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ABSTRACT

AVO techniques permit the variations in seismic amplitudes with angle or offset to be
used to deduce subsurface target properties. Linearized AVO is parameterized in several
different ways. One, introduced this year focuses on changes in the P-wave reflection
strength associated with poroelastic medium variations. In this paper we review a newly
proposed poroelastic AVO technique, and reproduce the methodology and basic conclu-
sions of those authors. We formulate the poroelastic AVO inverse problem in terms of
least-squares, and take some initial steps towards extending the model to nonlinear (i.e.,
large contrast) regimes.

INTRODUCTION

AVO analysis allows our ability to infer lithological and fluid properties of the sub-
surface given the behaviour of the amplitude information in the seismic. Russell et al.
(2011) presents an accessible and straightforward-to-implementation alteration of classic
AVO theory to this end. The goals of this paper are to (a) review AVO theory through the
exact and linearized AVO approximations, (b) reproduce the results provided by Russell
et al. (2011), and (c) examine the linear inverse problem and to identify a possible avenue
of extension. But first we shall introduce poroelasticity theory as proposed by Biot (1941)
and Gassmann (1951) which essentially accounts for the presence of fluid within a dry rock
frame.

THEORY

I. Poroelasticity

Poroelasticity theory concerns what happens when we introduce a pore fluid into an
initially dry (or drained) porous rock (Russell et al., 2011). Since elastic material behaves
in a way such that a geological model assumes homogeny and isotropy, poroelasticy theory
further extends how porosity and fluids affect the physical properties of the medium of
interest. These physical properties then affect the amplitude of a travelling wavefield that
interacts with that medium. Through the works of Biot (1941) and Gassmann (1951),
Berryman (1999) shows a stress and strain relationship which can be seen in equation (1)

e11
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e33

ζ

 =


sdry11 sdry12 sdry12 β
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
σ11

σ22

σ33

pf

 (1)

where the sdry∗∗ values represent undrained or dry compliances, e∗∗ represent strain, σ∗∗
represent stress, and β and γ represent two physical constants. The ζ term measures how
much of the original fluid in the pores is squeezed out during the compression of the pore
volume while including the effects of compression or expansion of the pore fluid itself due
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to changes in pf where it can be shown that the dry compliances can be solved by setting
ζ = 0. The undrained compliances can be written in terms of Lamé parameters, bulk
modulus, shear modulus, Young’s modulus and Poisson’s ratio. This is shown by

sdry11 =
1

Edry
=

λdry + µdry
µdry(λdry + 2µdry)

=
1

9κdry
+

1

3µdry
(2)

and
sdry12 = − ν

Edry
=

λdry
2µdry(3λdry + 2µdry)

=
1

9κdry
+

1

6µdry
. (3)

Since Berryman (1999) is dealing with an isotropic model, seven poroelastic equations
and seven unknowns have been reduced to four poroelastic equations with four unknowns
which is shown in equation (1) (Russell et al., 2011). By assuming that there is no change in
pore fluid mass, an expression to solve equation (1) for the saturated compliances is shown
by Berryman (1999) which is done by inverting the matrix of dry compliances which will
then give you a matrix of dry stiffnesses. But without going into much detail, we can draw
two important conclusions from what we have seen so far (Russell et al., 2011). The first
conclusion is noting that there is a relation between equation (1) and (4) where Biot (1941)
shows that csatij = cdryij + α2M where the inverted matrix of dry stiffnesses is replaced with
saturated stiffnesses using this equation. This is shown below in equation (4) where


σ11

σ22

σ33

pf

 =


csat11 csat12 csat12 −αM
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csat12 csat12 csat11 −αM
−αM −αM −αM M



e11

e22

e33

ζ

 . (4)

The second conclusion involves the expressions for the dry stiffnesses where they are
written similarly like the dry compliances where

cdry11 = λdry + 2µdry = κdry +
4

3
µdry (5)

and
cdry12 = λdry = κdry −

2

3
µdry. (6)

So by using both conclusions, we can find that

csat11 − csat12 = cdry11 − c
dry
12 (7)

is true and we can cancel the α2M terms and see that

µsat = µdry. (8)

Equation (8) implies that the pore fluid does not affect the shear rigidity. Russell et al.
(2011) states that with equation (8), the µ terms can be canceled when equating the dry and
saturated stiffness terms as shown in equation (7) where
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λsat = λdry + α2M (9)

and
κsat = κdry + α2M. (10)

The α2M terms are what is known as the fluid term that shows a relation between
the drained and undrained parameters as shown above. Gassmann (1951) derives those
parameters in terms of elastic constants where

α = 1− κdry
κm

(11)

1

M
=
α− φ
κm

+
φ

κfl
. (12)

The α term acts as a control which determines the amount of fluid that is inside a dry
rock frame. If the rock frame is entirely fluid free, κdry/κm is one and α then disappears in
equations (9) and (10). This provides an extra control variable that can be used to calculate
(VP )sat and (VS)sat as shown by Russell et al. (2011).

II. AVO modelling, linear approximation

From the Zoeppritz equations, several linear approximations have been derived. With
these approximations, we can model AVO curves along with the Zoeppritz curve for com-
parison. As shown below, these linearized approximations plotted alongside Zoeppritz pro-
vide very similar results for small angles of incidence. As the angle of incidence increases,
the differences between these approximations versus the exact expressions increases. The
different approximations, although produce similar reflection coefficients to one another,
each linearly approximated AVO expression is derived using different medium parameters.
For instance, Aki and Richards (2002) require the compressional and shear wave velocities
as well as the densities to calculate the reflection coefficient of a particular angle. Similarly,
Shuey (1985) derives an approximation using the same inputs as Aki and Richards (2002)
however, uses poisson’s ratio instead of density. These expressions will be explained in
more detail in the next section as well as show an expression derived by Russell et al.
(2011). Although AVO analysis does help us provide some insight into the fluid content of
a medium of interest, Russell et al. (2011) derives an expression that directly inverts for a
fluid term in the AVO equation itself.

LINEAR POROELASTIC AVO

As an incident P-wave travels towards a boundary at normal incidence, a transmitted
and reflected P-wave is generated. If the incident P-wave travels at an angle towards the
boundary, then a mode conversion will occur in which transmitted and reflected P- and S-
waves will be generated on both sides of the boundary (Russell et al., 2011). This is shown
in figure 1. The amplitudes of the travelling waves can be characterized by the Zoeppritz
equations which determine seismic amplitude responses at the surface at different offsets.
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Ostrander (1984) became familiar with this type of behaviour and adapted the notion that
these AVO responses were mainly characterized by the Poisson’s ratio of two different
media of a given interface. Other parameterizations of AVO curves can also be forward
modelled in terms of VP , VS , and ρwhere Aki and Richards (2002) have derived an equation
where the incident and reflected P-wave amplitude is written as

RPP (θ) =
(
1 + tan2θ

) ∆VP
2VP

+

(
−8sin2θ

γ2
sat

)
∆VS
2VS

+

(
1− 4sin2θ

γ2
sat

)
∆ρ

2ρ
(13)

where γsat is a VP/VS ratio for a fluid saturated medium and the notation used here was
adapted from Russell et al. (2011). Each reflectivity term in the equation above is charac-
terized by a forward modelled P-wave velocity, S-wave velocity and density. Each term in
the denominator of the three linear terms in equation (13), display the average VP , VS , and
ρ between the media of interest. The terms in the numerator are simply the differences of
each corresponding elastic parameter. Accompanying each reflectivity term is a weighting
term that is a function of incidence angle. This equation is a linearized approximation to
the Zoeppritz equations. Although it would be ideal to use the full Zoeppritz equations in
order to invert for physical properties of the Earth, the nonlinear schemes may be unstable
(Russell et al., 2011). For AVO analysis, the near offsets are used rather than the farther
offsets as far offset data are subjected to greater error in the AVO amplitude estimation.
This greater error can be seen in the ∆ terms of equation (13) where the ratios for VP , VS ,
and ρ cannot be large (Russell et al., 2011).

FIG. 1: An incident P-wave approaching a boundary at an angle θ where P- and S-wave reflections and
transmissions are produced. The medium properties being analyzed in the forward modelling involves a
P-wave (VP ), S-wave (VS), and density (ρ).

Amplitude estimates from equation (13) seem to be adequate for small offsets when
compared to the Zoeppritz values. There are a handful of AVO approximations that have
been derived that also produce similar results to Aki and Richards (2002) such as Shuey’s
approximation where the three forward modelled terms are of P-wave velocity, density, and
Poisson’s ratio. Gray et al. (1999) also derives, not one, but two expressions for AVO which
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are written in terms of λ, µ, ρ, and κ, µ, ρ respectively. All of these expressions to predict
AVO are similar for elastic constant media. Russell et al. (2011) shows however, that
an expression for AVO which includes the combined works of Biot (1941) and Gassmann
(1951) can be useful for fluid filled layers. Using poroelasticity theory, Russell et al. (2011)
applies both fluid and rock matrix properties to determine an approximated wave amplitude
signature. The equation that was derived by Russell et al. (2011) is a function of a fluid
term, f , a saturated shear modulus, µ, and a saturated density, ρ where

RPP (θ) =
[(

1− γ2dry
γ2sat

)
sec2θ

4

]
∆f
f

+
[
γ2dry
4γ2sat

sec2θ − 2
γ2sat

sin2θ
]

∆µ
µ

+[
1
2
− sec2θ

4

]
∆ρ
ρ

. (14)

The way in which this formula was derived was by incorporating poroelasticity with the
two formulations provided by Gray et al. (1999) into one single equation. This equation is
referred to as the f −m− r (fluid-mu-rho) equation.

Because equation (14) is a linear sum of three relfectivity terms, it can be used to extract
estimates of the three reflectivities from seismic (Russell et al., 2011). This can be written
in the form of 

RPP (θ1)
RPP (θ2)

...
RPP (θN)

 =


c1(θ1) c2(θ1) c3(θ1)
c1(θ2) c2(θ2) c3(θ2)

...
...

...
c1(θN) c2(θN) c3(θN)




∆f
f

∆µ
µ

∆ρ
ρ

 (15)

where ci(θj) represents the weighting terms in front of each poroelastic term.

Since this type of expression is known as an overdetermined system, there are many
more data points, RPP (θ), then there are unknown variables to solve for. Here we have
only three unknown parameters which are ∆f

f
, ∆µ
µ

, and ∆ρ
ρ

. Our data points are used to help
invert for these unknowns. The results of performing a least squares inversion from our data
points should manage to estimate our unknown parameters without too much error given
that the data points used do not exceed unstable values (i.e. angles beyond the critical angle
for a given impedance contrast of the two layers). For an overdetermined problem such as
this, the matrix inversion may not yield perfect estimates of the unknowns. Therefore one
approach into analyzing this problem is to try and find a unique solution. This is done by
using the same number of equations, or data points, as there are unknown parameters.

LEAST SQUARES IMPLEMENTATION

Two geological models were tested for the linear AVO inversion. Each of which were
designed from parameters extracted from Russell et al. (2011). The two models in question
are each composed of sand layers. The first geological model is described as a top sand
that is gas saturated overlying a fully brine saturated sand. The second geological model
consists of two fully brine saturated sands. The physical and fluid parameters that were used
to forward model are illustrated in figure (2) where each parameter can be used to calculate
a poroelastic property of the medium such as VP , VS , ρ, f , µ, and etc. We will begin the
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analysis with the first geological model that features a gas saturated sand overlying a fully
brine saturated sand. It’s corresponding AVO curves are produced in figure (3) where the
input parameters taken from figure (2a) were used to plot each AVO curve. In order to test
out one of the linear inversions, the Zoeppritz equations were replaced on the left hand side
of equation (15) to act as synthetic data.

FIG. 2: The two blocks on the left represent the first model and the right represents the second. Each model
shows the input parameters that were used to calculate various poroelastic moduli. Note that the velocities
shown include poroelastic properties so they are the saturated velocities.
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FIG. 3: For the first geological model, this figure represents the reflection coefficients (or amplitudes) as a
function of the angle of incidence of a P-wave. The vertical blue line represents the critical angle at which
the ray path of a P-wave does not reflect back to the surface. The amplitude values appearing before the
blue line are real valued whereas the amplitudes appearing after the blue line have both real and imaginary
components. For this particular geological model, the reflection coefficients have relatively the same value
for small angles.

As seen before with the AVO equations shown by Aki and Richards (2002) and Russell
et al. (2011), there are three unknown parameters. In order to find a unique solution for
an overdetermined problem such as this, the same number of equations is chosen to solve
for the unknown parameters i.e. three equations for three unknowns. Since we are more
interested in the poroelastic properties of the subsurface, the equation provided by Russell
et al. (2011) will be used to linearly invert for fluid, shear rigidity, and density. The way
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in which this was performed, a series of inversions were performed on the synthetic data
where a three equation arrangement involved the first data point located where the angle of
incidence is zero, the second data point starting where the angle of incidence is 1 degree,
and the third data point located just before the critical angle. This arrangement shows the
first iteration of the series of inversions for a model. The next arrangement of equations
would then involve the second data point to be located at an angle of incidence of 2 degrees
where the first and last points remain static. And so on. This procedure is better represented
in figure (4) where the magenta circles represent the static points and the teal circle rep-
resents an intermediate point, that increases in angle with each successive inversion. The
known ∆f

f
, ∆µ
µ

, and ∆ρ
ρ

for the first geological model are 1.657, 0.0, and 0.012 respectively.
From the first iteration as seen in equation (16), the estimates for these reflectivities were
1.627, -0.036, and 0.059 respectively.
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FIG. 4: This shows a graphical representation of how the three equations were selected for the parameter
estimations. The magenta circles represent RPP (θ1) and RPP (θ48) and the teal circle represents RPP (θ2)
in equation (16).

RPP (θ1)
RPP (θ2)
RPP (θ48)

 =

 c1(θ1) c2(θ1) c3(θ1)
c1(θ2) c2(θ2) c3(θ2)
c1(θ48) c2(θ48) c3(θ48)




∆f1
f1

∆µ1
µ1

∆ρ1
ρ1

 (16)

For the first iteration of model 1, the first set of equations is shown in equation (16).
This is similarly constructed for model 2 except that the third data point would beRPP (θ58)
which can be seen in figure (7) where the critical angle is shown. Once a spectrum of f-m-r
(fluid-mu-rho) values have been estimated, the bulk residual can show how accurate the
inversion is working and can be expressed as

(rbulk)i =

[
∆f

f
−
(

∆f

f

)
est

]
i

+

[
∆µ

µ
−
(

∆µ

µ

)
est

]
i

+

[
∆ρ

ρ
−
(

∆ρ

ρ

)
est

]
i

(17)
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where i ranges from 1 to 48 for the case of model 1. A plot of the sum of the residuals
between each reflectivity can be seen in figure (5)
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FIG. 5: The sum of the reflectivity residuals or bulk residual that illustrates the behaviour of the linear
inversion results as θ2 changes for model 1.

where we can see an increasing trend as the second equation gets larger. Since we are
performing a linear least squares inversion, we would not expect to perfectly estimate the
reflectivity terms but the bulk residual plot suggests that such an estimation has occurred
when θ2 is approximately 37 degrees. Although this is a peculiar result, a plot of the
individual reflectivity residuals would show otherwise in figure (6) which shows that the
sum of each reflectivity residual at θ2 = 37◦ coincidentally sums to zero.

Analysis was similarly performed on the second geological model in which a brine
saturated sand overlaid a brine saturated sand. The AVO curves are shown in figure (7)
where all four curves seem to be behaving linearly from angles 0 to 40 as opposed to
model 1 where the amplitudes are not behaving as such. We should therefore expect the
linear inversion scheme to predict the reflectivities with a fair amount of stability and that
not much variation in the bulk residual plot should occur. That is the case and is shown in
figure (8) along with the plots of the individual reflectivity residuals in figure (9).
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FIG. 6: Each panel represents the residuals of the true pororelastic terms (model true) and the inverted
terms (model est) for model 1. In (6a) the estimation is exact when the intermediate equation was chosen at
an angle of approximately 30 degrees. The other residuals however increase for both the µ and ρ terms when
the moving data point is at higher a higher angle. The sum of each curve reproduces the bulk residual curve
in figure (5)
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FIG. 7: For the second geological model, this figure represents the reflection coefficients (or amplitudes)
as a function of the angle of incidence of a P-wave. The vertical blue line represents the critical angle at
which the ray path of a P-wave does not reflect back to the surface. Similarly to the first model, the reflection
coefficients for small angles have small variation. Note that the Aki and Richards approximation is located
behind the Shuey approximation.
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FIG. 8: The sum of the reflectivity residuals or bulk residual that illustrates the behaviour of the linear
inversion results as θ2 changes for model 2.
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FIG. 9: The residual for the fluid term in (9a) predicts exactly the true model parameter at an angle of
approximately 56 degrees for model 2. The shear modulus term in (9b) is also predicted exactly at an offset
of approximately 50 degrees. The density term (9c) was not able to perfectly predict density for any incidence
angle.
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EXACT POROELASTIC AVO: FORMULATION AND MODELING

Russell et al. (2011) use linearized forms for RPP as a starting point for their analysis.
One of our aims is to examine the role of nonlinearity in this parametrization. To that end
here we will reformulate the full elastic Zoeppritz equations using the arguments made in
that paper, and prepare them for expansion both linearly and with nonlinear corrections.
Carrying out this expansion and inverting it to estimate the fluid parameter from reflection
data will form the focus of our research in the coming year.

Knott-Zoeppritz equations and solutions

Elsewhere in this report, Innanen (2011) discusses a matrix form for elastic displace-
ment coefficients, including RPP, originally due to Levin (1986) and Keys (1989). They
are expressed in terms of an incident plane wave angle θ, incidence medium (medium 0)
P-wave and S-wave velocities and density, and target medium (medium 1) P-wave and
S-wave velocities and density. Here we will express them as

P


RPP

RPS

TPP

TPS

 = bP , (18)

or 
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44



RPP

RPS

TPP

TPS

 =


b1

b2

b3

b4

 , (19)

where the elements of the first row are

A11 = − sin θ,

A12 = −
[
1− 1

γ2
sat

sin2 θ

]1/2

,

A13 =

(
VP1

VP0

)
sin θ,

A14 =

[
1− 1

γ2
sat

(
V 2
S1

V 2
S0

)
sin2 θ

]1/2

,

the elements of the second row are

A21 =
[
1− sin2 θ

]1/2
,

A22 = − 1

γsat
sin θ,
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A23 =

[
1− 1

γ2
sat

(
V 2
P1

V 2
P0

)
sin2 θ

]1/2

,

A24 = − 1

γsat

(
VS1

VS0

)
sin θ,

the elements of the third row are

A31 = 2

(
1

γ2
sat

)
sin θ

[
1− sin2 θ

]1/2
,

A32 =
1

γsat

[
1− 2

(
1

γ2
sat

)
sin2 θ

]
,

A33 = 2

(
ρ1

ρ0

)(
V 2
S1

V 2
S0

)(
1

γ2
sat

)
sin θ

[
1−

(
V 2
P1

V 2
P0

)
sin2 θ

]1/2

,

A34 =

(
ρ1

ρ0

)(
VS1

VS0

)(
1

γsat

)[
1− 2

(
V 2
S1

V 2
S0

)(
1

γ2
sat

)
sin2 θ

]
,

the elements of the fourth row are

A41 = −
[
1− 2

(
1

γ2
sat

)
sin2 θ

]
,

A42 = 2

(
1

γ2
sat

)
sin θ

[
1−

(
1

γ2
sat

)
sin2 θ

]1/2

,

A43 = 2

(
ρ1

ρ0

)(
VP1

VP0

)[
1− 2

(
V 2
S1

V 2
S0

)(
1

γ2
sat

)
sin2 θ

]
,

A44 = −2

(
ρ1

ρ0

)(
V 2
S1

V 2
S0

)(
1

γ2
sat

)
sin θ

[
1−

(
V 2
S1

V 2
S0

)(
1

γ2
sat

)
sin2 θ

]1/2

,

and the elements of vector on the right-hand side are

b1 = sin θ,

b2 =
[
1− sin2 θ

]1/2
,

b3 = 2

(
1

γ2
sat

)
sin θ

[
1− sin2 θ

]1/2
,

b4 =

[
1− 2

(
1

γ2
sat

)
sin2 θ

]
.

Following Russell et al. (2011) we have used the term

γsat =
VP0

VS0

(20)

to denote the in situ VP /VS ratio, in our case in the incidence medium. The subscript ‘sat’
indicates saturated, and will later serve to distinguish between rocks containing fluids and
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‘dry’ rock frames. At the moment it just means the VP /VS ratio that is actually in the Earth,
rather than any notional quantities relating to a rock model. As far as solutions go, our
current interest is to focus on RPP. To solve for this one element of the coefficient vector,
we create a second matrix

PP ≡


b1 A12 A13 A14

b2 A22 A23 A24

b3 A32 A33 A34

b4 A42 A43 A44

 , (21)

in which case, by Cramer’s rule,

RPP =
detPP

detP
. (22)

Poroelasticity

The parameters of the target medium (medium 1) are the parameters of interest, being
the unknowns in the AVO inverse problem. Notice that in the equations of the previous
section these parameters only occur in terms of the three ratios(

VP1

VP0

)
,

(
VS1

VS0

)
, and

(
ρ1

ρ0

)
. (23)

The poroelastic considerations of Russell et al. (2011) involve the breakup in particular of
the bulk modulus into a ‘dry’ part and a ‘fluid’ part. Let us allow this breakup to influence
the form of the three ratios above. In elastic media we have

V 2
P =

κ+ (4/3)µ

ρ
, (24)

and

V 2
S =

µ

ρ
. (25)

In a poroelastic model we distinguish between the in situ, or saturated, parameters, e.g., ρsat

and κsat, and the parameters of the ‘dry’ rock frame supporting the fluid, e.g., ρdry and κdry.
The arguments of Biot and Gassmann are that µsat = µdry, but that the dry and saturated
bulk moduli differ, leading to the poroelastic model of VP :

V 2
P =

s+ f

ρsat
, (26)

where

s = κdry + (4/3)µ (27)

is the skeleton (or rock frame) bulk modulus, and f is the fluid term discussed previously.
This is suggestive that we consider two different γ terms:

γsat =

(
VP0

VS0

)
sat
, γdry =

(
VP0

VS0

)
dry
. (28)

CREWES Research Report — Volume 23 (2011) 13



Kim et al.

Alteration of the Zoeppritz equations

Let us now consider a poroelastic contrast in which across a plane boundary the pa-
rameters µ0, ρ0, s0 and f0 undergo a contrast and become µ1, ρ1, s1 and f1 (henceforth all
densities, ρ1, ρ0 etc. will refer to saturated, or in situ values). Russell et al. (2011) develop
an expression for RPP in terms of contrasts across a poroelastic boundary in f , µ, and ρ. To
that end we here define dimensionless perturbations

aµ = 1− µ1

µ0

, aρ = 1− ρ1

ρ0

, as = 1− s1

s0

, af = 1− f1

f0

. (29)

To manipulate these such that they fit into the matrix forms of the previous section, we
point out first that (

ρ1

ρ0

)
= 1− aρ, (30)

and (
V 2
S1

V 2
S0

)
=

(
µ1

µ0

)(
ρ0

ρ1

)
= (1− aµ)(1− aρ)−1. (31)

The P-wave velocity ratio is more complex. In Appendix A we argue that if as → 0, as in
the forms of Russell et al. (2011), then(

V 2
P1

V 2
P0

)
=

[
1− af

(
1−

γ2
dry

γ2
sat

)]
(1− aρ)−1. (32)

By substituting equations (30)–(32) into equation (19) and forming the ratio in equation
(22), we generate an exact expression for RPP in terms of variations in f , ρ, and µ across a
poroelastic boundary.

CONCLUSIONS

A series of three equation inversions were applied to the Zoeppritz equations using
Russell’s AVO linear approximation. The manner in which these inversions was performed
was based on estimating three poroelastic properties from three different equations. These
three equations were chosen where the first and last equations depicted the minimum and
maximum value of the Zoeppritz derived AVO and the second equation would be a point
in between. The optimally expected inversion result should be located where maximum
coverage of the Zoeppritz curve occurs by the three equation arrangement. This was ex-
pected to be where the conditioning of the matrix inversion was greatest which would be
where the second equation is located at maximum curvature of the Zoeppritz curve but was
not the case. Typically in AVO inversion, using reflection coefficients at higher angles is
not valid as the linearized approximations have more difficulty predicting those amplitudes.
Thus data points at smaller angles are used instead of data found closer to the critical angle.
With that, Russell et al. (2011) shows promising results in which the direct incorporation
of fluid into AVO inversion provides a more comprehensive look into subsurface property
behaviour. We propose an extension to Russell et al. (2011) by devising a non-linear AVO
inversion scheme that may show differential benefit which will then be applied both theo-
retically and empirically.
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APPENDIX A

We begin by altering the ratio(
V 2
P1

V 2
P0

)
=

(
s1 + f1

ρ1

)
×
(
V 2
P0

)−1

=

(
s0 + f1

ρ1

)
×
(
V 2
P0

)−1
,

(A-1)

to coincide with the case of no contrast in the dry rock bulk modulus s = κdry + µ. This
may then be re-expressed as(

V 2
P1

V 2
P0

)
=
s0 + f0 × (f1/f0)

ρ0

×
(
ρ0

ρ1

)
×
(
V 2
P0

)−1

=
s0 + f0 × (1− af )

ρ0

× (1− aρ)−1 ×
(
V 2
P0

)−1

(A-2)
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where in the last step we have used the definitions of the fluid and density perturbations.
Continuing by invoking the definition of V 2

P0
,(

V 2
P1

V 2
P0

)
=

[
s0 + f0

ρ0

− aff0

ρ0

]
× (1− aρ)−1 ×

(
V 2
P0

)−1

=

[
1− af

f0

f0 + s0

]
(1− aρ)−1.

(A-3)

Finally, using the relations

f0 = ρ0V
2
P0
− γ2

dryρ0V
2
S0

s0 = µ0γ
2
dry,

(A-4)

provided by Russell et al. (2011), we may re-write

f0

f0 + s0

=
ρ0V

2
P0
− γ2

dryρ0V
2
S0

ρ0V 2
P0
− γ2

dryρ0V 2
S0

+ µ0γ2
dry

=
V 2
P0
− γ2

dryV
2
S0

V 2
P0
− γ2

dryV
2
S0

+ (µ0/ρ0)γ2
dry

=
V 2
P0
− γ2

dryV
2
S0

V 2
P0
− γ2

dryV
2
S0

+ γ2
dryV

2
S0

=
V 2
P0
− γ2

dryV
2
S0

V 2
P0

= 1−
γ2

dry

γ2
sat
.

(A-5)

Hence we have, finally,(
V 2
P1

V 2
P0

)
=

[
1− af

(
1−

γ2
dry

γ2
sat

)]
(1− aρ)−1. (A-6)
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