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ABSTRACT

In seismic signal analysis, points of sharp variation classified as “edges” contain a con-
siderable amount of a signal’s information, thus making edge detection and the study of a
signal’s local properties an appropriate mechanism for obtaining information from seismic
data. Several important physical processes can in principle affect the local regularity of
a reflected event in a seismic trace: processes of absorption and wave attenuation. The
local regularity of a given signal is characterised by the continuous wavelet transform and
subsequently measured by its corresponding Lipschitz exponent(s). For a single seismic
event resembling a delta type function, a linear model can be used in order to estimate the
associated Lipschitz regularity, however for practical settings a non-linear objective func-
tion would have to be minimised in order to estimate the associated regularity. A robust
estimation of a functions local properties and differentiability from seismic data, alongside
prior geological information, could potentially lead to processing and inversion algorithms
able to discern and characterise such targets.

INTRODUCTION

In seismic signal analysis, regions of abrupt change, often considered expressions of
underlying singularities within a given function contain considerable amount of a signal’s
information (Innanen, 2003). The Wavelet transform closely related to multi-scale edge
detection, characterises the local regularity of a signal by decomposing signals into funda-
mental building blocks localised in space and frequency. Applying advanced mathematical
techniques namely continuous wavelet transform enables us to obtain the modulus maxima
from seismic data and estimate the Lipschitz exponents which in turn allows us to measure
the local regularity of functions and differentiate the intensity profile of different edges
(Mallat and Zhong, 1992). Several important physical processes can in principle affect the
local regularity of a reflected event in a seismic trace: processes of absorption/wave atten-
uation, and reflections from targets composed of thin (sub-wavelength) layers. The study
and analysis of characteristic singularities of a seismic trace and in particular the effects of
absorption on uniform regularities of a seismic trace could potentially lead to extraction of
useful information (Innanen, 2003).

It is generally understood that due to absorption, the energy of seismic waves prop-
agating through an anelastic medium would dissipate over a given distance. As a result,
transient waveforms are distorted as they propagate through such media; progressive loss
of amplitudes and changes of phase are typically encountered (Kjartansson, 1979; Zhang,
2008). The overall effect of seismic attenuation is described by the dimensionless quality
factor Q, with studies in seismic data processing concentrating either on modelling, esti-
mation or compensation (Innanen, 2003). In practical terms, estimation and compensation
can hope to dramatically enhance the resolving power of seismic data.
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In this paper we discuss numerical implementation of the continuous wavelet transform
and estimation of the associated Lipschitz exponent (↵) and the possibility of establishing
an empirical relation between a function’s regularity and the quality factor Q. ⇤

NUMERICAL IMPLEMENTATION

I. Implementation of the CWT and extraction of modulus maxima

Applying continuous wavelet transform to a given function say f and obtaining the
modulus maxima at each scale s would lead to the following relation (Mallat and Zhong,
1992),

|Wsf(x)|  As

↵
, (1)

where |Wsf(x)| is the modulus maxima of the function f(x) at various scales s = 2

j for
j✏Z.
In seismic signal analysis, we are mainly interested in Lipschitz regularities ranging from
�1 to 1. Thus, our preferred wavelet may be first derivative of a Gaussian function with
a single vanishing moment. Linearising equation (1) by taking logarithm of both sides
provides the following,

log2 |Wsf(x)|  log2 A+ ↵ log2(s). (2)
Theoretically, based on equation (2), one would be able to obtain the modulus maxima of a
given signal and subsequently estimate the corresponding Lipschitz exponent and the asso-
ciated constant A. As a result, one would expect a relatively straightforward implementa-
tion of the algorithm and subsequently detection of singularities within a signal. However,
we are confronted with several difficulties such as the associated constant A, whether it
could be estimated or pre-determined prior to the implementation of the algorithm. Fur-
thermore, in practical applications, most signal structures could be described as smoothed
functions with an underlying singularity (Mallat and Zhong, 1992; Innanen, 2003). Such a
function would have to be modelled as a delta function convolved or smoothed by a Gaus-
sian with variance �

2. As a result, one would have to minimise the following non-linear
objective function

�(A,↵, �) =

nX

i,j=1

[log2 |ai|� log2(A)� j +

↵� 1

2

(log2(�
2
+ 2

2j
)]

2
. (3)

It is clearly evident that minimising the objective function above requires a relatively ex-
pensive computational algorithm such as the conjugate gradient method or the steepest
descent.

II. Estimation of the Lipschitz exponent: Linear model

In order to test and verify the accuracy of our linear model based on equation (2),
we start with a single event, represented by a delta function as our input signal where

⇤In an earlier paper in this report, we discussed the theory of continuous wavelet transform and Lipschitz
exponents, and algorithms for estimation of the latter (Izadi et al., 2011). Hence we consider practical uses
and implementation of these ideas.
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FIG. 1. Original signal.
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FIG. 2. Corresponding wavelet transform.

the Lipschitz regularity of such an event is equal to �1. Figures 1,2 and 3 represent the
input function and its corresponding continuous wavelet transform and modulus maxima
respectively.

As expected for a delta function the modulus decreases with increasing scale. It should
be noted that the scale ranges from j = 1, , 5. Plotting the logarithm of the modulus
maxima against the scale and computing the slope yields an estimate for ↵ which is equal
to �0.999, a relatively close value to the theoretical value of ↵ which is equal to �1. The
intercept in figure 5 (a) produces the value for A, which is equal to 2.33 (we have to add 1
to the initial value since the x-axis starts at 1).

j 1 2 3 4 5
|ai| 1.333 0.669 0.333 0.166 0.083

log2 |ai| 0.415 -0.578 -1.583 -2.588 -3.582
Table 1. Corresponding maxima modulus values at each scale for delta function.
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FIG. 3. Corresponding modulus maxima of original signal at each scale

FIG. 4. Two parameter objective function. The x, y axes represent the values for ↵ and A respec-
tively.
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j 1 2 3 4
|ai| 1.333 1.339 1.335 1.330

log2 |ai| 0.415 -0.421 0.416 0.411
Table 2. Corresponding maxima modulus values at each scale for Heaviside function.

A surprising result in regards to the plot in figure 5 (a) is related to the fact that a per-
fect line is produced with no observed errors. A possible explanation could be related to
the dyadic sampling which might reduce the errors associated with computing the contin-
uous wavelet transform of a signal. Using a continuous scale and computing the contin-
uous wavelet coefficients of the delta function does produce errors as illustrated in figure
5 (b). However, we can not state with any certainty whether dyadic sampling reduces or
eliminates the errors associated with the continuous wavelet transform of a delta function
without further analysis.Additionally one could estimate ↵ and A by forming the objective
function (illustrated in figure 4) and subsequently minimising in order to estimate A and
↵. Using this method, we obtain a slightly higher value of 2.44 for A and a slightly lower
value of �1.0004 for ↵.
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FIG. 5. (a) log2(a) vs scale for delta function (b) log2(a) vs scale for delta function using continuous
scale.

By integrating the delta function, one would obtain a Heaviside function. Based on the
properties of Lipschitz regularity, integration should increase ↵ by 1, therefore we expect a
value of ↵ = 0 for a Heaviside function. By minimising or finding the intercept we would
obtain the corresponding A value for the Heaviside function and gain a relatively deeper
insight into the behaviour of the constant A, thus we would have to consider whether A has
a fixed value regardless of our input function or it varies for each function, hence requiring
a time consuming calibration scheme in order to obtain the correct value.

Based on figure 6 (c), we observe that a relatively small degree of error is introduced
into the plot. Nevertheless, the corresponding values are equal to 0.0014 and 1.4198 for ↵
and A respectively. As expected the Lipschitz exponent is equal to 1, however the value of
A seemingly depends on the input function and may be the measure of the energy at the
lowest scale. This tends to be problematic for the following reason (it should be noted that
integrating the Heaviside function further increased the ↵ by 1).
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FIG. 6. (a) Original signal (Heaviside Function) (b) corresponding modulus maxima (c) Plot of
log2(a) vs scale for Heaviside function ( j = 1, 2, 3, 4).
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III. Estimation of the Lipschitz regularity: Non-linear model

In order to asses the effects of absorption on a function’s regularity and establish an
empirical relation between the Lipschitz exponent (↵) and Q, we apply the continuous
wavelet transform on a seismic trace and subsequently form and minimise the objective
function given in equation (3). For a single layer z = 800m in depth with a single Q value
and a velocity v = 1500m/s, the trace as illustrated in figure 6 is obtained by plotting
amplitude (direct arrivals only) for series of receivers vs arrival time (a total of 41 receivers
spaced 20m apart along the vertical or z � axis ).
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FIG. 7. Amplitude of direct arrivals vs time for three receivers located at depth z1 = 90m, z2 = 390m

and z3 = 770m with Q = 50.

As expected and illustrated figure 7, for a highly absorptive medium, Q = 50, the pulse
starts to broaden and lose amplitude, hence obtaining spectral characteristics of a Gaussian.
Given the resemblance of the first arrival to a delta function, we expect a Lipschitz value
close to �1. Using the steepest descent method, regardless of our initial guess we obtain
relatively stable results for A and ↵ as given in table 3. However, the estimated value for �
is dependent on our initial guess. This could be related to the topography of our objective
function such that a global minimum may not exits in the ��axis direction (could be a flat
surface in the � direction). For the third direct arrival, corresponding to a receiver located
at z3 = 770m, the Lipschitz exponent decreases as expected (should move towards 0).
However, for both A and �, the estimated values (given in table 4) are relatively unstable
and seemingly dependent on the initial guess. Similar to the first arrival, a global minimum
may not exist in the ��axis direction, however the uncertainty in regards to the estimated
values of A needs to be further examined.
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Guess 1 Estimate Guess 2 Estimate Guess 3 Estimate
↵ -2 -0.3500 -1 -0.3547 0 -0.3724
A 1 2.0860 2 2.1105 3 2.2306
� 0.003 0.0003 0.01 0.0095 0.1 -0.0294
rg 2.8735 2.8725 2.8723

Table 3. Corresponding Estimated values using steepest descent for fist arrival in figure 7 (z1 =

90m).

Guess 1 Estimate Guess 2 Estimate Guess 3 Estimate
↵ -1 -0.2036 0 -0.2704 1 -0.3150
A 1 1.7427 2 2.1554 3 2.4792
� 0.1 0.0850 1 0.9009 1 1.1805
rg 0.0497 0.0325 0.0428

Table 4. Corresponding Estimated values using steepest descent for third arrival in figure 7 (z3 =

770m).

IV. Scale cut-off and a new apporach

Given the non-linear nature of our model, the steepest descent is not only inefficient in
terms of estimating two of the three variables, but also time consuming with the gradient
(rg) serving as our only guide. As an alternative to the steepest descent, one may consider
linearising the problem by analysing the dominant behaviour of ↵ by imposing a threshold
on the scales. Doing so would eliminate two of the variables namely A and � and reduce
the problem to the sole task of estimating ↵.

By taking continuous wavelet transform of the trace given in figure 7 and subsequently
calculating the corresponding modulus maxima values of each event (|ai|, i = 1, 2, 3, ..., 7)
and plotting log2 |ai| values vs scale (for j = 1, 2, 3, .., 7) a dominant behaviour in terms of
regularity is observed for each arrival (illustrated in figure 8). Hence, calculating the slope
from j = 3, ..., 6 for each event or from j = 2, ..., 6 for the first arrival and j = 3, ..., 7 for
the second and third arrival yields an estimate for the corresponding Lipschitz exponent.
Thus a value of ↵ = �0.8666, ↵ = �0.8104 and ↵ = �0.6342 is obtained for the first,
second and third arrival respectively.
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FIG. 8. Plot of log2(a) vs scale for each arrival corresponding to receivers located at depth z1 =

90m, z2 = 390m and z3 = 770m respectively.
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Estimating ↵ (from the slope) for each each arrival and plotting the values versus cor-
responding receiver depth for various values of Q provides an insight into the relation
between a functions regularity and absorption. Figure 9 and 10 clearly illustrate a propor-
tional dependency or relation between ↵ and depth and an inverse relation between ↵ and
Q.
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FIG. 9. Plot of ↵ vs depth for Q = 50.
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FIG. 10. Plot of ↵ vs depth Q = 100.
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FIG. 11. Plot of log 2|ai| vs scale j for Q = 25.

The clear advantage based on thresholding as opposed to the steepest descent method
lies in the linearisation and subsequently simplification of the problem. However one
should approach this method with caution. The problem of visual bias, accuracy of thresh-
olding and subsequent estimations of ↵ complicates this approach. In addition, this ap-
proach should be expected to encounter significant accuracy issues for combination of low
Q and large propagation distances, e.g. Q ⇠ 25 and z ⇠ 700m is an example of a limiting
pair. For a medium with Q = 25, a dominant behaviour can not be observed in regards to
the regularity of direct arrival corresponding to a receiver located at z = 690m (illustrated
in figure 11).

CLOSELY SPACED EVENTS

An additional difficulty in regards to the continuous wavelet model is the presence of
two closely spaced events which further complicates our analysis and estimation of the
corresponding Lipschitz exponent(s). For two closely placed events, the Modulus maxima
values would start to merge with increasing scale, hence represent a single event (illustrated
in figure 13) and rendering any form of distinction between two events almost impossible.
One possible idea would be imposing some sort of thresholding on the scale. However such
a procedure becomes complicated due to behaviour of a Gaussian function. A Gaussian
with small � is dominated by a delta type function regularity whereas a Gaussian with
a relatively large � value is dominated by a ramp function type regularity. Figure 14,
illustrates the fact that unfortunately we do not observe a trend or pattern in order to impose
a threshold on the scale. For two Gaussians with � = 0.01 and � = 0.05, it is unclear how
one could restrict the scale without the corresponding modulus values merging (at a certain
scale) in order to differentiate between the two events.
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FIG. 12. Two closely spaced Gaussians representing the original input signal.

FIG. 13. Corresponding modulus maxima. From j = 5, .., 8 we have two max values corresponding
to two distinct events. However at j = 8 the two max values merge, thus representing a single
event .
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FIG. 14. log 2(a) vs scale for Gaussians with increasing �.
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CONCLUSION

An accurate estimation of the Lipschitz regularity of a seismic trace is regarded as a
highly desirable goal, thus the principle aim of this paper has been to utilise the continuous
wavelet transform in order to analyse and study the effects of absorption on a given pulse
and subsequently establish an empirical relation between a functions regularity and the
loss factor Q. For a single event, resembling a delta function or a Heaviside function,
one could use a linear model, based on a functions smoothness at each scale and estimate
the Lipschitz exponent by finding the slope or by forming and minimising an objective
function. However due to absorption, one would have to model a given pulse as delta
function convolved with a Gaussian which in effect leads to a non-linear model. Thus, in
order to estimate the Lipschitz exponent, one could use the steepest descent or some sort
of thresholding method in order to simplify the problem.

Using the steepest descent method and for a certain range Q values (50 < Q < 150), a
relatively stable value for the Lipschitz exponent can be obtained. However, the difficulty
relates to the estimation of the two additional parameters (the amplitude A and pulse width
�) and also time consuming nature of the steepest descent method for this specific problem.

By imposing some sort of thresholding, one could linearise the problem, eliminate
two of the parameters (A and �) and solely focus on estimating the Lipschitz exponent ↵.
However this method is prone to introduction of errors and visual bias.

The results illustrate a relation between absorption and a functions decay, which could
be used to establish an empirical relation between the associated Lipschitz exponent and
Q. Moving forward, it would be of particular interest to test the model on field data and
analyse the presence of noise, primaries, multiple layers and velocities with varying Q

values on the non-linear model.

REFERENCES

Innanen, K. A., 2003, Local signal regularity and lipschitz exponents as a means to estimate Q: Seismic
Exploration, , No. 12, 53–74.

Izadi, H., Innanen, K. A., and Lamoureux, M. P., 2011, Continuous wavelet transform, Tech. Rep. 23,
CREWES, Univerity of Calgary.

Kjartansson, E., 1979, Attenuation of seismic waves in rocks and applications in energy exploration: Ph.D.
thesis, Stanford University.

Mallat, S., and Zhong, S., 1992, Characterisation of signals from multiscale edges: IEEE Transactions on
Pattern Analysis and Machine Intelligence, 14, No. 7.

Zhang, C., 2008, Seismic absorption estimation and compensation: Ph.D. thesis, University of British
Columbia.

12 CREWES Research Report — Volume 23 (2011)


