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ABSTRACT

An implicit preconditioned conjugate gradient scheme isvéel to implement nonsta-
tionary phase shift for irregularly sampled seismic daiagiteast squares. This implicit
scheme gives fast convergence at all frequencies at theotast approximation to the
evanescent filter. This results in some error in the resujimase shifted and regularized
data. Our implicit scheme suggests an explicit scheme wimébrtunately does not per-
form any better than the standard unconditioned schemefaEhenplicit scheme suggests
that an appropriate preconditioner can be found that willoe the runtime of the algo-
rithm without sacrificing accuracy, and this will result im@bust trace regularization and
statics algorithm for use in heterogeneous media.

INTRODUCTION

To correct for surface statics and irregular trace spacefgre migration, Ferguson
(2006) presents an inversion algorithm based on the ph#sensithod of Gazdag (1978).
Acquired seismic data is extrapolated recursively throthghnear surface by weighted-
damped least squares. The result is a regularly sampledielavat a flat datum, which
can then be imaged using migration techniques that usesh&darier transform.

Implementation of this operator as a matrix is extremelytlgde compute. The asso-
ciated Hessian is constructed at the cost of matrix-mattkiplication, with complexity
O(n?), wheren is the number of traces. Inversion of the Hessian by Gausgiimmnation
also has complexit¥)(n?). These computations have to be repeated for every depth step
and every frequency.

We can reduce these costs by recasting the problem in a @ejgoadient framework,
replacing matrices with function calls, where the Hesssaapiplied as a forward operator,
and the extrapolated wavefield can be computed by an iteragarch. The cost of the
resulting inversion scheme is the cost of applying the fodvagerator times the number of
iterations required for an acceptable approximation. dviland Ferguson (2010) presents
an application of this inversion scheme. The cost of applyime forward operator can be
reduced t@)(vnlogn), where v is the number of reference velocities in the veyatiodel.
The algorithm converges in undefn iterations for large frequencies, but fails to converge
quickly for lower frequencies.

Wilson and Ferguson (2010) postulate that the poor conuergin the lower frequen-
cies is caused by the evanescent filter embedded in the phifisex¢rapolator. Here we
will derive two preconditioning schemes by which the ef§aaf this filter can be mitigated,
and we observe the effects of this change on the convergateefrthe conjugate gradient
method.
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THEORY

A wave equation inversion for seismic data given by Fergy2006) simultaneously
corrects for velocity variation in the near surface andgutar trace spacing using non-
stationary phase shift operators. Here we discuss the@aweint of these operators, and
their applications to statics and trace regularization.tNém build a framework by which
to design preconditioning operators to improve the inwersif this operator by conjugate
gradients.

Non-stationary Phase Shift Operators

In a layered medium, the phase shift operator acts withilyerlan a monochromatic
wavefield p, at depthz by way of a spatial fast Fourier transform, followed by multi
plication by an extrapolation function, then an inverse fasurier transform. Written as
matrices, we have

PAz(‘Pz) = [IFT] [aAz] [FT] Pz (1)

Here[aa.| is a diagonal matrix that applies the phase shift operatthrdrwavelike region,
where || < |k.|, and attenuates energy in the evanescent region, where> [k,|.

The diagonal elements dfva,] are computed from the layer velocity and the input
wavenumbek, using the formula,

aAz(ka:a 'Uz) = 6iAZkZ> (2)
where the wavenumbétr, must satisfy the dispersion relation,
w 2
gk (2) @)
v,

whereu, is the layer velocity. We can choose the sigrkoso that the operator propagates
the wavefield in the direction ok~ in the wavelike region, wherg?| < |k,|, and atten-
uates energy in the evanescent region, whefe> |k,|. These conditions are satisfied in
Ferguson (2010), where is given by,

kz:Re{ (%)2—k§}+isgn(Az)Im{ (%)2—k2} @)

To accommodate lateral velocity variation, we use a set n§tamt velocity windows,
defined for a given reference velocity by

)1 ifu(r) =
(@) = {O if v(z) #v;’ ®)

and the phase shift operator becomes

PAZ(QOZ) = Z [Q]j[]FT] [QAZ]J’[FT]QOZ' (6)

J
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Evanescent Filter

The wavefield extrapolatar,. can be factored into two parts: a complex exponential
that performs the phase shift, and a negative real exp@gwtiich acts as an evanescent
filter. Wilson and Ferguson (2010) note that convergenceefdast squares inversion of
Px. was fast for high frequencies, and slow for low frequencigisere the data vector
crosses into the evanescent region. It was postulatedHisaslbw convergence was the
result of the evanescent filter. To overcome this difficutg,can factor the filter out of the
least-squares Hessian. To that end, exprigssas,

an, = exp (2miAzk,)

= exp (2miAzRe{k.} — |Az| Im{k.}) (7)
exp (2miAz Re{k.}) exp (—|Az| Im{k.}).
P F
QAN

So we can factojua ] into two diagonal matrices, one that applies the phase sinift one
that applies the filter.

[oa:] = [or.][ea] (8)

Now if we alter eacHak ] to filter with respect to the highest reference velocity, \aa ¢
factor the matrixPa .

Paz(¢:) = Z[QHIF T][ox.)lon] [FTe-

= {Z JUFT)[ax M [ex ) [FT T e-

We can then factor the operatér out of the Hessian matrix, which results in a better
conditioned system for our conjugate gradient framework.

L east Squares Minimization

To correct for surface statics and irregular trace spackegguson (2006) models
seismic data as follows: given a recorded wavefigldat depthz, assume thap, =
WeP_a.0..n.+n, WhereP_ A is an upward phase shift, as in Equationig,is a weight-
ing operator that models irregular trace spacing and tauigr, as in Reshef (1991), and
is an additive noise term. This is a mixed-determined lisyatem (Menke, 1989), so the
least-squares approximation@f, ». can be recovered by solving the normal equations,

P A Wep = [P A, WePoa. + W] 0oyas (10)

Here P* . is the adjoint ofP_., W,, is @ smoothing operator, ards a user parameter
that controls the amount of smoothing. However, since weltaw. = P_a.F, we can
write P* ., = F*P*,,, and our normal equations become,

F*Pr g Wep, = [F*P* A\ WP pF + W] 02y ase (11)
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Factoring out the"'s and cancelling™ on the right gives us,
Pr A\ Wep, = [P AW P_p, +e(FY) W F 7 Foooin. (12)

Equation 12 can be solved fétyp, . . by conjugate gradients, and the extrapolated wave-
field can then be computed by invertidg which is fast ag' is just a diagonal operator
followed by a fast Fourier transform.

Complexity

Many techniques exist to solve linear systems, and the ¢gsiving the normal equa-
tions (Equation 10) will vary depending on the inversion noet used. A summary of the
complexities of various options can be found in Table 1 oregagDirect matrix methods
such as Gaussian Elimination and LU Factorization are widséd due to their versatility
and ease of use, but require explicit computation of the idessatrix, and generally carry
the largest cost (Burden and Faires, 2001). When speediredeserative methods can
be used to seek an approximate solution with fewer comuunstti

For ease of notation, denote lbi/the Hessian operator on the right-hand side of Equa-
tion 10, and the transformed wavefield vector on the left-hand side. Thblpm can then
be written as a linear system given by,

Hz =0, (13)

where we wish to compute the unknown vectoiTo evaluater by Gaussian Elimination,
we would first need to compute the matrix form/f The simplest way to do this is to first
compute the matrix form aP_ .. For a survey with trace locations, we compute . by
applying the phase shift operator to the columns ofithen identity matrix. The outputs
would become the respective columnsiéf,.. The cost of applying”_a. to a single
column isO(vnlogn), wherev is the number of different velocities found in our model at
the current depth step (Ferguson and Margrave, 2002). fdnerdull evaluation ofP_A .

is O(vn?logn). We can then take the adjoint of this matrix, and compeitg, W.P_x.

by matrix-matrix multiplication, which i€ (n?).

To reduce this cost, Ferguson (2006) computes only a linmtedber of diagonals of
the matrices fo’_, and P* 5 ,, and sets the remaining entries to zero. This can be done
in O(dn?), whered is the number of diagonals computed. Furthermore, multiglywo
d-diagonal matrices together can be accomplishe@(if¥n). This constraint forces a dip
limitation on the data can be handled, as we are assertimghtbdehaviour of a given
point in space at one depth level cannot be affected by poirgpace at adjacent depth
levels that are more thahspaces away.

We could eliminate the need for matrix-matrix multiplicatinere by applying the full
Hessian operator to the columns of the identity matrix, Wwhiould reduce the total cost
to n applications each oP_,. and its adjoint, plus: applications of the weight matrix,
for a total complexity ofO(2vn?logn + n?), or simplyO(vn?logn). Proceeding in this
manner takes advantage of the fact thaf . uses the fast Fourier transform, so applying
P_x. is faster than matrix-vector multiplications for large egb values of..
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Operation Type Algorithm Complexity
Hessian Construction Matrix Phase Shift function plus Mg-O(n?)

trix Multiplication
d-Diagonal Matrix Multipli- | O(dn?)
cation

Full Hessian Function

LU Decomposition
Conjugate Gradients
Function Call| Conjugate Gradients O(C(n)H(n))

o(
Series Approximation O(n*logn)
Function Call| Prewritten Function 0(0)
Hessian Application | Matrix Matrix-Vector Multiplication | O(n?)
Function Call| Full Hessian Function O(vnlogn)
Inversion Matrix Gaussian Elimination O(n?)
o(
o(

Table 1. Complexities of computational options for algorithm construction. Due to the variety of
Hessian application types, H(n) is used to denote the complexity of the Hessian construction and
application used. v is the number of distinct velocities in the model, and C(n) is the number of
conjugate gradient iterations required for an acceptable approximation.

The complexity of computing and addirgV,,, varies with the choice of smoother,
but can be chosen, as in Ferguson (2006) and Ferguson (Zxl@)at the cost is low
compared to the previous steps, so we will assume the coggiggible here. Finally,
Gaussian Elimination itself i©)(n?) (Cohn et al., 2005). Each of these steps occurs in
sequence, so the total complexity of the method is equivadetihe most expensive step,
which isO(n?).

To further reduce the cost, Ferguson (2010) expresses tb&dteas the composition
of the forward and adjoint operators, and derives a trudc@églor series expansion to
reduce the cost of computing the matrix form. Computatiothefresulting approximate
Hessian ig0(n? log n), which is independent of the number of different velocifiessent
in the layer. Smith et al. (2009) replaces Gaussian Elinonatith conjugate gradients to
reduce the runtime of the inversion by a factor of 10, but tineber of conjugate gradient
iterations required is not specified, so an asymptotic niaitan not be derived.

Conjugate Gradients

The conjugate gradient method is an iterative algorithna tis@pproximate a solution
to a positive definite linear system of equations (HestendsStiefel, 1952). In our case it
can be used to recover the source wavefield, . from Equation 10. In contrast to direct
matrix methods, the conjugate gradient algorithm useseantive search technique that
can obviate the need to compute the Hessian matrix explidithis is desirable when an
application of the operator is much faster than standardixmatctor multiplication, as is
the case in our algorithm.

To solve a linear system by conjugate gradients involvessing an initial valuer,
and computing a residual vectey = b — Hxy. The cost of this step is dominated by the

CREWES Research Report — Volume 22 (2010) 5



Wilson & Ferguson

cost of applying the operatdy to zy. This residual vector defines a search direction that
we use to refine our guess. Subsequent iterations are sigxtz@pt the search directions
are adjusted to take advantage of the positive definitetstreiof the operatofi. For an

n x n matrix H, assuming perfect arithmetic, this method is gonad to produce an exact
solution to the system after iterations (Hestenes and Stiefel, 1952), and an acceptable
approximation can be attained using machine arithmetiewef iterations if the matrix is
well conditioned. In this case, we should be able to solventagrix form of the system

in O(C(n)n?), and the functional form i (C(n)vnlog (n)), whereC(n) is the number

of conjugate gradient iterations required. This is a sigaiit cost decrease wherns very
large, and the number of reference velocities in the modehiall.

If the system is particularly sensitive to rounding errahss method might not find a
solution to the system quickly, and may fail to find an acceletapproximation at all. We
call such a system “ill conditioned.” In fact, Wilson and geason (2009) implements this
algorithm with no preconditioning, and notes that the athan tends to converge quickly
in the high frequencies, where no evanescent filter is agpdad very slowly or not at
all in the lower frequencies. Such a system must first be meitoned by selecting an
invertible conditioning operatar’ so that the operataii - given by

H=CH.C* (14)

is better conditioned (Burden and Faires, 2001). Then weapaly conjugate gradients to
solve an alternate system given by,

Hepo = ¢c, (15)

wherepc = C*p andpe = C~1p, and computéC*) 1 to obtain the desired result.

Implicit Preconditioner

Noting the similarities between Equation 14 and Equatiosuggests a first choice of
preconditioner. If we think o€ has being factored out of the original operator on the left,
andC* as being factored out on the right, the factorization in Equall immediately
gives us

H = [P\, W.P_p,+eW,] (16)
HC = [ijZWep—Az + E(F_l)*WmF_l} (17)
C = F* (18)

Since H is our poorly conditioned system, the implication th&t is better conditioned
would lead us to try¥™ as a preconditioner, wheré* is given by

*

F* = ([okJ[FT])
= [FTT (oL, (19)
[IFT][ak,)-

Noting that[F'T] is unitary, anda’k
adjoints of F’ are simple to derive.

is diagonal and real valued, the inverse and inverse
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As a result, we have an implicitly preconditioned inverssasheme that we can use to
solve our problem. We simply construct the normal equataanssual, but using the trans-
formed phase shift operator with no evanescent attenualiblen we feed the resulting
operatorH. and input data into the standard conjugate gradient algorithm, which will
return an approximation af'z. Then we can derive the result of the original problem by
applying #~! to this approximation.

Explicit Preconditioner

In order to derive the implicit scheme we were forced to makeaproximation; we
had to assume that all the phase shift symbols were actilg@spect to the same velocity,
so that each evanescent filter was the same. This introdaces@& into the calculation
that may cause undesirable artifacts in the result. Howelrerconjugate gradient algo-
rithm can be adapted to handle preconditioning explicByrfen and Faires, 2001). To
apply explicit preconditioning, we would pass the origioperatorf, along with the data
vectorb, and the preconditioning operatér = F™* into the algorithm. We expect to see
a similar speedup to that of the implicit scheme here, withe artifacts created by the
approximation.

EXAMPLES

To test these preconditioners, we forward propagate a tyatieer of 256 synthetic
traces (Figure 1(b)) using the operafot, defined in Equation 6 using the reference ve-
locity model shown in Figure 1(a), and withz = —100m. A random noise term is added
to the result, set td0db below the signal level, and a random sampla(8b of the traces
are set to zero. The transformed wavefield is shown in Fig{cg 1This data is then
run through the inversion, first with no preconditioningenhusing the implicit scheme,
followed by the explicit scheme.

With no preconditioning, we can see in Figure 2(a) that theefiald is effectively
recovered, with some artifacts arising where there wemafsggnt gaps in trace coverage,
although missing traces were effectively interpolatedwkeler we can see in Figure 2(c)
that the inversion was slow, and failed to converge to angabée solution in the low
frequencies. The residual error (Figure 2(d)) correlatiéls the convergence rates.

Using the implicit preconditioning scheme, we can see iufg@(a) that the wavefield
is likewise effectively recovered, but some additional ruiceal error is introduced because
of our approximation of the evanescent filter. However theveagence rate is dramatically
improved, as the algorithm converged everywhere in ubdéerations (Figure 3(c)). This
is not as good as this iterations implied by Burden and Faires (2001), but it remado
see how this number scales @sncreases. The residual error is below the tolerance of
10~¢ that was allowed during the inversion.

We would expect that some of this improvement would carryr doethe explicitly
preconditioned scheme, but this was not the case. Conwggerthe low frequencies was
worse than that of the standard scheme (Figure 4(c)), ane$idual error is much higher
in the 20-50Hz range than either of the previous two schefigsiile 4(d)). The image
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quality of the recovered data is acceptable, however, anmgpacable to the standard and
implicit schemes.

The fast convergence of the implicit scheme suggests thed th a choice of precondi-
tioning operator that would improve convergence in the iekcheme without damaging
the accuracy of the solution, although the clear choicetisrdperator does not give us the
results we want, and a better operator has yet to be detedm8igch an operator would
give us a robust method for performing trace regularizatiorseismic data that may be
feasible for very large trace gathers.

CONCLUSION

We have demonstrated the possibility of a preconditionimgrator that will make this
algorithm run quickly and accurately on large trace gathaltough the exact nature of
this operator has yet to be determined. The implicit schemaich faster than the standard
scheme, but requires us to make an approximation that castts in the resulting
output wavefield. The explicit scheme failed to live up to #xpectations generated by
the implicit scheme, but other choices of preconditionéstdkat have yet to be explored.
The implicit scheme gives us a fast, although not very adeuienplementation of the
statics and trace regularization method, that we could apetform a large scale test of
the algorithm, to see how the runtime scales with the sizhefriput.
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FIG. 1. (a) Laterally varying velocity model. (b) The unknown source wavefield.

(c) Forward
modelled synthetic data.
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FIG. 2. Output for the nonpreconditioned scheme. (a) The recovered wavefield. (b) The difference
between the recovered wavefield and the source. (c) The number of CG iterations required at each
frequency. (d) The residual error of the output at each frequency.
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FIG. 3. Output for the implicit preconditioning scheme. (a) The recovered wavefield. (b) The differ-
ence between the recovered wavefield and the source. (c) The number of CG iterations required at
each frequency. (d) The residual error of the output at each frequency.
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FIG. 4. Output for the explicit preconditioning scheme. (a) The recovered wavefield. (b) The differ-
ence between the recovered wavefield and the source. (c) The number of CG iterations required at
each frequency. (d) The residual error of the output at each frequency.
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