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ABSTRACT

Inverse scattering theory has been used widely in many applications in seismology in-
cluding time-lapse problems. The difference data during the change in a reservoir from
the baseline survey to monitor survey is determined using the linear approximation of the
Born series. The linear Born approximation is used to derive a forward operator, map-
ping the model or perturbation to the measured data, and an adjoint operator, mapping
the measured data to the perturbation based on the work of Kaplan (2010). The reference
medium in time-lapse problem is the baseline survey medium and the perturbed medium
is the monitor survey medium. A difference data is formed by applying structural change
in the baseline survey and subtracting it from monitor survey. As the reference medium
is as complicated as the perturbed medium, some difficulties such as spurious multiples in
the difference data are encountered. To eliminate these unwanted events extending the full
version of the Born series is strongly suggested. This paper reviews the earlier work of
Innanen and Naghizadeh (2010) to establish a basic work to investigate the role of higher
order terms in removing the spurious terms in the reference data.

INTRODUCTION

This paper reproduces earlier work of Innanen and Naghizadeh (2010), which is being
reviewed as a preliminary step to expanding and implementing it further for investigating
the role of higher order terms.

Up-to-date information of a reservoir provides programs to optimize the management
of a reservoir and extends the useful life of an oilfield. A time lapse survey introduces an
important contribution to the production of hydrocarbons around the world. A time lapse,
or 4D seismic monitoring enables us to monitor the changes in the behavior of a reservoir
over time. Comparison of repeated seismic surveys over months, years, or decades adds the
forth dimension, time, to the seismic data (Greaves and Fulp, 1987; Lumley, 2001). Prior
to utilize a reservoir, a first seismic experiment called the baseline survey is acquired and
after a particular interval of time following several geological/geophysical changes, another
seismic survey, called monitor survey, is acquired. In a time lapse seismic survey the base-
line survey is compared with the monitoring survey. The difference data is the difference
between the baseline survey and the following monitor surveys. Seismic trace can differ
in amplitude, frequency, polarity, or the location of the interfaces from the baseline sur-
vey to the monitor survey. The difference data between a baseline and a monitor survey is
categorized as either amplitude or the location of the boundary (Innanen and Naghizadeh,
2010).

The scattering theory can be used as a framework to model these difference data in a
time lapse survey. The main idea in scattering theory is computing a wavefield in an in-
homogeneous medium using a wavefield in a reference medium perturbed with a function
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which is related non-linearly to the earth properties. This innovation is used to describe
the difference data in time-lapse through resembling the baseline survey as the reference
medium and the monitoring survey as the perturbed medium. The difference data are pre-
sented as the scattered wavefield data (Zhang, 2006).

Setting the baseline survey as a reference wavefield encounters us with two particular
difficulties. Reference medium is as complicated as perturbed medium, and therefore as-
signing an smooth reference medium to simplify the problem is not an option any more.
Another concern is due to the reflected data in the baseline survey which are absent in the
reference medium for a standard scattering method (Innanen and Naghizadeh, 2010).

The study described here focuses on describing the difference data for structural change
in a reservoir with scattering theory. A forward operator which is mapping the earth model
to the seismic data is derived. Then an adjoint operator is defined using the same process.
The forward and adjoint operators are derived from Kaplan’s thesis (Kaplan, 2010). A
linear Born approximation is used to predict the difference data.

WAVE EQUATION AND BORN APPROXIMATION

The Helmholtz wave equation describes a wavefield propagating through an acoustic
medium[

∂2

∂x2
−
(

1

c2(x, z)

)(
∂2

∂t2

)]
P (x, z|xs, zs;ω) = f(ω)δ(z − zs)δ(x− xs) (1)

Where c(x,z) is wave speed with x = (x, y), and f(ω) is the frequency distribution
of a point source at (xs, zs) with xs = (xs, ys). Scattering theory, which is described in
companion paper (Jabbari and Innanen, 2011), has been used to solve this wave equation.
The result is

P (xg, zg|xs, zs;ω) = Pd(xg, zg|xs, zs;ω) + Ps(xg, zg|xs, zs;ω)

Where Pd describes the first term in Born series and is a direct wavefield propagating from
the source at (xs, zs) to the receiver at (xg, zg) and is calculated as

Pd(xg, zg|xs, zs;ω) = f(ω)G0(xg, zg|xs, zs;ω) (2)

G0 is the Green’s function satisfying[
∂2

∂x2
−
(

1

c20(x, z)

)(
∂2

∂t2

)]
G0(x, z|xs, zs;ω) = δ(z − zs)δ(x− xs) (3)
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and Ps is the scattered wavefield

Ps(xg, zg|xs, zs;ω) = f(ω)(

∫ ∫ ∞
−∞

G0(xg, zg|x′, z′;ω)(
ω

c0(x′, z′)
)2α(x′, z′)G0(x

′, z′|xs, zs;ω)dx′dz′

+

∫ ∫ ∞
−∞

G0(xg, zg|x′, z′;ω)(
ω

c0(x′, z′)
)2α(x′, z′)[∫ ∫ ∞

−∞
G0(x

′, z′|x′′, z′′;ω)( ω

c0(x′′, z′′)
)2α(x′′, z′′)G0(x

′′, z′′|xs, zs;ω)dx′′dz′′
]
dx′dz′ + ...)

= P1 + P2 + ...

(4)

In these equation α is a dimensionless quantity called perturbation

α(x, z) = 1− c20(x, z)

c2(x, z)
(5)

Where c0 and c are velocities in the reference and inhomogeneous mediums.

When the reference velocity, c0 is constant, Green’s functions are derived applying
residue theory (Saff and Snyder, 1993). More detail can be found in (Kaplan, 2010).

G0(kgx, zg|x′, z′, ω) = −
1

i4kgz
e−ikgx.x

′
eikgz |z

′−zg | (6)

G0(x
′, z′|ksx, zs, ω) = −

1

i4ksz
eiksx.x

′
eiksz |z

′−zs| (7)

where

kgz = sgn(ω)

√
(
ω

c0
)2 − kgx.kgx

ksz = sgn(ω)

√
(
ω

c0
)2 − ksx.ksx

(8)

These equations relate horizontal wave-numbers ksx at source and kgx at receiver to their
respective vertical wave numbers ksz and kgz and are called dispersion relations.

The Born series is a consequence of the solving the wave equation and is fully covered
in the companion paper (Jabbari and Innanen, 2011). Truncating the Born series after the
second term forms the Born approximation in which the measured data are linear with
model, meaning that the wavefield are linearly related to the perturbation α, The Born
approximation is valid when the perturbation is small (Matson, 1996).

Ps(xg, zg|xs, zs;ω) ≈ f(ω)

∫ ∫ ∞
−∞

G0(xg, zg|x′, z′;ω)(
ω

c0
)2α(x′, z′)G0(x

′, z′|xs, zs;ω)dx′dz′

(9)

We will use the Born approximation all over in this paper.
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Forward Operator

A forward operator is an operator which maps the earth model to the seismic data. To
derive a forward operator, we take into account the variation of the reference medium veloc-
ity c0 in space for the vertical(depth) and lateral directions using the Born approximation.
The problem is treated in two separate steps, first the velocity variation in depth is taken
into consideration using the Gazdag migration method with the assumption of no variation
in the lateral direction (Gazdag, 1978). In Gazdag modeling, the reference velocity is only
a function of depth. The entire depth is divided into nz layers

Dl = [z ∈ R|0 ≤ zl−1 ≤ z < zl], l = 1...nz, (10)

c0(l) and G0(l) are approximating a constant reference velocity and a Green’s function re-
spectively Within each layer. The total scattered wavefield is the sum of wavefields within
each layer, Ps(l)

Ps = Ps(1) + Ps(2) + ...+ Ps(nz) (11)

where Ps(1) , Ps(2), and Ps(nz) are the contributions to the scattered wavefield from the
corresponding layer in the depth.

To compute Ps(1), we assume zs = zg = z0. Substituting Green’s function for the first
layer from equations 6 and 7 into the Born approximation in equation 9 gives the scatter
wavefield in the first layer

Ps(1) (kgx, z0|ksx, z0;ω) = f(ω)

∫ z1

z0

up(1) (kgx, ksx, z
′, ω)

ω2

c20(1)
α (kgx − ksx, z′) dz′ (12)

where ksx and kgx are the Fourier conjugate variables of xs and xg, respectively, and the
function up(1) is

up(l) (kgx, ksx, z
′, ω) = −e

i(kgz(l)+ksz(l))(z
′−zl−1)

16kgz(l)ksz(l)
(13)

for l = 1 and where kgz(1) and ksz(1) are given by the dispersion relations

kgz(l) = sgn(ω)

√
(
ω

c0(l)
)2 − kgx.kgx

ksz(l) = sgn(ω)

√
(
ω

c0(l)
)2 − ksx.ksx

(14)

To construct the scattered wavefield in the second layer, we compute the direct propagation
of the wavefield from the source to the boundary of the first layer using G0(1). This wave-
field, then goes under perturbation and is scattered in the second layer. We use G0(2) for
Green’s function for propagation of the scattered wavefield here. This scattered wavefield,
propagates back to the receiver through the first layer, therefore the energy is propagated
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according to G0(1). These steps are presented in the following equations[
∂2

∂x2
−

(
1

c20(2)(x, z)

)(
∂2

∂t2

)]
P(2,1)(x, z|xs, z0;ω) =f(ω)G0(1)(x, z|xs, z0;ω)δ(z − z1)

+
ω2

c20(2)
α(x, z)P(2,1)(x, z|xs, z0;ω)

(15)

P(2,1)(x, z|xs, z0;ω) = f(ω)

∫ ∞
−∞

G0(1)(x
′, z1|xs, z0;ω)G0(2)(x, z|x′, z1;ω)dx′

+

∫ ∞
−∞

∫ z2

z1

G0(2)(x, z|x′, z′;ω)(
ω

c0(2)
)2α(x′, z′)P(2,1)(x

′, z′|xs, z0;ω)dx′dz′
(16)

Writing P(2,1) to first order in α leads to

Ps(2,1)(x, z|xs, z0;ω) ≈ f(ω)

∫ ∫ ∞
−∞

G0(1)(x
′′, z1|xs, z0;ω)

×
∫ z2

z1

G0(2)(x, z|x′, z′;ω)(
ω

c0(2)
)2α(x′, z′)G0(2)(x

′, z′|x′′, z1;ω)dz′dx′′dx′
(17)

This is the scattered wavefield measured in D2. To determine the scattered wavefield
measured at the surface, we apply Ps(2,1) as a boundary condition at the bottom of D1[

∂2

∂x2
−

(
1

c20(1)(x, z)

)(
∂2

∂t2

)]
Ps(2)(x, z|xs, z0;ω) = Ps(2,1)(x, z|xs, z0;ω)δ(z − z1)

(18)

Ps(2)(x, z|xs, z0;ω) = f(ω)

∫ ∫ ∫ ∞
−∞

G0(1)(x, z|x′, z1;ω)
∫ z2

z1

G0(2)(x
′, z1|x′′, z′′;ω)

× (
ω

c0(2)
)2α(x′′, z′′)G0(2)(x

′′, z′′|x′′′, z1;ω)dz′′G0(1)(x
′′′, z1|xs, z0;ω)dx′′′dx′′dx′

(19)

Evaluating this at the measurement surface (xg, z0) and taking the Fourier transforms over
xg and xs we have

Ps(2)(kgz, z0|ksx, z0;ω) = f(ω)

∫ ∫ ∫ ∞
−∞

G0(1)(kgx, z0|x′, z1;ω)
∫ z2

z1

G0(2)(x
′, z1|x′′, z′′;ω)

× (
ω

c0(2)
)2α(x′′, z′′)G0(2)(x

′′, z′′|x′′′, z1;ω)dz′′G0(1)(x
′′′, z1|ksx, z0;ω)dx′′′dx′′dx′

(20)
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Substituting the Green’s function in equations 6 and 7 and recognizing the Fourier trans-
form over x’ and x”’ gives

Ps(2)(kgz, z0|ksx, z0;ω) = f(ω)

∫ ∞
−∞

(
−e

ikgz(1)(z1−z0)

i4kgz(1)

)∫ z2

z1

G0(2)(kgx, z1|x′′, z′′;ω)

× (
ω

c0(2)
)2α(x′′, z′′)G0(2)(x

′′, z′′|ksx, z1;ω)dz′′
(
−e

iksz(1)(z1−z0)

i4ksz(1)

)
dx′′

(21)

By rearranging this equation we can have a summary form as follow

Ps(2) (kgx, z0|ksx, z0;ω) =

f(ω)up(1) (kgx, ksx, z1, ω)

∫ z2

z1

up(2) (kgx, ksx, z
′, ω)

ω2

c20(2)
α (kgx − ksx, z′) dz′

(22)

where up(2) is giving by equation 13 for l=2.

The scattered wavefield for the lth layer is generalization of Ps(2) to the lth layer

Ps(l) (kgx, z0|ksx, z0;ω) =

f(ω)up(1)up(2)...up(l−1)

∫ zl

zl−1

up(l) (kgx, ksx, z
′, ω)

ω2

c20(l)
α (kgx − ksx, z′) dz′

(23)

Split-step modeling

Split-step modeling is used to account for lateral variation in the reference velocity in
our calculation. We let kgz(l) and ksz(l) be the functions of slowness c−10(l) which is allowed
to vary in the lateral dimensions. Taking the Taylor expansions of kgz(l) and ksz(l) about a
constant c−11(l) which is the average of c−10(l), and truncating it to the first term gives

kgz(l)(c
−1
0(l)) ≈ kgz(l)(c

−1
1(l)) + ω

[
1− |c0(l)(xg)kgx/ω|2

]−1/2 (
c−10(l)(xg)− c

−1
1(l)

)
≈ kgz(l)(c

−1
1(l)) + ω

(
c−10(l)(xg)− c

−1
1(l)

) (24)

Here we have set c0(l)(xg)kgx/ω to zero. This term is zero if either ω is large or kgx is small.
This is valid for near vertical traveling plane wave components and when the lateral varia-
tion in the reference velocity is small. Applying this equation allows to split the dispersion
relation into two parts which depend on the wavenumber and lateral space independently.
With this split, the lth term in equation 23 in Gazdag modeling can be rewrite as

Ps(l) (xg, zg|xs, zs;ω) =
(

1

2π

)4l

f(ω)
(
us(1)F

∗
gsup(1)Fgs

)
...
(
us(l−1)F

∗
gsup(l−1)Fgs

)
×
∫ zl

zl−1

(
us(l)(xg, xs, z

′, ω)F ∗gsup(l)(kgx, ksx, z
′, ω)Fgs

) ω2

c21(l)
α (xg, xs, z

′) dz′
(25)
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where Fgs is the four dimensional Fourier transform over xs and xg and F ∗gs is its adjoint,
such that the corresponding inverse Fourier transform is (1/2π)4F ∗gs. The phase shift, us(l),
and split-step correction, up(l), are

us(l) (xg, xs, z
′;ω) = e

iω
(
c−1
0(l)

(xg)+c−1
0(l)

(xs)−2c−1
1(l)

)
(z′−zl) (26)

up(l) (xg, xs, z
′;ω) = −

i
(
kgz(l) + ksz(l)

)
(z′ − zl−1)

16kgz(l)ksz(l)
(27)

Equation 11, 25 and 26 are split-step wavefield modeling in which the reference velocity
varies in all dimensions and constitute a linear forward operator which maps perturbation
α to the measured wavefield Ps.

Adjoint Operator

In preceding section we constituted a forward operator mapping the model earth, or
perturbation, to the measured data, also called de-migration. In seismology we are rather
looking for techniques which can do the inverse, mapping the measured data to the model or
perturbation. In inversion, this task is done using adjoint operator. The adjoint of equation
9 is

α†(x′, z′) =∫ ∫ ∫ ∞
−∞

f ∗(ω)G∗0(xg, zg|x′, z′;ω)
ω2

c20(x
′, z′)

Ps(xg, zg|xs, zs;ω)G∗0(x′, z′|xs, zs;ω)dxgdxsdω

(28)

Fredholm integral equation has the form of

g(x) =

∫
u(x, z)h(z)dz (29)

and its adjoint is

h†(z) =

∫
u∗(x, z)g(z)dx (30)

where u, g, and h are arbitrary functions, and u∗ is the adjoint of u. Correspondingly in
equation 11 and 25 we can recognize the form of

Ps (xg, z0|xs, z0;ωj) =
∑
l

u(xg, xs;ωj, zl)α(xg, xs; zl) (31)

Similarly its adjoint will be

α†(xg, xs; zl) =
∑
l

u∗(xg, xs;ωj, zl)Ps (xg, z0|xs, z0;ωj) (32)

where
u∗(xg, xs;ω, zl) =

(
1

2π
)4lf ∗(ω)

(
u∗s(l)F

∗
gs(

ω

c1(l)
)2u∗p(l)Fgs

)
...
(
u∗s(2)F

∗
gsu
∗
p(2)Fgs

) (
u∗s(1)F

∗
gsu
∗
p(1)Fgs

) (33)

u∗s(l) and u∗p(l) are the conjugate of us(l) and up(l).
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A STRUCTURAL PERTURBED TIME-LAPSE PROBLEM

We will consider two seismic experiments involved in a time-lapse survey, the base-
line survey, followed by a monitoring survey. The acoustic medium In this project,is one-
dimensional problem varying in depth with a normal incident plane source. The only pa-
rameter changes from the time of baseline survey to monitoring survey is the depth of the
reflectors. The depth of the interface location at the time of the baseline survey is zI . In
a time lapse problem, the reference wavefield, or the Green’s function, is the wavefield of
the baseline survey and can be expressed from equation 1 as[

d2

dz2
+

ω2

c2I(z)

]
G0(z, zs;ω) = δ(z − zs) (34)

For simplicity, the source is a pulse which is presented by a delta function at z = zs, and
the 1/c2I(z) is defined as

1

c2I(z)
=

{
c−2I , z > zI
c−20 , z < zI

(35)

c0 and cI are the incidence and target wavefield velocities. The perturbed medium has the
same target medium parameter in which interference location is changed to zF[

d2

dz2
+

ω2

c2F (z)

]
P (z, zs;ω) = δ(z − zs) (36)

where
1

c2F (z)
=

{
c−2I , z > zF
c−20 , z < zF

(37)

The baseline wavefield which is the reference wavefield for the time lapse problem is cal-
culated as (Innanen and Naghizadeh, 2010)

P0 =
1

i2k0
+RI

ei2k0zI

i2k0
(38)

Where k0 = ω
c0

, RI = (cI − c0)/(cI + c0), and zs = zg = 0. The first term in this equation
is the direct wavefield propagating from the source to the receiver, and the second term is
the reflection from the interface location zI .

The solution for the first order scattered wavefield or the Born linear approximation,
which is the difference data in time-lapse interpretation is obtained as (Innanen and Naghizadeh,
2010)

Ps ≈
αTL

4

[
ei2k0zF

i2k0
− ei2k0zI

i2k0

]
(39)

The α is

αTL(z) = 1− c2I(z)

c2F (z)

=

 0, z < zF
1− c20/c2I , zF < z < zI
0, zI < z

= αTL [H(z − zf )−H(z − zI)]

(40)
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where H is Heaviside function and αTL = 1− c20/c2I is the time lapse perturbation. The full
Born series can be written as

P =
1

i2k0
+RI

ei2k0zI

i2k0
+
αT l

4

[
ei2k0zF

i2k0
− ei2k0zI

i2k0

]
+ ... (41)

The second term in the right describes a reflection from the interface zI in the reference
medium. But in reality, there is not such an event in P. This fact produces a difficulty in
interpretation of the time lapse structural problem using the scattering theory. There is a
possibility that this spurious event is canceled out with higher order terms in the Born series.
The future work for this project will be computing higher order terms and investigating this
possibility.

So far in all parts of this project, we consider the first or linear term in the Born series.
We have derived equations for the forward and adjoint operator based on the linear Born
approximation for a standard seismic reflection survey. A forward and adjoint operator
for the difference data based on linear Born approximation can be derived and tested on a
model data for a time lapse problem. Also the Born series will be investigated and derived
full series solution to map the earth model to the measured data and the measured data to
the model. The possibility of the removing the spurious events on the Born terms will be
investigated using higher terms in the Born series and tested on the model.

CONCLUSION

Employing the scattering theory in many geophysical area such as time-lapse is worth-
while. Time-lapse measurements provide a tool to monitor the dynamic changes in sub-
surface properties during the time of the exploitation of a reservoir. For the future work
we will derive a forward and adjoint operator for the difference data in a structural change
time lapse problem. One of the main obstacle on using linear scattering theory to predict
the model for the difference data in the structural change time-lapse problem is producing
spurious events due to the complexity of the reference medium which is the baseline sur-
vey. A possible solution to this is calculating the higher order terms in the Born series and
investigating if these events can be removed through the involving higher order terms.
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