MSc. thesis, Department 
of Geoscience, The University of Calgary.  

Lailly, P., 1983, The seismic inverse problem as a sequence of before stack migrations: Conference on 
Inverse Scattering, Theory and Application, Society of Industrial and Applied Mathematics, 
Expanded Abstracts, 206-220. 

Lindseth, R. O., 1979, Synthetic sonic logs - a process for stratigraphic interpretation: GEOPHYSICS, 44, 
3-26. 

Oldenburg, D., T. Scheuer, and S. Levy, 1983, Recovery of the acoustic impedance from reflection 
seismograms: Geophysics, 48, 1318-1337. 

Pratt, R. G., 1990, Inverse theory applied to multi-source cross-hole tomography, Part II: Elastic wave-
equation method: Geophysical Prospecting, 38, 311-330. 

Pratt, R. G., and M. H. Worthington, 1990, Inverse theory applied to multi-source cross-hole tomography, 
Part I: Acoustic wave-equation method: Geophysical Prospecting, 38, 287-310. 

Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain, Part I: Theory and verification in 
a physical scale model: GEOPHYSICS, 64, 888-901. 

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: GEOPHYSICS, 49, 
1259-1256. 

Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration geophysics: 
GEOPHYSICS, 74, WCC1-WCC26. 

 


