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ABSTRACT 

Methods of multigrid have been widely used in solving partial differential equations in 
physics and mathematics. With the ability of faster recovery of the low frequency 
components of the solution, they have been used in solving some problems in the 
exploration geophysics. 

Our previous studies showed that the standard method of multigrid is not viable to 
solve the Kirchhoff least squares prestack migration equation for two reasons. First, the 
kernel of the main problem is not a diagonally dominant matrix and solvable by the 
typical multigrid solvers, Jacobi and Guess Seidel. Second, kernel matrices are extremely 
large to work with. 

This study investigates the feasibility of using multigrid methods in solving a system 
of Gazdag least squares migration. It is shown by doing least squares migration for each 
temporal frequency at the time the kernel matrix become smaller, but it is a diagonally 
non-dominant matrix. By implementing least squares for each temporal and spatial 
frequency separately, the kernel matrix remains non-diagonal dominant. Best scenario is 
performing least squares migration for each temporal frequency and depth separately at a 
time. The kernel matrix reduces to a diagonal and easily invertible matrix.   

1. INTRODUCTION 

Stacked seismic data suffers from the presence of the diffracted energies and incorrect 
positioning of the dipping layers. Migration is a method to move dipping reflection 
events to their true geological locations and collapse the unwanted diffracted energy back 
to the scatterpoint locations. 

Diffraction summation (Hagedoorn, 1954) is the first computational method of 
migration. Diffraction summation then developed to the Kirchhoff migration. Claerbout 
and Doherty (1972) showed how migration is an approximate solution to the wave 
equation. The integral formulation of the Kirchhoff migration was introduced later by 
Schneider (1978). Gazdag (1978) and Stolt (1978) developed the migration methods 
using the Fourier transform domain (Gary et al., 2000). Reverse time migration, the most 
expensive wavefield continuation method of migration was introduced later (Baysal et 
al., 1983; Whitmore, 1983). Hill (1990) introduced the Gaussian beam migration based 
on the decomposition of data and source function in Gaussian beams. 

With a simple geology structure and in the case of regularly and completely sampled 
data, Kirchhoff, Stolt, or Gazdag migration produce a reasonable estimate of the 
underground reflectivity. However, they may not be able to reveal a complex subsurface 
geology with the strong lateral velocity variations. Kirchhoff migration with ray tracing, 
some extensions to the Gazdag migration for example Phase Shift Plus Interpolation 
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(PSPI) migration (Gazdag and Sguazzero, 1984) and Non-Stationary Phase Shift (NSPS) 
migration (Margrave and Ferguson, 1999), are able to consider the lateral velocity 
variations. 

These methods need a dense and regularly sampled seismic data to succeed. However, 
it is impractical or expensive to acquire a dense and regularly sampled seismic data. Even 
if for instance, Kirchhoff migration is able to handle incomplete or irregularly seismic 
data, it may produce migration artifacts. This is explained in more detail in the previous 
CREWES report (Yousefzadeh and Bancroft, 2009). Augmenting migration by a 
generalized inverse (Tarantola, 1984) and using least squares migration or inversion 
instead, reduces the migration artifacts (Nemeth et al., 1999; Duquet et al., 2000; Kuehl 
and Sacchi, 2001). 

In case of Gazdag migration in a 𝑣(𝑧) media, the steep dip components are not being 
migrated properly. Least squares migration can be used for recovery of these parts of the 
migrated images too (Ji, 1997).   

Least Squares Conjugate Gradient (LSCG) (Scales, 1987) has been used or 
recommended for solving the least squares migration equation by many researchers 
(Nemeth et al., 1999, Duquet et al., 2000, Kuehl and Sacchi, 2001, and Yousefzadeh, 
2008). Yousefzadeh and Bancroft (2009) investigated the feasibility of solving least 
squares Kirchhoff prestack migration using multigrid methods. In the current study, the 
feasibility of using multigrid method for solving the Gazdag least squares migration is 
investigated. This is an ongoing research and authors are extending the study to solve 
least squares phase shift prestack migration in the future.  

2. GAZDAG MIGRATION 

Phase shift or Gazdag migration was introduced by Gazdag (1978). Here, for 
simplicity, the Claerbout definition of the Gazdag migration (Claerbout, 2005) is 
explained. Gazdag migration may be well explained with the downward continuation 
concept. 

2.1. Downward continuation 

 Considering  𝑃(𝑥, 𝑧 = 0, 𝑡) to be a recorded compressional wavefield on the earth 
surface, migration is just the extrapolation of this wavefield to the zero time: 𝑃(𝑥, 𝑧, 𝑡 =0). For simplicity, let assume that the subsurface velocity is horizontally invariant, 𝑣 = 𝑣(𝑧), and there is no multiple reflections. If the upcoming wave consists of only a 
vertically upcoming plane wave as 𝑢(𝑥, 𝑡, 𝑧 = 0) = 𝑢(𝑡)𝑐𝑜𝑛𝑠𝑡(𝑥), it can be downward 
continued back to the earth by a simple time shifting which is equal to the convolution 
with an impulse function (Claerbout, 2005): 

 𝑢(𝑡, 𝑧) = 𝑢(𝑡, 𝑧 = 0) ∗ 𝛿(𝑡 + 𝑧 𝑣⁄ ),  (1) 

where ∗ denote the convolution operator, 𝑣 is compressional velocity and 𝛿 is the Dirac 
delta function. In the frequency domain this can be done by the multiplication with a 
complex exponential: 
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  𝑈(𝜔, 𝑧) = 𝑈(𝜔, 𝑧 = 0) 𝑒ିఠ௭ ௩⁄ .  (2) 

where 𝜔 is the angular temporal frequency and 𝑖 = √−1. 

Instead of vertically traveling wave, if the plane wave arrives at the surface with an 
angle 𝜃, the angle between the waveform and the earth surface, and with the assumption 
of stationary waveform, it can be downward continued into the earth. In such cases, the 
time shift, Δ𝑡, is Δ𝑧 cos 𝜃 𝑣⁄ .  

The downward continuation function to an interval Δ𝑧 is: 

  𝑢(𝑡, 𝜃, 𝑧 + Δ𝑧) = 𝑢(𝑡, 𝜃, 𝑧) ∗ 𝛿(𝑡 + Δ𝑧 𝑣ൗ  cos 𝜃),  (3) 

and in the frequency domain is expressed by (Claerbout, 2005): 

 𝑈(𝜔, 𝜃, 𝑧 + Δ𝑧) = 𝑈(𝜔, 𝜃, 𝑧) exp(−𝑖𝜔 Δ𝑧 𝑣ൗ cos 𝜃).  (4) 

This is the equation for the downward continuation of any wave in a constant velocity 
media. By considering the earth subsurface as a constitution of horizontal layers with 
constant velocity inside each layer, this equation in extendable to a media with 𝑣 = 𝑣(𝑧)  
(Claerbout, 2005). In the case of downward continuation depth steps must be smaller than 
the layer thickness. 

Using the Snell’s parameter, 𝑝 = sin 𝜃 𝑣⁄ , 𝜃 can be eliminated from equation (4) : 

 𝑈(𝜔, 𝑝, 𝑧 + Δ𝑧) = 𝑈(𝜔, 𝑝, 𝑧) exp(ିఠ௭௩(௭)  ඥ1 − 𝑝ଶ𝑣(𝑧)ଶ),  (5) 

which states the downward continuation for each Snell’s parameter. Since any real 
waveform can be considered as the summation of sinusoids with different frequencies 
and amplitudes, the seismic data can also be decomposed to Snell waves of all values of 𝑝s. Then each one downward continued separately and summed again. This is downward 
continuation using Fourier transform.  

It can be shown that a plane wave is a point in the (𝜔, 𝑘௫, 𝑘௭) space, where 𝑘௫ and 𝑘௭ 
are wave numbers or spatial frequencies on the 𝑥 and 𝑧 axis and defined by (Claerbout, 
2005):  

 𝑘௫ = ఠ௩ sin 𝜃,  𝑘௭ = ఠ௩ cos 𝜃,  (6) 

respectively. 

Replacing equations (6) in the equality sinଶ 𝜃 + cosଶ 𝜃 = 1, results the dispersion 
relation: 

 𝑘௫ଶ + 𝑘௭ଶ = ఠ௩  .  (7) 

Replacing 𝑘௫from equation (6) into the Snell’s parameter, 𝑝 = sin 𝜃 𝑣⁄ , results in: 
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 𝑝 = ఠೣ ,  (8) 

which helps to eliminate 𝑝 from equation (5) (Claerbout, 2005): 

 𝑈(𝜔, 𝑘௫, 𝑧 + Δ𝑧) = 𝑈(𝜔, k୶, 𝑧) exp(− ఠ௭௩(௭)  ට1 − ௩(௭)మ୩౮మனమ  ),  (9) 

or  

 𝑈(𝜔, 𝑘௫, 𝑧 + Δ𝑧) = 𝑈(𝜔, k୶, 𝑧)e୧୩.  (10) 

This is the equation for the downward continuation of the surface recording of an 
upcoming wave. 

2.2. Gazdag migration  

Gazdag migration begins with the 2D Fourier transformation of seismic data to (𝜔, 𝑘௫) domain. Then, for each depth interval, Δ𝑧, the Fourier transformed data is 
multiplied by 𝑒௭. The resulted wavefield is evaluated at 𝑡 = 0, by summation on all 𝜔s. Since equation (9) is for the downward continuation of upgoing waves, to incorporate 
the downgoing wave as well, we need to multiply the time delay by two or equivalently 
divide velocity by two: 

  𝑒௭ = exp ቆ−𝑖 𝜔 ଶ௩(௭)  ට1 − ௩(௭)మమೣସఠమ   Δ𝑧ቇ.  (11) 

The last step is the inverse Fourier transformation from 𝑘௫ to 𝑥. This algorithm is 
explained in more detail elsewhere in this report. 

 3. LEAST SQUARES MIGRATION EQUATION 

Convolution, Kirchhoff and phase shift seismic modelling are some geophysical 
problems that can be formulated in a general linear form: 

 𝒅 = 𝑮𝒎. (12) 

In our case, 𝒅 is the observed seismic data, 𝒎 is the earth reflectivity model, and 𝑮 is 
an operator acting on 𝒎 to produce 𝒅.  

The inversion process,  

 𝒎 = 𝑮ିଵ𝒅, (13)  

recovers the earth model or reflectivity from the seismic data. Since matrix 𝑮 may not be 
square or non-invertible or it may be extremely large, calculating the inverse of 𝑮 may be 
difficult or impossible. Thus, approximations to the inversion are used. The first 
approximation uses the conjugate transpose of 𝑮: 

 𝒎ෝ = 𝑮′𝒅.  (14) 

which is the same as Gazdag migration. In equation (14), 𝒎ෝ  is the migrated image and 𝑮ᇱ 
is the migration operator, the conjugate transpose of 𝑮. 
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By defining poststack Gazdag seismic modelling as the forward process and Gazdag 
migration as its adjoint (conjugate-transpose) operator, seismic imaging becomes an 
inversion problem. Substitution of 𝒅 from equation (12) into equation (14) results in: 

 𝒎ෝ = 𝑮′𝑮𝒎.  (15) 

Hessian matrix, 𝑮ᇱ𝑮, is different from an identity matrix, 𝑰 (Nemeth et al., 1999). 
Therefore, migration images are different from the real earth subsurface reflectivity with 
having some artifacts. This difference can be reduced by minimizing the difference 
between the observed data, 𝒅, and the modeled data, 𝑮𝒎, expressed by |𝑮𝒎 − 𝒅|. Since 
data include some errors, trying to find a model to fit data perfectly is not recommended. 
Therefore, the exact fitting will be replaced by: 

 𝒆 = 𝑮𝒎 − 𝒅, (16) 

where 𝒆 is the error vector (Sacchi, 2005). Minimum norm solution includes finding a 
model, 𝒎, that minimizes the following cost function: 

 𝐽(𝒎) = ‖𝒎ᇱ𝒎‖ଶ,  (17) 

subject to the data constraint: 

 ‖𝑮𝒎 − 𝒅‖ଶ = 𝜖.  (18) 

These two together implies the minimization of a cost function in the form of: 

 𝐽(𝒎) = ‖𝑮𝒎 − 𝒅‖ଶ + 𝜇ଶ‖𝒎‖ଶ.  (19) 

An objective function which reduces migration artifacts may be written in the general 
form of (Nemeth, 1999): 

 𝐽(𝒎) = ‖𝑮𝒎 − 𝒅‖ଶ + 𝜇ଶℛ(𝒎), (20) 

where 𝒅 is the observed data which may be spatially incomplete or irregular. The first 
term in the right hand side of equation (20) is “data misfit”. In minimizing the cost 
function, 𝐽(𝒎), this term recovers model in the way to fit the data. Second term on the 
right hand-side of equation (20) is “regularization term” and μ is the “regularization 
weight”. ℛ(𝒎) is a linear operator acting on 𝒎 and is different for each purpose and uses 
some priori information about model.  

To solve equation (20) for simplicity, if we may ignore the regularization term, 𝜇 = 0. 
By taking first derivative of the remaining cost function and setting it equal to zero, the 
following normal equation is achieved: 

 𝑮ᇱ𝑮𝒎𝑳𝑺 − 𝑮ᇱ𝒅 = 𝟎. (21) 

This gives the least squares solution, 𝒎𝑳𝑺,  
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 𝒎𝑳𝑺 = (𝑮′ 𝑮)ିଵ𝑮ᇱ𝒅.  (22) 

An objective function with the minimum norm or Euclidian norm, the simplest form 
of the regularization function: ℛ(𝒎) = ‖𝒎‖ଶଶ, leads to the damped least squares 
solution, 𝒎𝑫𝑳𝑺, of the problem: 

 𝒎𝑫𝑳𝑺 = (𝑮ᇱ𝑮 + 𝜇ଶ𝑰)ିଵ𝑮ᇱ𝒅.  (23) 

Since the images resulted from the least squares migration have higher resolution than 
the images from migration, the high resolution images can then be used in a forward 
problem to reproduce or interpolate the missing data (Nemeth, 1999). Examples for data 
reconstruction and comparison between images from migration and least squares 
migration can be found at Yousefzadeh (2008) and Yousefzadeh and Bancroft (2009). 

There are some issues associated with the replacement of the migration with the least 
squares migration. The main problem is that the convergence of the method to a solution 
depends on the accuracy of the background velocity model. Without accurate background 
velocity, least squares migration does not converge to the desired solution. This is 
because least squares migration is more sensitive to the accuracy of the velocity 
information than the migration itself (Yousefzadeh, 2008).  

The second problem is that least squares migration is more computer time and 
memory consuming procedure than the migration. As an example, in solving the equation 
with LSCG method, each iteration in the CG requires two migration/modelling running 
time where migration is a time and memory consuming process. 

3.1. Solving least squares migration equation 

Method of CG (Hestenes and Steifel, 1952) which is an extension to Steepest Descent 
method has been the typical solver for solving the seismic inversion problems. CG 
requires that the kernel matrix be positive definite. LSCG, a modified version of 
Conjugate Gradient (CG) method, does not require this condition and directly works with 
the 𝑮 and 𝑮′ matrices (Scales, 1987). If equation 𝑮𝒎 = 𝒅 is an overdetrermined 
problem, then 𝑮ᇱ𝑮 is nonsingular and LSCG converges to solve equation 𝑮ᇱ𝑮𝒎𝑳𝑺 = 𝑮ᇱ𝒅. 
However, by replacing the method of CG with LSCG the multiplication of the matrices 𝑮 
or 𝑮ᇱ with vectors are replaced with the applying forward (seismic modelling or de-
migration) or adjoint (seismic migration) operators on the model or data, respectively. 
This procedure reduces required memory to load big matrixes 𝑮 and 𝑮ᇱ into the computer 
and also avoids big matrix-vector multiplications.  

In this study, feasibility of using multigrid properties in solving Gazdag least squares 
migration in order to reduce the computational cost or enhance the resolution of the 
resulted image is investigated. To understand the multigrid methods, method of Jacobi 
iterations and its properties is explained in detail in the section four. Then the feasibility 
of using multigrid methods on solving least squares migration is discussed in the last 
section.  
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4. MULTIGRID METHODS 

There are many different methods to solve a linear system of equation: 

 𝑨𝒖 = 𝒃,  (24) 

where 𝑨 is a 𝑚 × 𝑛 matrix, 𝒃 is a vector with 𝑚 elements and 𝒙 is the unknown to be 
found. Gaussian elimination is a method to find the exact solution to this equation. 
However, this method may not work efficiently for a large system of equations. For such 
problems, it is more efficient to use an iterative method. An iterative method starts with 
an initial guess as the solution and retrieves a reasonable approximation to the solution. 
Jacobi, Gauss-Seidel, CG and Krylove are examples of the iterative methods.   

Multigrid is not an iterative (or non-iterative) method of solving equation (24). It is a 
method of solving a problem in different grid sizes. Multigrid uses an iterative solver to 
solve the equation on different grid sizes. This method is well explained in the previous 
CREWES report by authors (Yousefzadeh and Bancroft, 2009).  However, in order to 
have the current paper stand alone, a brief explanation of multigrid method and solver is 
presented here.  

With the ability of faster recovery of the low frequency content of the solution, 
multigrid methods are used to solve many problems in the exploration seismology. 
Multigrid method helped performing seismic waveform velocity inversion on the 
Marmousi data set (Bunks et al., 1995). Bunks et al. (1995) eliminated the local minima 
of the objective function by solving problem on a coarser grid in order to guarantee 
convergence to the global minimum. 

Millar and Bancroft (2004) used multigrid method to enhance the resolution of the 
seismic data during deconvolution. They showed better recovery of the reflectivity and 
damping the low frequencies than the Gauss-Seidel method. They showed that the good 
estimation of the wavelet and also the frequency content of the data is necessary for the 
method to succeed (Millar and Bancroft, 2004).  

Plessix (2007) studied the effects of using multigrid cycles for the 3D frequency 
domain wave equation migration. He considered the result of using multigrid on the un-
damped wave equation at seismic frequencies. 

Yousefzadeh and Bancroft (2010) examined using different approaches of multigrid 
method to solve the least squares Kirchhoff prestack migration. 

They showed why the standard method of the multigrid is not viable to solve the 
Kirchhoff least squares prestack migration equation for at least two reasons: first, the 
kernel of the main problem, is not a diagonally dominant matrix, therefore, Jacobi or 
Gauss-Seidel iterations, the standard iterative methods in multigrid, are not effective, 
second, matrices are too large and dense to be loaded in computers’ memory 
(Yousefzadeh and Bancroft, 2010) (Figure 1). 
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In this study, we attempt to use multigrid method to solve phase shift least squares 
migration in order to reduce the computational costs or enhance the resolution of the 
resulted image. 

 

 

FIG. 1. Non-zero elements of the matrix 𝑮′𝑮 for the least squares Kirchhoff prestack migration. 
Matrix is not diagonally dominant and savable by Jacobi or Gauss Seidel methods (Yousefzadeh 

and Bancroft, 2009). 

 

4.1. Multigrid Solvers 

Jacobi and Gauss Seidel are typical multigrid solvers. They have an especial property, 
which made them the best known candidate as the multigrid solvers. This property helps 
multigrid methods to find the solution faster than using the alternate iterative methods 
alone. 

Idea of solving a problem in different grid sizes returns back to a well known property 
of the Jacobi method. In equation 𝑨𝒖 = 𝒃, where 𝒖 is the unknown desired exact 
solution and 𝒃 and 𝑨 are known vector and matrix, respectively, if 𝒗 is considered as an 
approximation to the exact solution, then the algebraic error, 𝒆, is the difference between 
these two solutions: 
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 𝒆 = 𝒖 − 𝒗.  (25) 

Since 𝒖 is unknown, 𝒆 is not directly computable. Therefore, residual, a measureable 
version of the error, may be defined by: 

 𝒓 = 𝒃 − 𝑨𝒗. (26) 

Replacing 𝒃 from equation (24) gives:  

 𝒓 = 𝑨𝒖 − 𝑨𝒗 = 𝑨(𝒖 − 𝒗), (27) 

or 

 𝒓 = 𝑨𝒆, (28) 

which called the “residual equation” (Briggs et al., 2000). With 𝒗 as an approximation to 𝒖, 𝒓 is computable from equation (26). Solving residual equation for the 𝒆, gives a new 
approximate solution using equation (25) in the form of 𝒖 = 𝒗 + 𝒆.  

Substitution of the residual equation into equation (25) gives: 

 𝒖 = 𝒗 + 𝑷ିଵ𝒓,  (29) 

where 𝑷 ≅ 𝑨, is a preconditioner. This suggests iterations in the form of (Briggs et al., 
2000):  

 𝒗ାଵ = 𝒗 + 𝑷ିଵ𝒓  (30) 

where 𝑘 is the iteration number.  

Estimation of 𝒗 can be better improved by choosing  𝑷 as close as possible to 𝑨. In the 
method of Jacobi, preconditioner 𝑷 is chosen to be the diagonal matrix of 𝑨: 𝑷 = 𝑫. By 
splitting matrix 𝑨 to 𝑫, a diagonal matrix, and – (𝑳 + 𝑼), summation of the lower and 
upper triangle matrices, (or 𝑨 = 𝑫 − 𝑳 − 𝑼), equation (24) can be written as: 

 𝑫𝒗 = (𝑳 + 𝑼)𝒗 + 𝒃.  (31) 

This leads to the following equation:  

 𝒗 = 𝑫ିଵ(𝑳 + 𝑼)𝒗 + 𝑫ିଵ𝒃.  (32) 

Choosing 𝑫, the diagonal matrix of 𝑨, as the preconditioner has this advantage that it 
is easily invertible. Inverse of a diagonal matrix can be simply found by only inversing 
the diagonal elements of that matrix (Strang, 1986). Equation (32) suggests the Jacobi 
iterations in the form of (Briggs et al., 2000):  

 𝒗ାଵ = 𝑫ିଵ(𝑳 + 𝑼) 𝒗 + 𝑫ିଵ𝒃.  (33) 

Jacobi method can also be expressed by (Briggs et al., 2000): 

 𝒗ାଵ = 𝑹𝒗 + 𝑫ିଵ𝒃,  (34) 

where 𝑹 = 𝑫ି𝟏(𝑳 + 𝑼) is the Jacobi iteration matrix. 
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Weighted Jacobi method is a modification to the Jacobi method in the form of (Briggs 
et al., 2000): 

 𝒗ାଵ = ((1 − 𝑤)𝑰 + 𝑤𝑹) 𝒗 + 𝑤𝑫ିଵ𝒃, 0 < 𝑤 < 2,  (35) 

where 𝑤 ∈ ℛ is weighting factor. By defining weighted Jacobi iteration, 𝑹௪ =(1 − 𝑤)𝑰 + 𝑤𝑅, Jacobi method has the following matrix shapes (Briggs et al., 2000): 

 𝒗ାଵ = 𝑹௪𝑣 + 𝑤𝑫ିଵ𝒃, (36) 

and 

 𝒗ାଵ = 𝒗 + 𝑤𝑫ିଵ𝒓. (37) 

It also can be written in the component form as (Saad, 2000): 

 𝑣ାଵ = ଵ ቆ𝑏 − ∑ 𝑎 𝑣ேୀଵஷ ቇ , 𝑖 = 1,2, … , 𝑁, (38) 

where 𝑘 is the iteration number and 𝑖 is the component number of the vectors 𝒃 and 𝒗. 
Starting from an initial value as 𝒗, in each iteration all components of 𝒗ାଵare 
calculated, then 𝒗  is replaced by 𝒗ାଵ. This procedure repeats until the desired 
convergence is achieved. 

If each component of the solution is replaced as soon as it updated, leads to Gauss-
Seidel method (Saad, 2000): 

 𝑣ାଵ = ଵ ቆ− ∑ 𝑎 𝑣ାଵିଵୀଵ − ∑ 𝑎 𝑣ேୀାଵ − 𝑏ቇ , 𝑖 = 1,2, … , 𝑁,  (39) 

This reduces not only the necessary memory to keep all components of 𝑣ାଵ before 
updating but also the number of iterations for the same rate of convergence.  

Gauss-Seidel iteration can be written as: 

 𝑽 ← 𝑹ீ 𝑽 + (𝑫 − 𝑳)ିଵ𝒃, (40) 

where “←” shows the displacement of elements and 𝑹ீ = (𝑫 − 𝑳)ିଵ𝑼, is the Gauss-
Seidel iteration matrix.  

It can be shown that the convergence of the Jacobi (and the Gauss-Seidel) iterations 
guaranteed if and only if the magnitude of all eigenvalues of 𝑹 be less than 1 (Strang, 
1986):  

 ห𝜆൫𝑹൯ห < 1   (41) 

Spectral Radius of a matrix, ρ, is the maximum amount of its eigenvalues: 𝜌൫𝑹 ൯ =𝑚𝑎𝑥ห𝜆൫𝑹൯ห. The Jacobi method converges if and only if 𝜌൫𝑹 ൯ < 1. The speed of 
convergence depends on the amount of 𝜌൫𝑹 ൯. Smaller 𝜌൫𝑹 ൯ causes faster convergence 
to the solution (Strang, 1986). 
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In another point of view Jacobi method converges to the solution if matrix 𝑨 (in 
equation (24)) be diagonally dominant. Otherwise, these methods do not converge to the 
solution. A matrix 𝑨 is strictly diagonally dominant if for all elements 𝑎 of the matrix: |𝑎| > ∑ ห𝑎หஷ , where 𝑖 and 𝑗 are the number of rows and columns, respectively. 

In order to explain the role of the Jacobi iterations in the multigrid method, let 
consider a system of equation (24) where 𝑨 is the second difference matrix: 

 𝑨 = ⎣⎢⎢⎢
⎡ 2 −1−1 20 −1 0 0−1 02 −1 ⋯⋮ ⋱ ⋮⋯ 2 ⎦⎥⎥⎥

⎤
. (42) 

Therefore, Jacobi iteration matrix is: 

 𝑹 = ⎣⎢⎢⎢
⎡0 11 00 1 0 01 00 1 ⋯⋮ ⋱ ⋮⋯ 0 ⎦⎥⎥⎥

⎤
. (43) 

The eigenvalues of 𝑨 are 𝜆(𝑨) = 2 − 2 𝑐𝑜𝑠 𝑗𝜃, where 𝜃 = గேାଵ. Thus, 𝜆൫𝑹൯ =𝜆൫𝐼 − 1 2ൗ  𝑨൯ = 𝑐𝑜𝑠 𝑗𝜃 < 1 and the convergence is guaranteed. For example if 𝑁 = 4, 
then 𝑹 has four eigenvalues as (Briggs et al., 2000): 

 𝜆 = 𝑐𝑜𝑠 గହ , 𝑐𝑜𝑠 ଶగହ , 𝑐𝑜𝑠 ଷగହ  𝑎𝑛𝑑 𝑐𝑜𝑠 ସగହ  ቀ= −𝑐𝑜𝑠 గହቁ. (44) 

The 𝜆s become larger for the smaller angels. It means that the convergence is slower 
for lower frequencies of the solution. This is an important and general property of the 
Jacobi iterations. 

This property causes the removing of the high frequency contents from residuals in the 
Jacobi (and the Gauss-Seidel) first few iterations. As a result it produces a smooth 
(includes mostly low frequency contents) error vector. This “smoothing” property is 
shown in the following example.  

Suppose that we want to solve the system of linear equation: 

 𝑨𝒖 = 𝟎, (45) 

where 𝑨 is the second difference matrix in equation (42), with 𝑛 = 64. The trivial exact 
solution is 𝒖 = 𝟎, therefore, 𝒆 = −𝒗. Let apply the weighted Jacobi method (with 𝑤 = 2/3) to solve this equation with 𝒖0 = 𝑠𝑖𝑛 ቀగ ቁ , 0 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑛 − 1, the 

Fourier modes with the frequency 𝑘, as the initial guess.  

Figure 2a shows the convergence rate of the weighted Jacobi method for different 
initial values: 𝑘 = 1, 4, 8 and 16. There is a faster convergence to the solution by 
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choosing an initial guess with the higher frequency contents (larger 𝑘s). It can be shown 
that the weighted Gauss-Seidel behaves similarly. 

If the initial guess be a superposition of the four previous Fourier modes, 𝑢0 =ଵସ ቂ𝑠𝑖𝑛 ቀగ ቁ + 𝑠𝑖𝑛 ቀସగ ቁ + 𝑠𝑖𝑛 ቀ଼గ ቁ + 𝑠𝑖𝑛 ቀଵగ ቁቃ, the convergence rate is different. The 

convergence for the weighted Jacobi iterations starting with this initial guess is shown in 
Figure 2b. In first five iterations the error decreases rapidly. Then, the convergence 
becomes slower. The faster decrease corresponds to the presence of the high frequency 
components in the initial value and less rapid decrease is due to the lower frequency 
components of the initial value (Strang, 1986). 

 

a)                                                                       b)    

FIG. 2. a) The maximum norm error versus number of iterations is plotted for the weighted Jacobi 
iterations for different initial values to solve equation (45). b) Convergence when initial values are 

superposition of the four Fourier modes with both low and high frequencies. 

Faster convergence for the higher frequency content is the key to the multigrid idea. In 
the method of multigrid, an iterative solver which has the smoothing property (Jacobi or 
Gauss-Seidel, generally), produces low frequency contents in the residual after a few 
iterations (for example four iterations) on equation (24). By restriction, kernel of the 
main problem and its residual are transferred (restricted/decimated) to a coarser grid 
(scale), where the low frequency components act as the high frequency components. 
Problem is being solved in the coarser grid and a solution is being achieved. Then the 
solution is interpolated to the main grid size. 

Solving the original equation with this interpolated solution as the initial guess, gives a 
solution to the main problem which also contains more low frequency components than 
the solving equation with a vector of zeros as the initial guess (Strang, 1986). This is the 
simplest shape of using multigrid and called v-cycle (with the lowercase “v”) multigrid. 

A v-cycle multigrid starts with a few iterations on the fine grid, then the error is 
transferred to a coarser grid by a restriction process, iterations are performed on the 
coarse grid and the interpolated results used as the starting point in the Jacobi method on 
the main grid size. 
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There are two processes in multigrid in order to transfer the problem to the coarser or 
finer grid (Strang, 1986). Multiplying Restriction matrix, 𝑹, transfer problem from finer 
grid to the coarse grid and Interpolation matrix, 𝑰, return problem back to the finer grid. 

A v-cycle multigrid includes only two grids: a fine grid (with the size of the main 
problem) and a coarse grid (Figure 3). Iterations start with zero as the initial model to 
solve equation 𝑨𝒖 = 𝒃 on the fine grid where ℎ corresponds to the size of main grid 
which is finest grid. After a few iterations, residual to the equation 𝑨𝒖 = 𝒃, calculated 
as 𝒓 = 𝒃 − 𝑨𝒖. Then multiplication of the Restriction matrix transfers 𝒓 to the 
coarser grid 𝒓ଶ, where 2ℎ corresponds to the first coarser grid with size equal to half of 
the original grid size. Solving 𝑨ଶ𝒆ଶ = 𝒓ଶ for 𝒆ଶ on the coarse grid requires a few 
more iteration and then the solution, 𝒆ଶ, must be interpolated to the fine grid as 𝒆. 
Finally, iterations to solve 𝑨𝒖 = 𝒃 starts with the improved initial value 𝒖 + 𝒆. A 
few iterations on this problem size/grid returns a solution which include both low and 
high frequency contents (Strang, 1986; Briggs et al., 2000). 

 

FIG. 3. Schematic v-cycle multigrid. Main problem is solved on the fine grid and residuals which 
are restricted to the coarse grid with two grids are used to solve equation in the coarse grid. 
Solution are interpolated to the fine grid and used as the initial value for iterations on the main 
grid.  

It is possible to calculate the residuals in the coarse grid, 𝒓ଶ = 𝒓ଶ − 𝑨ଶ𝒆ଶ, and 
restrict it to a coarser grid 4ℎ and repeat the procedure to a very coarse grid, 𝑛ℎ!. This 
algorithm is known as V-cycle (with the uppercase “V”). W-cycle algorithm performs 
more iteration on the coarser grids (Strang, 1986; Briggs et al., 2000).  
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In the full multigrid (FMG), iteration starts on the coarsest grid, the solution is 
interpolated and used as the initial value for one step finer grid. A v-cycle improves the 
result. Then, result will be used for the finer grid, a V-cycle improves this result and 
process continues to arrive to the finest grid which is the size of the initial problem 
(Figure 4) (Strang, 1986; Briggs et al., 2000). 

 

 

FIG. 4. Schematic FMG for a 5 × 5 matrix. It starts with the coarsest grid size, ℎ, then the results 
being interpolated to the one step finer size. A V-cycle improves the result and interpolates it to a 
finer grid size and procedure continues to the finest grid size.  

5. FEASIBILITY OF USING MULTIGRID METHOD TO SOLVE GAZDAG LSM 

5.1. First Scenario: LSM for migration and modeling as the forward and adjoint  

A MATLAB-like subroutine for the Gazdag migration in a 𝑣(𝑧) media includes three 
loops on temporal frequency, 𝜔, special frequency, 𝑘௫, and depth, 𝑧 is shown in Figure 5 
(Claerbout, 2005). These loops are interchangeable. The “if” condition is to prevent the 
evanescent waves. 

 𝑈(𝜔, 𝑘௫) = 𝑈(𝜔, 𝑘௫, 𝑧 = 0) =  2𝐷 𝐹𝐹𝑇 𝑢(𝑡, 𝑥) 

 𝑖𝑚𝑎𝑔𝑒 (𝑁𝑧, N𝑘௫) = 0 

for all 𝑤s 

 for all 𝑘௫s 

  for all depths 𝑖𝑧 = 1: 𝑛𝑧  

   
 𝐶 = exp (−𝑖𝜔Δ𝑧 ට1 − ௩(௭)మమೣସఠమ ) 

    if  4𝜔ଶ > 𝑣(𝑧)ଶ𝑘௫ଶ 

    𝑈(𝜔, 𝑘௫) = 𝑈(𝜔, 𝑘௫) × 𝐶 
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    𝑖𝑚𝑎𝑔𝑒 (𝑧, 𝑘௫) = 𝑖𝑚𝑎𝑔𝑒 (𝑧, 𝑘௫) + 𝑈(𝜔, 𝑘௫) 

    end if 

  end loop on depths 

 end loop on 𝑘௫s 

end loop on 𝑤s 𝑖𝑚𝑎𝑔𝑒 = 1𝐷 𝐼𝐹𝐹𝑇 (𝑖𝑚𝑎𝑔𝑒) 

 

FIG. 5. A subroutine for Gazdag migration in a 𝑣 = 𝑣(𝑧) media (Claerbout, 2005).  

Algorithm starts with the 2D Fourier transformation of data. Then for each depth, 
wavefield is extrapolated. Migration is simply this wavefield for each depth, summed 
over all temporal frequencies. Resulted images must be transformed to the (𝑥, 𝑡) domain 
by 1D inverse Fourier transform over horizontal spatial frequencies, 𝑘௫s. it is possible to 
make migration faster by using the symmetry properties of the Fourier transform. 

For the Gazdag modeling a MATLAB-like subroutine is shown in Figure 6. Modeling 
starts from the last row of the Fourier transformed image and continues to the earth 
surface. Data must be 2D inverse Fourier transformed from (𝜔, 𝑘௫) domain to the (𝑡, 𝑥) 
domain. 

 𝑖𝑚𝑎𝑔𝑒(𝑁𝑧, 𝑁𝑘௫) = 1𝐷 𝐹𝐹𝑇 (𝑖𝑚𝑎𝑔𝑒)  

 𝑈(𝑁𝜔, 𝑁 𝑘௫) = 0 

for all 𝑤s 

 for all 𝑘௫s 

  for all depths 𝑖𝑧 = 𝑛𝑧: −1: 1  

   
 𝐶 = exp (+𝑖𝜔Δ𝑧 ට1 − ௩(௭)మమೣସఠమ ) 

    if  4𝜔ଶ > 𝑣(𝑧)ଶ𝑘௫ଶ 

    𝑈(𝜔, 𝑘௫) = 𝑈(𝜔, 𝑘௫) × 𝐶 + 𝑖𝑚𝑎𝑔𝑒 (𝑧, 𝑘௫) 

    end if 
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  end loop on depths 

 end loop on 𝑘௫s 

end loop on 𝑤s 𝑈 = 2𝐷 𝐼𝐹𝐹𝑇 𝑈(𝜔, 𝑘௫) 

 

FIG. 6. A subroutine for Gazdag modeling in a 𝑣 = 𝑣(𝑧) media (Claerbout, 2005).  

For a 𝑣(𝑧) media, the mentioned migration and modelling subroutines do not pass the 
dot product test. It means that they are not exactly conjugate transpose of each other.  
Consequently, it is not possible to use them directly as the 𝑮′ and 𝑮 operators in a LSCG 
algorithm to perform a least squares migration solution. 

The other option is constructing 𝑮 and 𝑮′ matrices explicitly. The 𝑮 will be a matrix 
with 𝑁𝜔 × 𝑁𝑘௫ rows and 𝑁𝑧 × 𝑁𝑘௫ columns. Hence, 𝑮′𝑮 + 𝜇ଶ𝑰  will be a 𝑁𝑧 × 𝑁𝑘௫ 
by 𝑁𝑧 × 𝑁𝑘௫ matrix.  

Suppose the stacked seismic data includes 100 traces with 1000 samples per trace. To 
use FFT in the migration or modeling algorithms, the data or model must be zero padded 
to number of samples be a power of two. Therefore, in the frequency domain 𝑘௫ has 128 
samples and 𝑁𝜔 = 1024.  If we consider the migrated image with the same size as the 
data, then 𝑁𝑧 = 1000. Therefore 𝑮 is a  131,072 × 128,000 matrix. Consequently 𝑮′𝑮 + 𝜇ଶ𝑰 is a matrix with 128,000 × 128,000 = 16,384,000,000  elements. This is an 
extremely large and dense matrix. This matrix is not a diagonally dominant matrix as 
well. Hence, it is not solvable by the Jacobi method and consequently by the method of 
multigrid in its typical definition. 

Our studies show that in the case of constant velocity media, 𝑣 = 𝑐𝑜𝑛𝑠𝑡., the 
migration and modeling subroutines pass the dot product test by adding an additional line 
to the migration algorithm as shown in Figure 7 by “(∎)”. In this case it is possible to use 
the migration and modeling subroutine as the 𝑮′ and 𝑮 matrix multiplication and insert 
them directly to the LSCG for solving the least squares migration. 

 

 𝑈(𝜔, 𝑘௫) = 𝑈(𝜔, 𝑘௫, 𝑧 = 0) =  2𝐷 𝐹𝐹𝑇 𝑢(𝑡, 𝑥) 

 𝑖𝑚𝑎𝑔𝑒 (𝑁𝑧, N𝑘௫) = 0 

for all 𝑤s 

 for all 𝑘௫s 
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  𝐶 = exp (−𝑖𝜔Δ𝑧 ඨ1 − 𝑣ଶ𝑘௫ଶ4𝜔ଶ ) 

  for all depths 𝑖𝑧 = 1: 𝑛𝑧  

    if  4𝜔ଶ > 𝑣ଶ𝑘௫ଶ 

    𝑈(𝜔, 𝑘௫) = 𝑈(𝜔, 𝑘௫) × 𝐶 

    𝑖𝑚𝑎𝑔𝑒 (𝑧, 𝑘௫) = 𝑖𝑚𝑎𝑔𝑒 (𝑧, 𝑘௫) + 𝑈(𝜔, 𝑘௫) 

    end if 

  end loop on depths 

  𝑖𝑚𝑎𝑔𝑒 (: , 𝑘௫) = 𝑖𝑚𝑎𝑔𝑒 (: , 𝑘௫)/C   (∎) 

 end loop on 𝑘௫s 

end loop on 𝑤s 𝑖𝑚𝑎𝑔𝑒 = 1𝐷 𝐼𝐹𝐹𝑇 (𝑖𝑚𝑎𝑔𝑒) 

 

FIG. 7. A subroutine for Gazdag migration in a 𝑣 = 𝑐𝑜𝑛𝑠𝑡. media.  

5.2. Second Scenario: LSM for migration and modeling for each 𝝎  

The second scenario is performing the least squares migration for each temporal 
frequency of the data. In this scenario, data 2D Fourier transformed into the (𝜔, 𝑘௫) 
domain. Then, for each temporal frequency, the corresponding image is calculated, then, 
all images added together which is equal to a summation on the all temporal frequencies.  

By taking the least squares migration inside the most outer loop, loop on 𝜔s, the size 
of data inside least squares migration reduces to 𝑁𝑘௫ samples. The size of 𝑮 matrix also 
reduces to a matrix with 𝑁𝑘௫ rows and 𝑁𝑧 × 𝑁𝑘௫ columns. For our example it is 1024 
times smaller. However, size of 𝑮′𝑮 + 𝜇ଶ𝑰 matrix remains unchanged.  The Hessian is 
still a large, non sparse and non diagonally dominant matrix. Half of the Hessian matrix 
elements are nonzero. Hence, it is not solvable by Jacobi method and consequently by the 
method of multigrid.  For our synthetic example and for one temporal frequency, nonzero 
elements of the first 3500 rows and columns of matrix 𝑮′𝑮 + 𝜇ଶ𝑰 is shown in Figure 8.  

It can be shown that choosing a reasonably large 𝜇 does not change the diagonally 
nondominancy of the Hessian matrix. 
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5.3. Third Scenario: LSM for migration and modeling for each 𝝎 and 𝒌𝒙  

Other option to consider is to perform least squares migration for each temporal 
frequency and wave number of data. In this scenario the 𝑮 matrix is a 1 × 𝑁𝑧 matrix. 𝑮′𝑮 + 𝜇ଶ𝑰 is a matrix with 𝑁𝑧 rows and also 𝑁𝑧 colomns. This is a relatively small 
matrix, but as shown in Figure 9 it is not sparse and also it is not a diagonally dominant 
matrix. This matrix is solvable by the method of CG. However, its condition number is 
too large and CG is not a fast solver for that.  

5.4. Last Scenario: LSM for migration and modeling for each 𝝎 and depth 

The last scenario in this study is performing least squares migration for each temporal 
frequency of the data and each depth of the image. By this procedure, the size of 𝑮 matrix 
reduces to a matrix with 𝑁𝑘௫ rows and 𝑁𝑘௫ columns. 𝑮′𝑮 + 𝜇ଶ𝑰 matrix has the same 
size as 𝑮. The Hessian has a smaller diagonal matrix and therefore is easily invertible. 
Inverse of a diagonal matrix is achievable just be inverting its diagonal elements. This 
matrix is shown in Figure 10. 

Although from first to the fourth scenario the size of 𝑮′𝑮 + 𝜇ଶ𝑰 matrix is decreasing, 
it is necessary to mention that the number of least squares migration equation to solve is 
increasing. For the first scenario, there is just one least squares problem to be solved, 
where in the second scenario it increases by the number of temporal frequencies, 1024 in 
our example. For the third scenario, this number increase to 𝑁𝜔 × 𝑁𝑘௫, 1024 × 128 in 
our example. Finally, the last scenario needs that least squares migration equation to be 
solved 𝑁𝜔 × 𝑁𝑧 times.     

 

          FIG. 8. First 3500 rows and columns of matrix 𝑮′𝑮 + 𝜇ଶ𝑰 for the mentioned example.  
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a)                                                                       b)    

 FIG. 9. Real part of elements in matrix 𝑮′𝑮 + 𝜇ଶ𝑰, when 𝑮′𝑮 + 𝜇ଶ𝑰 is constructed for one 𝜔 and 
one 𝑘௫. a) ω = −1558.5; b) ω = −193.3. 

 

 

  

FIG. 10. Nonzero elements of the matrix 𝑮′𝑮 + 𝜇ଶ𝑰, when 𝑮′𝑮 + 𝜇ଶ𝑰 is constructed for 
one 𝜔 and one depth. 

6. CONCLUSION 

Replacing Gazdag migration with the Gazdag least squares migration results in images 
with higher resolution than migration images. However, this is a costly procedure. This 
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study was looking for a faster and less costly solver for the Gazdag least squares 
migration. 

 Current study shows that implementing the inversion procedure can be done on each 
temporal frequency; consequently the Hessian matrix that must be inverted becomes 
smaller.  However, matrix is still large and since it is not a diagonally dominant, is not 
solvable by the Jacobi or Gauss Seidel method which are typical solvers of the multigrid 
method. Therefore, multigrid is not able to solve the least squares migration for each 
temporal frequency. The Hessian matrix remains diagonally nondominant even if the 
least squares migration applied on each temporal and spatial frequency, separately. 

Finally, it is shown that the Hessian matrix is a diagonal matrix if least squares 
migration performed for each temporal frequency and depth. This is the fastest procedure, 
since it does not need any solver. 

The number of least squares migration to be solved on each scenario is another 
important factor that must be considered as well.    
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