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ABSTRACT

This report presents an amplitude inversion of PP data, collected through physical mod-
eling, for the Thomsen anisotropy parameters (ε, δ, and γ) of an orthorhombic medium.
Orthorhombic symmetry, with three mutually perpendicular directions each with different
velocity, is the most general symmetry that can describe vertical fractures in horizontal
fine layering. Assuming the natural coordinate system along with the fracture orienta-
tion, 3D PP data with several azimuths over a phenolic layer have been acquired using the
physical modeling facility in CREWES. The phenolic material has been shown to possess
orthorhombic symmetry; however it is approximately transversely isotropic with two in-
dependent directions. The PP amplitudes picked from the reflection off an isotropic layer
and the phenolic layer at several azimuths were used as the data for the inversion. Deter-
ministic amplitude corrections, similar to those used for the real-world acquisition were
applied to the physical model amplitudes prior to inversion to scale them to represent the
reflectivity. We also applied an additional source-receiver directivity correction specific to
the piezoelectric transducers used in the physical modeling. A linearized PP reflection co-
efficient approximation for an orthorhombic media is used to facilitate the inversion. Some
constraints on the vertical velocities and density were also incorporated in the inversion
process. Large offset data are required for the azimuthal amplitude inversion of the phe-
nolic layer, as the material shows only slight azimuthal amplitude variations. The results
for all three anisotropy parameters from AVAZ inversion compare very favourably to those
obtained previously by a traveltime inversion. This result makes it possible to compute the
shear-wave splitting parameter, γ, (historically determined from shear-wave data) from a
quantitative analysis of the PP reflection data.

INTRODUCTION

Naturally fractured reservoirs hold large hydrocarbon resources and represent attractive
economic targets in exploratory ventures. Fractures are defined as cracks in rock that typi-
cally have apertures of a few millimeters or less (Gray, 2008). Fracture strike or orientation
is the direction of fracture face. The plane parallel to the fractures strike is called isotropic
plane and the plane perpendicular to the fractures strike is known as the symmetry plane.
It might seem that fracture orientation is random, but measurement confirms a dominant
fracture strike related to the major stress direction in the field (Nelson, 2001). Regardless
of the origin of the fractures, natural fractures are commonly vertical or near-vertical to
the bedding layers. Vertical fractures are impossible to image by seismic with the typical
wavelength of tens of meters; however 3D seismic images can provide indirect information
about a fractured medium. The dominant orientation of fracture networks makes the frac-
tured medium azimuthally anisotropic for seismic wave propagation; seismic waves travel
faster in the direction of the fracture strike. Thus, fractures can be detected by seismic
velocity anisotropy.
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The azimuthal anisotropy has a strong effect on all seismic wave propagation aspects;
it causes shear wave splitting (S-wave birefringence), azimuthally-dependent NMO veloc-
ity, and amplitude variation of P- and S-wave reflections with azimuth. Analysis of time
delays of split shear waves make it possible to map the orientation and intensity (charac-
terized by the Thomsen anisotropy parameter γ) of a vertical fracture set (Bakulin et al.,
2000). In industry practice the shear-wave splitting in three-component seismic has been
interpreted directly in terms of the direction of strike of vertical fractures. The azimuthal
anisotropy effect on P-wave travel time, appears as azimuthally-dependent NMO and also
yields estimates of the ε and δ (Tsvankin, 1997b) or a combination of them (η parameter as
in Alkhalifah (1997)).

The Amplitude Variation with angle and AZimuth, AVAZ, of the P-wave reflections
induced by fractures have been examined in theoretical studies (Daley and Hron, 1977;
Thomson, 1988; Rüger, 1997; Bakulin et al., 2000; Vavryčuk and Pšenčik, 1998; Tsvankin
and Grechka, 2011), and observed in field seismic (by many authors such as Lynn et al.
(1996); Mallick et al. (1998); Perez et al. (1999); Gray (2008)). The difference in seismic
Amplitude Variation versus Offset, AVO, responses parallel and perpendicular to fracture
strike makes the AVAZ a viable method in analyzing fractures. For a fixed offset (or in-
cident angle), the azimuthal variations of the reflectivity can be approximated by a cosine
function, which the reflectivity extremes at the azimuth parallel and perpendicular to frac-
ture strike. The amplitude of this cosine function is commonly interpreted as a measure of
the fracture intensity, while the phase gives information about the fracture orientation (Sava
and Mavko, 2004). Lynn et al. (1996) and Gray et al. (2002) showed many field examples
with good indications from outcrops or FMI logs that the seismic AVAZ fracture analysis
is not only detecting the correct orientation of the fractures, but also is a viable method
in estimation of fracture intensity. More quantitative interpretion using AVAZ methods is
based on the azimuthal differences in the P-wave AVO gradients; usually the AVO gradient
calculated according to Shuey’s simplification (Shuey, 1985) of the Zoeppritz equations
(the AVO gradient is the slope of the least-square’s fit of the reflection amplitude versus
sin2 θ, θ being the angle of incident of the P-wave upon the reflector). Lynn et al. (1996)
showed in a field example that the variations in the P-wave AVO gradient with azimuth is
proportional to to the magnitude of the S-wave birefringence and hence proportion to the
fracture intensity.

The anisotropy parameters of a fractured medium are needed for proper seismic imag-
ing of the fractured and underlying layers both at the velocity analysis and the depth migra-
tion step. In anisotropic depth migration, the Thomsen anisotropy parameters ε and δ are
needed in the calculation of travel times for compressional PP data; the parameter γ is used
in imaging converted PS data. Anisotropic depth migration makes significant improve-
ments in positioning and reflector continuity compared with isotropic algorithms (Vestrum
et al., 1999).

The techniques based on the time delay due to shear wave splitting have been used to
estimate the anisotropy parameter γ. Previous AVAZ techniques which have been able to
qualitatively predict successfully the orientation of the fractures and the fracture intensity;
while the analysis of azimuthally-dependent NMO velocity allows estimation of the ε and
δ parameters. We present an amplitude inversion technique based on the linear P-wave
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reflection coefficient for Horizontal Transverse Isotropy, HTI, media by Rüger (2001). The
more general linear approximation for arbitrary anisotropic media by Vavryčuk and Pšenčik
(1998) is analytically similar the to Rüger (2001) equation. Inverting the prestack amplitude
for different incident angle angle and azimuth, potentially allows the direct estimation of
all three anisotropy parameters (ε, δ and γ) from P-wave data. Starting with orthorhombic
symmetry that best describes a fracture medium, we will discuss the Vavryčuk and Pšenčik
(1998) equations for P-wave reflection coefficient as functions of anisotropy parameters,
and the Rüger (2001) equations for HTI media. Using these linear approximations the
amplitude of PP reflections will be inverted in a least-squared inversion for the anisotropy
parameters.

To evaluate the linear approximations of anisotropy reflection coefficients, we tested the
azimuthal amplitude inversion on a physical model data from an orthorhombic model. As
an valuable adjunct to numerical modeling, the physical modeling on orthorhombic pheno-
lic laminate is well suited for testing an amplitude inversion as the ambiguities inherent in
the field data are absent. Tadeppali (1995) acquired 3D multi-offset, multi-azimuth physi-
cal modeling data over a simulated fracture model and qualitatively showed that the P-wave
AVO effects along different line orientations can be used to detect fracture zone and frac-
ture orientation. Our model consists of four layers with the top and base layer being water,
and the isotropic plexiglas and orthorhombic phenolic in between. We successfully esti-
mated the phenolic anisotropy parameters incorporating P-wave data for several azimuths,
and our results compare favorably to the anisotropy parameter previously determined by
traveltime analysis.

The elastic properties of phenolic LE (density normalized elastic constants (Aij), as
well as the Thomsen-style anisotropy parameters for each principal symmetry plane) have
been determined by Mahmoudian et al. (2010) through inversion of measured traveltimes.
These elastic properties and anisotropic parameters are given on Tables 5 and 6 in Ap-
pendix A. Through anisotropic ray tracing using the Aij with a code written by P.F Daley
(available in the CREWES MatLab library), we produced traveltimes through the symmetry
planes of phenolic that matched the corresponding measured traveltimes vey closely. The
close match between the theoretical traveltimes and the observed traveltimes confirmed the
accuracy of the elastic constants Aij obtained through inversion.

ORTHORHOMBIC SYMMETRY

Vertical fractures in horizontal fine layering forms an equivalent orthorhombic medium
(Schoenberg and Helbig, 1997), see Figure 1. Orthorhombic symmetry is one of the seven
classes of the crystal symmetry systems, and is distinguished by three mutually orthogonal
planes of mirror symmetry with three distinct directions. One of the symmetry planes in
this case is horizontal, while the other two are parallel and perpendicular to the fractures
(Figure 1). In fact the equivalent orthorhombic model consists of a Vertical Transverse
Isotropy, VTI, background medium with a system of aligned vertical cracks (Rüger, 2001).
The HTI symmetry, (which is a useful model for studying the first-order influence of az-
imuthal anisotropy) is just a degenerate case of orthorhombic symmetry. A medium with
orthorhombic symmetry is characterized by nine elastic constants Cij . In the cartesian
coordinate system associated with the symmetry planes, the matrix of density normalized
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FIG. 1: Orthorhombic model caused by parallel vertical fractures embedded in a finely layered medium
(courtesy of Tsvankin (2001)).

elastic constants (Aij = Cij/ρ) for orthorhombic symmetry is written in Voigt notation as

Aαβ =


A11 A12 A13

A22 A23 0
A33

A44

0 A55

A66

 . (1)

The three P-wave velocities along principal axes determine Aii (i = 1 : 3); the three S-
wave velocities also along the principal axes determine Aii (i = 4 : 6). For example
A11 = V11

2 and A44 = V23
2. The off diagonal Aij are more than just a combinations

of diagonal elements and are dependent to the anisotropy of the medium. To quantify
the anisotropy of an orthorhombic medium, we follow Tsvankin (1997a) using the dimen-
sionless generic Thomsen-style parameters ε, δ, and γ. For orthorhombic symmetry the
anisotropy parameters are defined individually in each symmetry plane; for example they
are called ε(2), δ(2), and γ(2) in the symmetry plane (x1, x3) normal to the x2-axis. Ta-
ble 1 summarizes the relation between elastic constants and these generic Thomsen-style
parameters; the relations are valid for any strength of anisotropy.

Table 1: The relationship between elastic constants to the Thomsen-style anisotropy parameters used by
Rüger for an orthorhombic medium.

Thomsen parameter ε γ δ

(x2, x3) plane ε(1) = A22−A33

2A33
γ(1) = A66−A55

2A55
δ(1) = (A23+A44)

2−(A33−A44)
2

2A33(A33−A44)

(x1, x3) plane ε(2) = A11−A33

2A33
γ(2) = A66−A44

2A44
δ(2) = (A13+A55)

2−(A33−A55)
2

2A33(A33−A55)

(x1, x2) plane ε(3) = A22−A11

2A11
γ(3) = A44−A55

2A55
δ(3) = (A12+A66)

2−(A11−A66)
2

2A11(A11−A66)

Next we examine the linear approximations to the PP reflection coefficient for an inter-
face separating two weakly orthorhombic media.
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Table 2: The anisotropic parameters used by Vavryčuk and Pšenčik (1998). The ε and γ are equal to the
those used by Rüger, while the δ are linearized approximations of the Rüger’s δ.

Thomsen parameter ε γ δ

(x2, x3) plane ε(1) = A22−A33

2A33
γ(1) = A66−A55

2A55
δ(1) = A23+2A44−A33

A33

(x1, x3) plane ε(2) = A11−A33

2A33
γ(2) = A66−A44

2A44
δ(2) = A13+2A55−A33

A33

(x1, x2) plane ε(3) = A22−A11

2A11
γ(3) = A44−A55

2A55
δ(3) = A12+2A66−A33

A33

LINEAR APPROXIMATION FOR THE PP REFLECTION COEFFICIENTS

In general, the exact reflection coefficients for plane waves given by the Zoeppritz equa-
tions are very complicated even for isotropic media, and the dependence of the coefficients
on the medium parameters and on incident angle are not linear. They can be expressed in
simpler terms if an approximate linearized form is used. There are linearized approxima-
tions for the reflection coefficient with respect to changes in medium parameter for both
isotropic and anisotropic medium. The linear Aki and Richards (1980) approximation for
P-wave reflection coefficient is

Riso
PP (θ) =

1

2 cos2 θ

∆α

ᾱ
− 4β2

α2
sin2θ

∆β

β̄
+

1

2

(
1 − 4β2

α2
sin2θ

)
∆ρ

ρ̄
, (2)

where θ is the incident angle, α, β are the P- and S-wave velocities, ρ is density, (ᾱ,β̄,ρ̄)
are the average values, and (∆α,∆β,∆ρ) are the difference of the values in the two layers.

For anisotropic media, the reflection coefficients formulas are available in Daley and
Hron (1977) in an exact form for VTI media. Approximations for the reflection coefficients
are given by Rüger (2001) for HTI media using Thomsen-style anisotropy parameters.
Rüger (2001) has also given approximation for PP reflection coefficients in the symmetry
planes of orthorhombic media. Vavryčuk and Pšenčik (1998) have derived reflection coef-
ficients for weak contrast interfaces separating two weakly but arbitrary anisotropic media
using a different set of anisotropy parameters than Rüger (2001) (their anisotropy param-
eters are linear approximations of the ones used by Rüger; see Table 2). The Thomsen-
style anisotropy parameters are not explicitly used in Vavryčuk and Pšenčik (1998); their
anisotropy parameters are a combinations of Aij’s but can be equivalently renamed to the
Thomsen-style anisotropy parameters. The renaming of their parameters to the ones used
by Rüger’s has been done in this report. For HTI media, the Vavryčuk and Pšenčik (1998)
results are analytically similar to Rüger’s equation. The PP reflection coefficient given by
Vavryčuk and Pšenčik (1998) for general weak anisotropy media (their equation 40) can be
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written for orthorhombic media as

RPP (θ, ϕ) = Riso
PP (θ)

+
1

2

[
∆(

A13 + 2A55 − A33

A33

) cos2ϕ

+

(
∆(

A23 + 2A44 − A33

A33

) − 8∆(
A44 − A55

2A33

)

)
sin2ϕ

]
sin2θ

+
1

2

[
∆

(
A11 − A33

2A33

)
cos4ϕ+ ∆

(
A22 − A33

2A33

)
sin4ϕ

+ ∆

(
A12 + 2A66 − A33

A33

)
cos2ϕsin2ϕ

]
sin2θtan2θ, (3)

where the ϕ is azimuth angle with x1-axis, and the θ is the incident angle. Translating to the
Thomsen-style anisotropy parameters using Table 2, the PP reflection coefficient becomes

RPP (θ, ϕ) = Riso
PP (θ)

+
1

2

[
∆δ(2)cos2ϕ+

(
∆δ(1) − 8

(
β̄

ᾱ

)2

∆γ(3)

)
sin2ϕ

]
sin2θ +

+
1

2

[
∆ε(2) cos4ϕ+ ∆ε(1)sin4ϕ+ ∆δ(3)cos2ϕsin2ϕ

]
sin2θtan2θ, (4)

where α2 = A33, and β2 = A55. Putting equation 2 for Riso
PP into equation 4, we can

rewrite the orthorhombic PP reflection coefficient of Vavryčuk and Pšenčik (1998) as a
linear approximation with respect to all medium parameters (α, β, ρ, ε, δ, and γ),

RPP (θ, ϕ) =

(
1

2 cos2 θ

)
∆α

ᾱ

−
(

4β2

α2
sin2θ

)
∆β

β̄

+

(
1

2
− 2β2

α2
sin2θ

)
∆ρ

ρ̄

+

(
1

2
cos2ϕsin2θ

)
∆δ(2)

+

(
1

2
sin2ϕsin2θ

)
∆δ(1)

−
(

4β2

α2
sin2ϕ sin2θ

)
∆γ

+

(
1

2
cos4ϕsin2θ tan2θ

)
∆ε(2)

+

(
1

2
sin4ϕsin2θ tan2θ

)
∆ε(1)

+

(
1

2
cos2ϕsin2ϕsin2θ tan2θ

)
∆δ(3). (5)
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For an HTI medium in a coordinate-system shown as in Figure 1 where the symmetry
axis coincides with the x1-axis, ε(1) = δ(1) = 0, and δ(3) = δ(2). Hence, from equation 5,
the Vavryčuk PP reflection coefficient for two HTI media contrast becomes:

RHTI
PP (θ, ϕ) =

(
1

2cos2θ

)
∆α

ᾱ
−
(

4β2

α2
sin2θ

)
∆β

β̄
+
(

1

2
− 2β2

α2
sin2θ

)
∆ρ

ρ̄

+
1

2
cos2ϕsin2θ

(
1 + sin2θ tan2θ

)
∆δ(2)

−
(

4β2

α2
sin2ϕ sin2θ

)
∆γ(3) +

(
1

2
cos4ϕsin2θ tan2θ

)
∆ε(2), (6)

where ∆ε, ∆δ, and ∆γ are the difference of the values in the two HTI layers.

This expression for the PP reflection coefficient is analytically similar to the one de-
rived by Rüger (2001). Equation 6 approximates the incident and azimuth angle dependent
PP reflection coefficient of Rüger (2001). The Rüger’s expression for the PP reflection
coefficient in a HTI medium with the x1-axis as the symmetry axis is

RHTI
PP (θ, ϕ) =

(
1

2cos2θ

)
∆α

ᾱ
−
(

4β2

α2
sin2θ

)
∆β

β̄
+
(

1

2
− 2β2

α2
sin2θ

)
∆ρ

ρ̄

+
1

2

(
cos2ϕsin2θ + cos2ϕsin2ϕsin2θtan2θ

)
∆δ

+

(
1

2
cos4ϕsin2θ tan2θ

)
∆ε

+

(
4β2

α2
cos2ϕ sin2θ

)
∆γ, (7)

where α2 = A33, β2 = A44. Note the ε, δ and γ here are exactly the ε(V ), δ(V ) and γ used
in Rüger (2001)

The following considerations between equation 6 (Vavryčk) and equation 7 (Rüger)
reveal that these two equations are analytically very similar.

• The Vavryčk anisotropy parameter ε(2) is exactly the same as ε used by Rüger.

• The Vavryčk anisotropy parameter δ(2) good for weak anisotropy is the linear ap-
proximation to the δ used by Rüger.

• The Vavryčk anisotropy parameter γ(3) is exactly the same as γ used by Rüger.

• The Vavryčk shear-wave velocity β2 = A55 corresponds to the vertically propagating
SV-wave in (x1, x3) plane. The Rüger shear-wave velocity β2 = A44 corresponds to
the vertically propagating SH-wave in (x1, x3) plane.

• The Vavryčk β is equal to βRuger(1 − γ) for weakly anisotropy

By calculating and plotting numerical values, we can confirm that the Vavryčk and
Rüger expressions for the PP reflection coefficient for a boundary separating two HTI media
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are almost equivalent. The specific example ued is the plexiglas-phenolic interface, for
which the plexiglas is isotropic and phenolic is HTI. The material properties of the plexiglas
and phenolic are given in Appendix A. Figure 2 shows results calculated from equations
6 and 7 for three azimuths: 0◦, 45◦, and 90◦. Note that the phenolic material shows only
subtle azimuthal and AVA variations that are noticeable for incident angles larger than
30◦. In this study, we use Rüger’s equation (equation 7) as the theoretical basis for AVAZ
inversion from AVA/AVAZ amplitudes to estimate the anisotropy parameters.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Incident angle (Degree)

R
p

p

 

 

Vavrycuk az0
Ruger az0
Vavrycuk az45
Ruger az45
Vavrycuk az90
Ruger az90

FIG. 2: Comparison of the results from Rüger equation with the Vavryc̈uk for plexiglas-phenolic interface.

EXTRACTING REFLECTIVITY FROM PHYSICAL MODELING DATA

In physical modeling, seismic data on scaled earth-models are acquired. Our physical
modeling experiment has a scale of (1 : 10000) for distance and scale of (10000 : 1) for
frequency. Several common-mid-point (CMP) reflection gathers for the azimuths 0◦, 14◦,
27◦, 37◦, 45◦, 53◦, 63◦, 76◦, and 90◦ were acquired over a model consisting of four layers:
water, homogeneous plexiglas, homogeneous phenolic LE (which represent the fractured
reservoir), and water; a 3D representation of the model is shown on Figure 3. Figures 4
and 5 show the CMP gathers which the seismic profiles are along x1- and x2-axis, azimuth
0◦ and 90◦ respectively, with the transducers tip just touching the water surface. Note the
azimuth 0◦ profile is collecting data from the symmetry plane, and azimuth 90◦ profile is
collecting data from the isotropic plane (fracture plane) of the phenolic layer.

The experiment was shot in water to obtain better quality data for to two main reasons.
Firstly it avoids surface waves which mask the reflection data. Secondly the pin transducers
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(1.27mm in diameter) operated in water are smaller compared to the flat-face transducers
(13mm in diameter) used for solid surfaces, and so this mitigates the transducer size issues
specific to physical model data. The source and receiver transducer used in this study are
piezoelectric pin CA-1136 that utilizes a piezoelectric crystal with 1.27 mm in diameter;
as a receiver these transducers act as vertical component geophones. We picked the am-
plitudes from the experiment where the source and receiver transducers were placed 2 mm
beneath the water surface to avoid overlapping the primary and ghost event; Figure 6 shows
the CMP gather from a profile along symmetry axis (x1-axis) with transducers right at the
water surface versus data with transducers 2 mm inside the water. More details about the
laboratory equipments and set-up used in this study are as described by Wong et al. (2009).

FIG. 3: Four-layer earth model used in physical modeling acquisition. The layers are water, isotropic
plexiglas, orthorhombic phenolic, and water.

The AVA, amplitude versus angle, analysis is intensive and involves many details. Its
success depends upon correct amplitude compensation for various effects that can mask the
AVA information. Field recordings of seismic data do not indicate target reflectivity due
to numerous effects. Spratt et al. (1993) counted a variety of effects which disturb seismic
amplitudes; among them geometrical spreading, transmission loss and overburden effect,
energy partitioning due to free surface, multiple reflections, anelastic attenuation, ground
roll, variation in shot strength or receiver coupling, source radiation pattern, receiver array
response, geophone response, and thin bed tuning. Such effects may alter amplitudes and
are independent of the model properties.

Deterministic amplitude corrections, similar to those used for real-world acquisition
and analysis, were applied to the physical model amplitudes prior to inversion to scale
them to represent the reflectivity. The corrections for these factors are reviewed in Ap-
pendix B. We also applied an additional source-receiver directivity correction specific to
the piezoelectric transducers used in the physical modeling. For this study, we have cor-
rected the picked amplitude from plexiglas-phenolic interface for geometrical spreading,
emergence angle, free surface, transmission loss, and source-receiver directivity. We ex-
amine the source-receiver directivity correction in more detail.

CREWES Research Report — Volume 23 (2011) 9
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FIG. 4: Physical model vertical-component CMP gather acquired over four-layered model for profiles along
x1-axis (azimuth 0◦) and x2-axis (azimuth 90◦). Both source and receiver transducer’s tips are just touching
the water surface. Data has been filtered to [0 80] frequency range, and long-gate automatic gain control has
been applied to it.

FIG. 5: Zoomed physical model data from azimuth 0◦ and 90◦ .
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FIG. 6: (left) Physical model vertical-component data from profiles along x1-axis (azimuth 0◦) with trans-
ducers just touching the water surface. (right) With transducer tips 2mm below the water surface.

Source-receiver directivity

The source and receiver directivities will affect the offset behaviour of the recorded re-
flections. Directivity is the property of a piezoelectric transducer that gives its response a
pronounced directional bias. Buddensiek et al. (2009) presented an excellent overview of
the performance of piezoelectric transducers and their amplitude directivities, in which they
examined the transducer responses not only in a physical modeling context, but in general
usage. An illustration of a directional circular transducer (similar to what we used in this
study) performance is shown in Figure 7. For disc-shaped or circular transducers, the direc-
tivity response can be described analytically by the following two equations (Krautkrämer
and Krautkrämer, 1986)

A = 4A0
J1(X)

X
sin

(
πD

8λz

)
, (8)

X =
πD

λ
sin γ, (9)

where A0 is initial amplitude, D is the effective diameter of the piezoelectric crystal, λ is
the wavelength, z is the distance to the emitting plane, γ is the angle to the vertical axis, and
J1 is the Bessel function of order 1. The pressure field (or amplitude) of a circular trans-
ducer becomes more directed as the wavelength shortens. For real transducers operating
in water, the effective diameter D is determined experimentally by measuring the ampli-
tude at a fixed distance between the source and receiver transducers (Buddensiek et al.,
2009). Note that equation 8 is similar to an array response (e.g., 6 in Appendix B). For our
measurements, the dominant frequency is 520kHz. In water, with an acoustic velocity of
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FIG. 7: The calculated pressure field for a circular transducer of diameter 12mm as a function of depth and
angle for 200 kHZ frequency (courtesy of Buddensiek et al. (2009)).

1485 m/s, the dominant wavelength is 2.86mm. The directivity corrections calculated for
the water-plexiglas reflection amplitudes picked from the 0◦ and 90◦ azimuths using effec-
tive diameters D of 1.4mm and 1.6mm, respectively. The corrected amplitudes are shown
on Figures 8 and 9, where they are compared with theoretical amplitudes predicted by
the spherical-wave and plane-wave Zoeppritz equations (implemented as the JAVA applet
Spherical Zoeppritz Explore 3.0 by Ursenbach et al., 2006, and available on the CREWES
website). The spherical-wave Zoeppritz predictions are more realistic for our data, since
our sources and receivers do not produce and detect plane waves. The figures show, how-
ever, that spherical-wave and the plane-wave predictions are virtually identical for incident
angles that are less than and not close to the critical angle.

The water-plexiglas reflector amplitudes from the 90◦ data need a slightly larger effec-
tive diameter of 1.6mm to fit the predicted theoretical reflectivities. The transducers are
apparently not quite symmetric in the two azimuth directions 0◦ and 90◦. Another possible
explanation is that evaporation had changed the water level slightly between the times of
the acquisition of the 0◦ and 90◦ azimuth data, and this also changed slightly the recorded
amplitudes. After all the corrections, the water-plexiglas reflector amplitudes for the 0◦

and 90◦ azimuths follow the theoretical spherical Zoeppritz predictions very closely. The
picked amplitudes for the other azimuths were corrected for directivity using effective di-
ameters set proportionally between 1.4mm and 1.6mm.

We now address the reflections from our target, the plexiglass-phenolic reflector. First
of all, we corrected 90◦ azimuth picked amplitudes for directivity by using an effective
diameter of 4.5mm. This value gave a good fit to the spherical-wave Zoeppritz predic-
tions (the 90◦ azimuth vertical plane is the nearly-isotropic plane for the phenolic layer,
and we expect it to follow closely the isotropic spherical Zoeppritz predictions). Between
the water-plexiglas reflector and the Plexiglas-phenolic reflector, the ratio of best-fit effec-
tive diameters for the 90◦ azimuth is (4.5mm/1.6mm) = 2.81. To correct the Plexiglas-
phenolic reflected amplitudes for directivity for all the other azimuths, effective diameters
given by D1 = 2.81 ×D0, where D0 is the diameter previously determined for the water-
Plexiglas reflector. For example, the effective diameter for the 0◦ azimuth data from the
water-Plexiglas reflector is 1.4mm; the best-fit effective diameter at this azimuth for the
Plexiglas-phenolic reflector is thus 2.81 × 1.4 = 3.94mm.

The directivity correction given in equation 8 is virtually identical to the directivity
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FIG. 8: Azimuth 0◦: water-plexiglas reflector amplitudes corrected for geometrical spreading, emergence
angle (total motion), and directivity effects. The effective diameter of 1.4mm is used. Note the mismatch
beyond critical angle is due to interference by head-wave.
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FIG. 9: Azimuth 90◦: water-plexiglas reflector amplitudes corrected for geometrical spreading, emergence
angle (total motion), and directivity effects. The effective diameter of 1.6 mm is used.
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correction calculated numerically by Wong and Mahmoudian (2011), as is shown by the
plots on Figure 10. In the numerical method, the circular face of a disc transducer is
divided up into many small elements. Each element acts as a source, and the source Green’s
functions for isotropic and homogeneous acoustic media from all elements are summed at
receiver positions at fixed distance R (large compared to the wavelength and transducer
diameter) from the center of the disc, but at different polar angles relative to the symmetry
axis of the disc.
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FIG. 10: Azimuth 0◦ data: directivity correction for water-plexiglas reflector amplitudes using equation 8,
and correction by Wong and Mahmoudian (2011); the effective diameter of 1.4mm is used for both correc-
tions.

Picking reflection amplitudes

For each CMP gather at each azimuth, the event from the reflecting interface of in-
terest was identified and the arrival times were picked manually. For the water-Plexiglas
reflections, the amplitude was picked on the wavelet immediately following each arrival
time. For the Plexiglas-phenolic reflection, which was much weaker than water-Plexiglas
reflection from a shallower depth, the amplitude was picked on the strongest wavelet fol-
lowing each arrival time. Because the transducers in this study operated near the water
surface, all reflections showed a primary and ghosts. To make sure that the primary and the
ghost events are not overlapping and damaging the amplitude information required for AVA
analysis, we conducted a set of measurements designed to see how the ghosts behaved.

In this new experiment, the source and receiver were kept at a fixed offset of 10mm, and
seismograms were recorded at 0.2mm depth intervals as they were both raised from a depth
of 10mm up to a depth of 0mm (at which the active tips of the transducers were nominally
even with the water surface). Figure 11 shows the seismograms from this experiment. On
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Figure 11, the primary and the ghost for the water-plexiglas reflection are clearly visible
at 1 second (two-way travel time). The primary has a time moveout towards earlier times
as tip depth increases; this is as expected since, as tip depth increases, the lengths of the
raypaths from the tips to reflecting interface decreases. For the ghost, the arrival times
increase as tip depth increases; this also is as expected, since the total raypaths for this
ghost includes segments from the tips to the surface (lengths increase with tip depth) and
segments from the surface to the reflecting interface (lengths are independent of tip depth).

There is a third arrival identified on Figure 11 is XX high-lighted in red, which has
almost zero arrival time change as tip depth increases. This arrival behaves as if the source
and receiver are both located at the water surface, and therefore there is no apparent change
in travel path length as tip depth change. The following scenario provides a possible ex-
planation for this. The body of the source piezopin vibrates up and down simultaneously
when the piezoelectric element at its tips is excited by high voltage. At the point where the
source piezopin body enter the water, the vertical motion of the body causes a nearby cir-
cular area of the water surface (which acts as behaves somewhat like a membrane because
of surface tension) to vibrate also in unison. This vibrating ring of water surface behaves as
a secondary source whose distance from the reflecting surface is constant regardless of tip
depth. By reciprocity, the receiver piezopin has a similar response. What are these "rings
of vibrating water surface" that act as a secondary source and a secondary receiver? Figure
12 is a photograph of two piezopins whose tips are just below the water surface. It is quite
obvious that a circular meniscus forms around each piezopin.

Thus, we believe the XX reflection arrival on Figure 11 is due to the piezopin contact
points with the water surface acting as source and receiver. The XX arrival is stronger
than the primary and ghost arrivals, and the best-fit directivity correction associated with
requires a large effective diameter (from figure 12, and knowing that the piezopin body
near the tips have a diameter of 2.36mm, we can estimate that the diameter of the menisci
are in the range 3mm to 6mm). From this experiment and the data on Figure 11, we
chose 2mm as the optimal depth for the tips of the source and receiver piezopins. For the
plexiglas-phenolic reflection, we picked the strongest wavelets following the arrival times.
Since these strongest wavelets are associated with XX arrivals from the menisci, we also
chose an effective diameter close to those of the menisci (i.e., in the range 3mm to 6mm).

INVERSION IMPLEMENTATION

The corrected amplitude of the plexiglas-phenolic reflections for nine azimuths between
0◦ and 90◦ are shown in Figure 13. The corrected amplitudes from only 0◦, 45◦, and 90◦ az-
imuths are shown in Figure 14 to demonstrate more clearly azimuthal amplitude variations.
Figure 14 shows small azimuthal amplitude variations due to the orthorhombic phenolic
layer. This result was expected as the theoretical predicted reflectivity showed small az-
imuthal amplitude variations, see Figure 2. On this Figure, we also see that only for incident
angles larger than 30◦ are the AVAZ variations noticeable for the plexiglas-phenolic reflec-
tion. The physical model amplitudes follow the theoretical predicted reflectivity closely for
the incident angles up to the critical angle, see Figure 15.

The corrected amplitudes of the plexiglas-phenolic reflector represent the experimental
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FIG. 11: (left) Physical model data acquired at a single source-receiver offset of 10mm with different
transducer depths in water. (right) Zoomed on times for the water-plexiglas reflection.

FIG. 12: Water meniscus generated at the transducers contact with water.
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reflectivity and will be the input data for the AVAZ analysis. We note that the determinis-
tic amplitude corrections are only approximate, so the corrected amplitude still might not
represent reflectivity perfectly.
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FIG. 13: (left) Corrected amplitudes of plexiglas-phenolic reflector picked from azimuths 0◦, 14◦, 27◦, 37◦,
45◦, 53◦, 63◦, 76◦, and 90◦ versus incident angle.

In the theory section we started with orthorhombic symmetry as the HTI is only a good
first approximation for azimuthal anisotropy, just to show that the PP reflection coefficient
in orthorhombic media could be as easily as Rüger’s equations for HTI media. However
since the the phenolic is close to an HTI medium, we will use the Rüger’s expression
(equation 7) as the basis for our AVAZ inversion. We write equation 7 in a simpler way as

R = A
∆α

ᾱ
+B

∆β

β̄
+ C

∆ρ

ρ̄
+ D ∆δ + E∆ε+ F∆γ, (10)

where R is the PP amplitude, and the coefficients A,B,C,D,E, and F are expressed
in detail on equation 7. Incorporating the amplitudes of plexiglas-phenolic reflection from
profiles along the azimuths 0◦, 14◦, 27◦, 37◦ 45◦, 53◦, 63◦, 75◦ and 90◦ for different incident
angles up to 40◦ as the input data (Rmn), the linear equation 10 can be used to express a
linear system of n equations with six unknowns:
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FIG. 14: Azimuth 0◦, 45◦, and 90◦ plexiglas-phenolic corrected amplitude.
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where m = 9 is the number of azimuths, and n is the number of incident angles. Or, in
matrix form,

G(nm×6)m(6×1) = R(nm×1). (12)

The unknown vector m will result from a damped least-squares inversion, as m = (GTG+
µ)−1R and the µ is the damping factor.

In this implementation of the amplitude inversion, we try to estimate simultaneously
all six parameters α, β, ρ, δ, ε, and γ, Figure 16 shows that this AVAZ inversion gives
reasonable results for α, ρ, δ, and ε, but not for β, and γ. These two parameters are related
to PS and SH data. The above six-parameter inversion was not very stable due to the three
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FIG. 15: Comparing measured reflected amplitudes from the plexiglas-phenolic interface with the plane-
wave PP reflectiviy predicted by the Rüger’s equation. The corrected measured amplitude’s follow the theo-
retically predicted reflectivity closely for incident angles up to the critical angle.
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very small singular values in inverting the matrix G. Data from incident angles less than
40◦ were used in the inversion, but incorporating data from larger angles would introduce
larger errors to the inversion because of our using a linearized equation 12. Still the result
is not disappointing as the theoretical AVAZ effect for the plexiglas-phenolic reflection is
small to begin with.

In an effort to stabilize the inversion, we applied some constraints to the first three vari-
ables, ∆α/α, ∆β/β, and ∆ρ/ρ. Also, there are many other methods available for inverting
for vertical P- and S-wave velocity and density such as AVA inversion or incorporating well
log information. In order to put some constraints on the first three variables, we used the az-
imuth 90◦ data to invert for ∆α/α, ∆β/β, ∆ρ/ρ, as the azimuth 90◦ is our isotropic plane.
Figure 17 shows the error of estimating the first three parameters from azimuth 90◦ data.
These estimations of ∆α/α, ∆β/β, ∆ρ/ρ are used to constrain the AVAZ inversion for
anisotropy parameters ε, δ, and γ. Figure 18 show the inversion results for the anisotropy
parameters ε, δ, and γ. With this constraint we included data from slightly higher inci-
dent angle ( up to 43◦). With this constrain the inversion results for δ, ε, and γ are very
favourably to those obtained previously by a traveltime inversion (Table 6 in Appendix A).
As mentioned previously in the theory section, the estimated ε, δ, and γ are the ε(2), δ(2),
and γ(3) as in Table 6 in Appendix A.
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FIG. 16: AVAZ inversion of azimuths 0◦, 14◦, 27◦, 37◦, 45◦, 53◦, 63◦, 76◦, and 90◦ for the six parameters
∆α/α, ∆β/β, ∆ρ/ρ, δ, ε, and γ.

CONCLUSIONS

We applied an AVAZ inversion for the Thomsen anisotropy parameters using ampli-
tudes picked from the reflections of an isotropic-HTI interface recorded in a 3D physical
model experiment. All three anisotropy parameters ε, δ, and γ were successfully estimated,
whereby the estimation of the shear-wave splitting parameter from compressional data was
of great importance. This AVAZ inversion can be applied to real-world data only if there
is enough information about the fractured layer overburden. Also, pre-knowledge of the
orientation of the fracture plane is essential in this method.
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FIG. 18: AVAZ inversion of 0◦, 14◦, 27◦, 37◦, 45◦, 53◦, 63◦ and 76◦ for δ, ε, and γ using the constraint for
∆α/α, ∆β/β, and ∆ρ/ρ from azimuth 90◦ data.
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Although the physical model data are suitable for testing geophysical techniques, they
are strongly affected by transducer size issues. We managed to reduce this size effect by
shotting the data over the water and using smaller size transducers. We collected physi-
cal model data that is suitable for quantitative amplitude analysis, a difficult task that is
rarely done so far. The big challenge in the corrections with physical model amplitudes
was making the proper corrections for transducer directivity. We coped with this difficulty
by calibrating the amplitudes to reflections of the water bottom. The AVAZ inversion si-
multaneously for six parameters ∆α/α, ∆β/β, ∆ρ/ρ, ε, δ, and γ was unstable because of
the small AVA and azimuthal variations in plexiglas-phenolic contrast. A future application
of this AVAZ inversion may be more successful if stronger azimuthal or AVA variations is
observed.

As our material was very close to being HTI, we didn’t use the linear PP reflection
coefficients expressions for orthorhombic media for this study. However, the way that we
rewrote this equations with the more familiar Thomsen-style anisotropy parameters makes
it possible to do this inversion for an orthorhombic layer (more suitable model to express a
fractured medium). In an orthorhombic AVAZ inversion, estimation is possible for all six
anisotropy parameters (δ(1), δ(2), δ(3), ε(1), δ(2), and γ).

We recommend that when doing AVA inversion one should include data from larger
incident angles, but not angles close to critical angle. The linear equations are not good
approximations near critical angles. Proper inversion of AVA data for both isotropic and
anisotropic media near the critical angle must be based on spherical-wave formulations and
not plane-wave theory.
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APPENDIX A
Elastic constants of utilized material

Our model consists of water, isotropic plexiglas, and orthorhombic phenolic LE material. Density of
water, plexiglas and phenolic LE are 1000, 1190, and 1390 kg/m3, respectively. The P- and S-wave velocity
of water and plexiglas are listed in Table 3. For isotropic material, the full density normalized elastic constants
matrix can be determined from only compressional and shear velocities; (Aii = V 2

P , i = 1, 2, 3), (Aii =
V 2
S , i = 4, 5, 6), and (Aij = V 2

P − 2V 2
S , i, j = 1, 2, 3).

Table 3: Body wave velocity in water and plexiglas
P-velocity (m/s) S-velocity (m/s)

Water 1485 0

Plexiglas 2785 1380

Table 4: Body-waves velocity in phenolic LE
V11 V22 V33 V23 V13 V12

Velocity (m/s) 2950 3560 3500 1700 1530 1510

Table 5: Density normalized elastic constants of the phenolic LE model. TheAij have the units of (km/s)2.

8.7025 4.9049 4.9626 0 0 0

12.6736 5.5867 0 0 0

12.25 0 0 0

2.89 0 0

2.3409 0

2.2801

The phenolic layer in this study is the same as that used by Mahmoudian et al. (2010). All nine den-
sity normalized elastic have been determined from P- and S-wave group velocity measurements in arbitrary
directions in the three principle planes and the ±45◦ azimuth planes (see Table 5). Note there are minor cal-
culation errors in off-diagonal stiffnesses by Mahmoudian et al. (2010) that have been corrected here. Also,
their y-axis is our x1-axis. The Thomsen-style anisotropy parameters, as explained in the text for the phenolic
LE layer, are given in Table 6, which lists the exact forms (used by Rüger)and their linear approximations for
the δ parameters (used in renaming the Vavryčuk equation). The linear and exact δ are calculated based on
the definitions in Tables 1 and 2 in the text.

APPENDIX B
Deterministic corrections to P-wave reflected amplitudes

As a seismic wave propagates through the earth, its amplitude decays in excess of any AVA effect. In
Appendix B we examine decay caused by several non-AVA factors. The decay caused by these factors must
be corrected before AVA/AVAZ analysis. can be applied to field reflection data, expect for the source-receiver
perceptivity that is specific to physical model data.
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Table 6: Anisotropy parameters of phenolic LE layer.

ε γ δ (exact) δ (linear)

(x1 − x3) plane −0.1448 −0.1055 −0.1847 −0.2127

(x2 − x3) plane 0.0173 −0.0130 −0.0687 −0.0721

(x1 − x2) plane −0.1567 0.1173 −0.2141 −0.2273

Geometrical spreading

As seismic energy propagates away from a source, the total energy on the wavefront surface stays the
same. As the wavefront becomes larger the energy per unit area becomes smaller, and consequently the am-
plitudes become weaker. This is a geometrical effect and is independent of the medium properties. Consider
a seismic ray with amplitude A1, after traveling the raypath of L the ray amplitude will be A1/L; so the
geometrical spreading factor equals L. Hence, in an AVA study the total ray-path length L is calculated by
ray-tracing, and the observed amplitude is multiplied by the geometrical spreading L do remove the ampli-
tude decay due to spreading. This is be the exact correction for geometrical spreading, which is not always
possible. There is a readily applied correction for geometrical spreading by a zero-offset correction. The
zero-offset geometrical correction is (Resnik, 1993)

g0(t) = V 2
rmst, (1)

where t is two way traveltime and Vrms is an estimate of the root-mean-square (rms) velocity at the cor-
responding zero-offset traveltime; each trace is multiplied by zero-offset correction. This simple correction
derives from an analysis of spreading in the vicinity of the zero-offset in a horizontally layered medium by
Newman (1973). This correction does not necessarily compensate for spreading at far offsets. There is an
offset-dependent geometrical spreading correction by Ursin (1990) as

g21(t) = g20(t) +

[
2

(
Vrms
V1

)2

− 1

]
x2 +

1

t2

(
1

V 2
1

− 1

V 2
rms

)
x4, (2)

where x is source-receiver offset, and V1 is the first layer velocity. The geometrical spreading correction is
applied to reflection data before move-out as a gain function at the two-way-time t.

In this study we used raytracing through isotropic horizontal layers for the calculation of the geomet-
rical spreading correction. Figure 19 shows the water-plexiglas reflector amplitudes from azimuth 0◦ data
(from the four-layered model) versus incident angle that have been corrected for geometrical spreading by
raytracing, zero-offset, and offset-dependent gain; the corrected amplitudes has been compared to theoretical
Zoeppritz predicted P-wave reflectivities. The theoretical predicted P-wave reflectivity has been calculated
using both plane-wave and spherical waves in the Zoeppritz solver (available in CREWES Matlab toolbox).

Emergence angle

A vertical-component geophone only detects the vertical component of the total motion, whereas in AVA
analysis the total motion is needed which correctly represent the actual reflectivity. The total motion can be
calculated from vertical recordings knowing the emergence angle. For the angle of emergence, θ, measured
from the vertical. The total motion is

Total motion =
vertical recording

cos θ
. (3)

The emergence angle can be calculated using raytracing or modeling using an estimated of overburden ve-
locity model. See Figure 8 for the emergence angle correction applied to the water-plexiglass reflector am-
plitudes picked from azimuth 0◦ data with transducer’s tip are 2mm beneath the surface of the water. Each
correction brings the amplitudes closer to the theoretically Zoeppritz predicted amplitudes.

CREWES Research Report — Volume 23 (2011) 25



Mahmoudian et. al

5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Incident angle (Degree)

R
pp

 

 

Plane Zoeppritz
Spherical Zoeppritz
picked amp
sph−div by raytracing
sph−div by g0 gain
sph−div by g1 gain

FIG. 19: Azimuth 0◦ data: geometrical correction for amplitudes picked from the first reflector of the four-
layered model data. The amplitudes have been compared to Zoeppritz predicated reflection coefficients. The
offset-dependent g1 compensates nearly as good as the exact raytracing geometrical correction.

Free surface

The ground or water surface is a free surface since the stress becomes zero at such a boundary. Seismic
waves reflected off the free surface, and both incident reflected waves are recorded by geophones at the free-
surface. If we want only the amplitude of the reflected from the bottom layers, the reflected wave from the
free surface must be taken out (see Figure 20). The vertical component detected at the free surface:

Z = Î(1 −R0pp) cos θ0 +R0ps sin θ0S , (4)

where Î is the P-incident amplitude, and R0pp and R0ps are the free-surface PP and PS reflection coefficient
respectively. Knowing the emergence angle θ, the incident amplitude Î can be calculated from vertical
recording Z. It is evident that with the free-surface correction, the emergence angle correction above is
not needed; however, when receivers are deep in the water, the detected event does not have a free-surface
reflection, and so do not need a free-surface correction. Only the emergence angle correction is needed in
this case.

FIG. 20: Free surface boundary condition (courtesy of Spratt et al. (1993)).

Transmission loss

Consider a two-layer model as in Figure 21; the recorded amplitude from the second layer reflector is
T1R2T

′
1. Assuming that the recoded amplitude represents the reflectivity R2 the effect of T1T ′1, which is

called "transmission loss", should be removed. Knowing an estimate of the overburden velocity model, the
transmission loss factor can be determined. However, in reality a deterministic correction for transmission
loss is problematic as the overburden can not be perfectly characterized. Gassaway (1984) states that the
transmission loss is the most significant problem encountered in AVO analysis. In practice the transmission
loss is compensated using a statistical correction as described below in the section on residual amplitude
compensation. In this study, knowing the overburden of water and plexiglass, we determined the transmission
loss effecting the plexiglas-phenolic reflector amplitudes.
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FIG. 21: Transmission loss effect in a two-layer model. The initial amplitude is 1, T1 is the transmission co-
efficient going from layer 1 to layer 2, R2 is the reflection coefficient from layer 2, and T ′1 is the transmission
coefficient going from layer 2 to layer 1. The transmission loss factor is T1 × T ′1.

Anelastic attenuation

Attenuation will also effect the AVA behavior of recorded reflections. For a constant Q, Spratt et al.
(1993) states that the amplitude A will decay according to

A ∼ A0

{
1 −

(
πft

Q

)
V (2)

V 2
P

sin2θ

}
, (5)

where A0 is the unattenuated amplitude, f is the frequency, θ is the incident angle, VP is the P-velocity,
and V (2) = 1

t

∫ t
0
V 2
P (t́)dt́ with t′ the one-way traveltime; in this correction only one frequency the dominant

frequency, is considered. The simple industry practiced attenuation correction is exp (αt), where α is a
constant with value close to one, and t in two-way traveltime. In this study, we did not use any attenuation
correction as our layers are considered to be non-attenuating.

Array effect

The use of arrays of sources and receivers is commonplace in field acquisitions. The response of each
receiver (or source) is summed up and recorded as the total array response. The array response does not
exactly represent any of the amplitudes recorded by each of the receivers. The response of a linear array of
length L is given by

R(θ) =
sin
(
πL
λ sin θ

)(
πL
λ sin θ

) , (6)

where λ is the wavelength; therefore, a linear array can have a frequency-dependent effect. Spratt et al.
(1993) gives practical array effect corrections for land recordings. In the physical modeling experiment used
in this study we did not have source (or receiver) arrays, however the transducers can be treated as a finite-size
array of point sources spaced closely together. The total effective response can be calculated and used as a
transducer directivity correction for physical model data; a detailed analysis of this method is available in
Wong and Mahmoudian (2011).

Scaling

In a seismic experiment, the source wavelet is convolved with the earth’s reflectivity to produce seismic
data. After all the above corrections have been made to the data, the last step in the deterministic extraction of
reflectivity from seismic data, involves deconvolving the source wavelet from the data. The deconvolved data
still needs a scaling factor to bring the magnitude of the amplitudes into the range of [−1, 1]. Such a scaling
problem is caused by filtering at the several processing steps, even in a true-amplitude processing flow. So
the data should be deconvolved and also denoised. Coherent noise (such as surface waves) would ruin an
AVA analysis. For denoised data, the convolutinal model is

S(t) = w(t) ∗R(t), (7)

where S(t) is a seismic trace,W (t) is the wavelet, andR(t) is the reflectivity. Ideally, after the deconvolution,
the deconvolved data will be a scaled version of the reflectivity S(t) ∼= aR(t), where a is a scaler. We seek
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a value of this scaler before the AVA analysis and follow (Margrave, 2002) in deriving such a scaler. This
means minimizing Φ(t) = S(t) − aR(t) in a least-squares sense to derive the scaler a. In discrete form
Sj = aRi and Φj = Sj − aRj , then minimizing Φ means

ϑ =

max∑
j=0

(Si − aRj)

2

= min, (8)

then ∂ϑ
∂a =

∑
j

−2Rj (Sj − aRj) = 0, and the scaler will be:

a =

∑
j RjSj∑
j RjRj

, (9)

where the
∑
j RjSj is the zero-lag crosscorrelation of R(t) and S(t), and

∑
j RjRj is the zero-lag autocor-

relation of R(t). This single scalar will be applied to the whole data.

Residual amplitude compensation

Finding the scalar above completes our discussion on deterministic amplitude corrections. However,
in practise the deterministic corrections are never ideal, and there might be some residual corrections left.
The residual corrections are done using statistical methods. Resnik (1993) describes the residual amplitude
compensation as removing the average variation of amplitude from the data, where the average was measured
in a series of overlapping 400 ms time windows across the entire line. After residual amplitude compensation,
the average amplitude variation is diminished, though local AVA anomalies are still intact. This note on
residual compensation is presented so that our discussion on the amplitude corrections in general will be
complete; however, we did not apply any statistical corrections to the physical model data.
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