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ABSTRACT

Full waveform inversion involves defining an objective function, and then moving in
steps from some starting point to the minimum of that objective function. Gradient based
steps have long been shown to involve seismic migrations, particularly, migrations which
make us of a correlation-based imaging condition. More sophisticated steps, like Gauss-
Newton and quasi-Newton, alter the step by involving the inverse Hessian or approxima-
tions thereof. Our interest is in the geophysical, and practical, influence of the Hessian. We
derive a wave physics interpretation of the Hessian, use it to flesh out a published state-
ment of Virieux, namely that performing a quasi-Newton step amounts to applying a gain
correction for amplitude losses in wave propagation, and finally show that in doing so the
quasi-Newton step is equivalent to migration with a deconvolution imaging condition rather
than a correlation imaging condition.

INTRODUCTION

This paper is about full waveform inversion: how to do it, and also how to think about
it. The details are technical, but the point is entirely practical: to attach geophysical signif-
icance to the mathematical operations of waveform inversion, and to recognize that it can
often be implemented with items that are already in our seismic imaging toolboxes.

Full waveform inversion (Lailly, 1983; Tarantola, 1984; Virieux and Operto, 2009) is an
application of the methods of multivariate optimization to the seismic inverse problem, in
which the parameters of the Earth’s subsurface are estimated from measurements of seismic
wave fields. An optimization problem is solved when an objective function is minimized.
This can happen in a number of ways. For instance, in order of “completeness”, taking

1. Gauss-Newton (or just Newton) steps,

2. Quasi-Newton steps, or

3. Gradient-based steps

towards the minimum. The full Gauss-Newton step exactly minimizes a local quadratic ap-
proximation of the objective function, with a step direction and length that is a composition
of the inverse Hessian and gradient. The quasi-Newton step does so with an approximate
(usually less complex) inverse Hessian. Finally, the gradient-based step uses the gradient
of the objective function followed by a line search to take its step towards the minimum.

In seismic inversion, these steps are, thankfully, not simply huge empty numerical exer-
cises: real geophysics enters these minimizations. It turns out that the gradient is actually a
migration of seismic data, calculated using a correlation-based imaging condition. This in-
terpretation allows us to think about and analyze each step in waveform inversion in terms
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of physical concepts, and also turns one’s seismic migration toolbox into a [gradient-based]
full waveform inversion toolbox.

However, of late full waveform inversion researchers have begun to look seriously at
taking quasi-Newton and even Gauss-Newton steps. Numerically this is no mean endeav-
our, and though mathematically taking a sophisticated Gauss-Newton step rather than a
plain old gradient based step may be a move forward, we may worry about introducing big
numerical machinery without concomitant geophysical meaning.

But geophysical interpretation, again in terms of physical concepts and known and
available seismic migration tools, is available for quasi-Newton, and likely full Gauss-
Newton steps also. The purpose of this paper is to develop these interpretations, which in
our opinion are critical to successful seismic inversion. In particular:

1. Using 3D scalar full waveform inversion as a framework, we illustrate via Gâteaux
derivatives the role of the gradient and inverse Hessian in taking a single Gauss-
Newton step towards the inverse solution;

2. We re-derive using a nonlinear scattering formulation the interpretation of a gradient-
based inversion step as being equivalent to migration of data residuals using a cor-
relation based imaging condition;

3. We extend this wave-based interpretation to include the action of the Hessian and
approximate Hessian;

4. With physical arguments and dimensional analysis we flesh out the statement of
Virieux and Operto (2009), that premultiplying the gradient by the inverse approxi-
mate Hessian (i.e., performing a quasi-Newton step rather than a gradient-based step)
amounts to applying a gain correction to correct for amplitude losses in modelled
wave propagation;

5. We identify this quasi-Newton step as being equivalent to applying a deconvolution
imaging condition, rather than a correlation imaging condition, in the migration in-
terpretation.

1. ONE GAUSS-NEWTON STEP IN FULL WAVEFORM INVERSION

Equations of motion

We will consider two equations, one of which is satisfied by our modeled field G, and
one which is satisfied by the “actual” field P , projections of which onto the measurement
surface will be the measured data. They are assumed to satisfy[

∇2 + ω2s
(n)
0 (r)

]
G(r, rs, ω) = δ(r− rs)[

∇2 + ω2s(r)
]
P (r, rs, ω) = δ(r− rs)

(1)

where s0(r) is the known reference/background medium at the nth iteration in the inverse
process, and s(r) is the unknown actual medium. The latter is the “right answer”, towards
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which the former is expected to converge. The quantities s are related to the scalar wave
velocities of the two media by

s(r) ≡ 1

c2(r)
, s

(n)
0 (r) ≡ 1

c20,n(r)
. (2)

Reiterating,

P (rg, rs, ω) : Field in actual medium, DATA = P |ms

G(rg, rs, ω) : Modeled field in current medium model iteration.
(3)

The modelled field G depends on s(n)
0 (r), but the field P , from a projection of which onto

the measurement surface we derive our data, does not. We will keep track of things that do
so depend via their arguments, e.g., by expressing G = G(rg, rs, ω|s(n)

0 ).

Objective function and its expansion

We will evaluate the proximity of s(n)
0 (r) to the actual distribution of medium velocities

by considering the quantity δP :

δP (rg, rs, ω|s(n)
0 ) ≡ P (rg, rs, ω)−G(rg, rs, ω|s(n)

0 ). (4)

We will examine the problem of updating s0, from s
(n)
0 to s(n+1)

0 so that the magnitude of
δP is maximally reduced. This update will coincide with a minimization of the objective
function

Φ
(
s
(n)
0

)
≡ 1

2

∫
dω

(∑
s,g

|δP |2
)
. (5)

In Appendix A we establish via Gâteaux theory the particulars allowing Φ
(
s
(n)
0 + δs

(n)
0

)
to be be approximated by:

Φ
(
s
(n)
0 + δs

(n)
0

)
≈ Φ

(
s
(n)
0

)
+

∫
dr′

∂Φ

∂s
(n)
0 (r′)

δs
(n)
0 (r′). (6)

Since extrema of Φ are identified through analysis of its gradients, we compute

∂Φ
(
s
(n)
0 + δs

(n)
0

)
∂s

(n)
0 (r′)

≈
∂Φ
(
s
(n)
0

)
∂s

(n)
0 (r′)

+
∂

∂s
(n)
0 (r′)

∫
dr

∂Φ
(
s
(n)
0

)
∂s

(n)
0 (r)

 δs(n)
0 (r)

=
∂Φ
(
s
(n)
0

)
∂s

(n)
0 (r′)

+

∫
dr

 ∂2Φ
(
s
(n)
0

)
∂s

(n)
0 (r′)∂s

(n)
0 (r)

 δs(n)
0 (r)

= g(n)(r′) +

∫
drH(n)(r′, r)δs

(n)
0 (r),

(7)
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where

g(n)(r′) =
∂Φ
(
s
(n)
0

)
∂s

(n)
0 (r′)

(8)

is the gradient and

H(n)(r′, r) =
∂2Φ

(
s
(n)
0

)
∂s

(n)
0 (r′)∂s

(n)
0 (r)

(9)

is the Hessian. We point out that the Hessian is symmetric under an exchange of r and r′.

One Gauss-Newton step

Equations (7)–(9) express the objective function in one place in terms of its value and
its derivatives at another. It is the functional equivalent of the univariate Taylor’s series
approximation f ′(x + ∆x) ≈ f ′(x) + f ′′(x)∆x. It is the beginning point for taking a step
towards the nearest minimum of Φ. If the step δs(n)

0 (r) is to take us to this point on Φ, i.e.,
where the left hand side of equation (7) is zero, it evidently must be true that∫

drH(n)(r′, r)δs
(n)
0 (r) = −g(n)(r′). (10)

We assume an inverse Hessian H(n)−(r, r′) defined such that∫
dr′H(n)(r′′, r′)H(n)−(r, r′) = δ(r′′ − r), (11)

by multiplying equation (10) through by H(n)− and integrating we have∫
dr′H(n)−(r′′, r′)

[∫
drH(n)(r, r′)δs

(n)
0 (r)

]
= −

∫
dr′H(n)−(r′′, r′)g(n)(r′)∫

dr δs
(n)
0 (r)

∫
dr′H(n)(r, r′)H(n)−(r′′, r′) = −

∫
dr′H(n)−(r′′, r′)g(n)(r′)∫

dr δs
(n)
0 (r)δ(r− r′′) = −

∫
dr′H(n)−(r′′, r′)g(n)(r′)

(12)

or

δs
(n)
0 (r′′) = −

∫
dr′H(n)−(r′′, r′)g(n)(r′). (13)

So, a Newton step towards minimizing Φ is devised by deriving appropriate forms for the
gradient g(n)(r) and the inverse Hessian H(n)−(r, r′). Both of these quantities have wave
physical interpretations.
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2. A NONLINEAR PERTURBATIVE DERIVATION OF THE GRADIENT

We begin with a full perturbative derivation of the form of the gradient. Substituting
equation (5) into equation (8) we have for the gradient

g(n)(r) =
∂Φ
(
s
(n)
0

)
∂s

(n)
0 (r)

=
1

2

∑
s,g

∫
dω

[
−P ∂G

∗(s
(n)
0 )

∂s
(n)
0 (r)

− P ∗∂G(s
(n)
0 )

∂s
(n)
0 (r)

+
∂G∗(s

(n)
0 )G(s

(n)
0 )

∂s
(n)
0 (r)

]

=
1

2

∑
s,g

∫
dω[(G− P )∗G′ + (G− P )G∗′)],

(14)

where the prime indicates the derivative with respect to s(n)
0 . Since

Z + Z∗ = ReZ + iImZ + ReZ − iImZ = 2ReZ, (15)

we have

g(n)(r) = −
∑
s,g

∫
dωRe

{
∂G(rg, rs, ω|s(n)

0 )

∂s
(n)
0 (r)

δP ∗(rg, rs, ω|s(n)
0 )

}
. (16)

The quantity ∂G(rg, rs, ω|s(n)
0 )/∂s

(n)
0 (r) is the Fréchet derivative. Let us determine it by

developing a relationship between small changes the field, δG(rg, rs, ω|s(n)
0 ), and small

changes in the medium, δs(n)
0 (r). Let GU(rg, rs, ω) be the field in an unperturbed state, and

let GP (rg, rs, ω) be the field in a perturbed state. Let the former satisfy[
∇2
g + ω2s

(n)
U (rg)

]
GU(rg, rs, ω) = δ(rg − rs), (17)

and the latter satisfy [
∇2
g + ω2s

(n)
P (rg)

]
GP (rg, rs, ω) = δ(rg − rs). (18)

In the perturbative view, we express s(n)
P in terms of s(n)

U via

s
(n)
P (r) = s

(n)
U (r) + δs(n)(r) (19)

so that equation (18) can be written[
∇2
g + ω2s

(n)
U (rg)

]
GP (rg, rs, ω) = δ(rg − rs)− ω2δs(rg)GP (rg, rs, ω) (20)

and the operator in brackets [·] can be inverted to obtain

GP (rg, rs, ω) = GU(rg, rs, ω)− ω2

∫
dr′GU(rg, r

′, ω)δsP (r′)GP (r′, rs, ω). (21)
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Now, the difference GP − GU is one of our desired quantities, namely δG(rg, rs, ω). We
form this difference on the left hand side and eliminate GP from the right hand side by
expanding in series

δG(rg, rs, ω) = −ω2

∫
dr′GU(rg, r

′, ω)δs(r′)GU(r′, rs, ω)

+ ω4

∫
dr′GU(rg, r

′, ω)δs(r′)

∫
dr′′GU(r′, r′′, ω)δs(r′′)GU(r′′, rs, ω)

+ ... .

(22)

We next further specify the perturbation, such that it characterizes a local change at an
arbitrary r. That is, we set

δs(r′) = δs× δ(r′ − r), (23)

where δs is now a scalar quantity localized at the point r. Substituting equation (23) into
equation (22), the integrals are easily evaluated and we obtain

δG(rg, rs, ω)

=− ω2δsG(rg, r, ω)G(r, rs, ω)
[
1− ω2δsGR + ω4δs2G2

R − ...
]

=− ω2δsG(rg, r, ω)G(r, rs, ω)

1 + ω2GRδs
,

(24)

where in the second step we have recognized and collapsed the series (1 + x)−1 = 1− x+

x2 − ... . The quantity GR ≡ G(r, r, ω|s(n)
0 ) is the Green’s function evaluated with source

and receiver coincident at r, which is singular in multiple dimensions. Our sense is that this
is primarily a mathematical issue, since the variation in any real wave field that comes with
a small change in the medium must surely not be infinite. We take this as an indication that
some finite principle value is probably available to assign to GR, whose exact value is not
relevant now. Continuing, we are in a position to compute the Fréchet derivative. If

∂G(rg, rs, ω|s(n)
0 )

∂s
(n)
0 (r)

= lim
δs→0

δG

δs
, (25)

then forming this ratio in equation (24) and taking the limit the denominator goes to unity
and we confirm that

∂G(rg, rs, ω|s(n)
0 )

∂s
(n)
0 (r)

= −ω2G(rg, r, ω|s(n)
0 )G(r, rs, ω|s(n)

0 ), (26)

and hence, from (16), that

g(n)(r) =
∑
s,g

∫
dω ω2[G(r, rs, ω|s(n)

0 )]× [G(rg, r, ω|s(n)
0 )δP ∗(rg, rs, ω|s(n)

0 )]. (27)

This gradient is the source of the “migration” interpretation of full waveform inversion,
namely, that the time reversed residuals, δP ∗, are propagated into the medium viaG(rg, r, ω|s(n)

0 ),
the source field is propagated into the medium via G(r, rs, ω|s(n)

0 ), and the gradient is
formed by correlating the two.
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3. WAVE INTERPRETATION OF THE HESSIAN / APPROXIMATE HESSIAN

There is a similar wave/geophysical interpretation available to the Hessian. We may
leverage some of the effort of computing g(n)(r) to compute H(n)(r, r′). Since

H(n)(r, r′) =
∂2Φ

(
s
(n)
0

)
∂s

(n)
0 (r)∂s

(n)
0 (r′)

=
∂

∂s
(n)
0 (r)

∂Φ
(
s
(n)
0

)
∂s

(n)
0 (r′)

 =
∂

∂s
(n)
0 (r)

g(n)(r′), (28)

we may divide it up into two parts:

H(n)(r, r′) =
∂

∂s
(n)
0 (r)

∑
s,g

∫
dω ω2G(rg, r

′, ω)G(r′, rs, ω)δP ∗(rg, rs, ω)

= H
(n)
1 (r, r′) +H

(n)
2 (r, r′),

(29)

where

H
(n)
1 (r, r′) =

∑
s,g

∫
dω ω2

[
∂

∂s
(n)
0 (r)

G(rg, r
′, ω)G(r′, rs, ω)

]
δP ∗(rg, rs, ω), (30)

and

H
(n)
2 (r, r′) =

∑
s,g

∫
dω ω2G(rg, r

′, ω)G(r′, rs, ω)

[
∂

∂s
(n)
0 (r)

δP ∗(rg, rs, ω)

]
. (31)

(We have omitted the dependence of the fields and residuals on s(n)
0 to save space.) Consider

H
(n)
1 (r, r′) first. Making use of equation (26), we have that

∂

∂s
(n)
0 (r)

G(rg, r
′, ω)G(r′, rs, ω)

=
∂G(rg, r

′, ω)

∂s
(n)
0 (r)

G(r′, rs, ω) +G(rg, r
′, ω)

∂G(r′, rs, ω)

∂s
(n)
0 (r)

= −ω2 [G(rg, r, ω)G(r, r′, ω)G(r′, rs, ω) +G(rg, r
′, ω)G(r′, r, ω)G(r, rs, ω)]

(32)

Hence

H
(n)
1 (r, r′) =−

∑
s,g

∫
dω ω4[G(rg, r, ω)G(r, r′, ω)G(r′, rs, ω)

+G(rg, r
′, ω)G(r′, r, ω)G(r, rs, ω)]δP ∗(rg, rs, ω).

(33)

Next H(n)
2 (r, r′). Since

∂

∂s
(n)
0 (r)

δP ∗ =
∂

∂s
(n)
0 (r)

[P ∗(rg, rs, ω)−G∗(rg, rs, ω)]

= − ∂

∂s
(n)
0 (r)

G∗(rg, rs, ω)

= ω2G∗(rg, r, ω)G∗(r, rs, ω),

(34)
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we have

H
(n)
2 (r, r′) =

∑
s,g

∫
dω ω4G(rg, r

′, ω)G(r′, rs, ω)G∗(rg, r, ω)G∗(r, rs, ω). (35)

The full Hessian, therefore, is expressible in terms of Green’s functions propagating in the
background medium.

The approximate Hessian

Note that if the residuals δP are small, H(n)
1 may be neglected, in which case the Hes-

sian is approximately

H(n)(r, r′) ≈
∑
s,g

∫
dω ω4G(rg, r

′, ω)G(r′, rs, ω)G∗(rg, r, ω)G∗(r, rs, ω). (36)

This approximate wave form for the Hessian is consistent with the approximate Hessian
used in a quasi-Newton step of full waveform inversion, a point we will further clarify in
the next section.

4. GAIN CORRECTION IN A QUASI-NEWTON STEP

We may also discuss the Hessian in seismic migration terms. Since the original remarks
directing our thinking on this issue come from Virieux and Operto (2009) we will use the
language of that paper, which is matrix-vector rather than functional. The interpretation of
the Gauss-Newton result for the parameter update vector ∆p, as given by those authors,
yields to us a further interpretation of a gain correction that is consistent with the deconvo-
lution imaging condition. The relevant equation in that paper states that the update for this
vector is the gradient that is premultiplied by the inverse of the approximate and stabilized
Hessian, i.e.,

∆p = −Re
[(

J†WdJ
)

+ εWm

]−1
Re
[
J†Wd∆d

]
= −Re

[(
J†WdJ

)
+ εWm

]−1
Re
[
JTWd∆d∗

]
. (37)

In equation (37), J is the Jacobian matrix, Wd is a data-weighting matrix, Wm is a regu-
larization matrix and ∆d is the data residual at the recievers.

First a point about units. Since the Jacobian, the derivative of u (the forward-propagated
predicted field) with respect to p has dimensions of data divided by parameters, the inverse
Hessian provides us with the necessary gain correction so that the gradient term is multi-
plied by the proper units. This is seen by doing a unit analysis of equation (37). Denoting
the units operator by [·], we have that

[∆p] =

(
data

parameters

)−2

× data
parameters

× data = parameters . (38)

What is still left is explicitly relating J to the wavefields and scattering effects.
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We can examine the gradient term in the numertor of equation (37) and the approximate
stabilized inverse Hessian by first noting that

J =
∂u

∂p
= B−1∂B

∂p
u. (39)

In equation (39), B is the forward modelling operator, B−1 is the Green’s operator, and
the derivative of B with respect to a particular member of p, pi, represents the scattering
effect of a spatial Dirac impulse at the appropriate point. We now look at the gradient,
the “numerator” in equation (37). Substituting equation (39) into Re(JTWd∆d∗), and for
simplicity, setting Wd = I, we obtain

gradient = Re
(
JT∆d∗

)
= Re

[(
B−1∂B

∂p
u

)T
∆d∗

]
(40)

Expansion of the transpose in equation (40), results in the final expression for the gradient
as

gradient = Re

uT × ∂B

∂p

T

× B−1T∆d∗︸ ︷︷ ︸
back-propagated, time

reversed residual

 . (41)

The gradient computed in equation (41) corresponds to the gradient computed in equation
(27). At first sight there appear to be some differences, as there are two Green’s operators
in equation (27), which are not explict in (41). However, in equation (41) the field u is B−1

multiplying the source term in frequency, which we have taken to be unity. Furthermore,
due to the choice of the Helmholtz equation parameter s, the term (∂B/∂p)T is simply ω2.
Thus, utilizing the foregoing, equation (41) corresponds precisely to equation (27).

The final result for the gradient, as shown in equation (41), represents conventional
reverse time migration, as a cross-correlation of the forward propagated modeled field with
the backpropagated data. However, there is no gain correction.

Next, we consider the inverse approximate Hessian, which is like a "denominator" in
equation (37). If we substitute equation (39) into the approximate Hessian as given by
equation (37),and setting Wd = I , we have that

Re
[(

J†WdJ
)

+ εWm

]
= Re

(B−1∂B

∂p
× u

)†(
B−1∂B

∂p
× u

)
︸ ︷︷ ︸

KEY TERM

+εWm

 . (42)

Expanding the KEY TERM, and setting ε to zero for simplicity, we obtain

KEY TERM = Re

u†
scatterer weighting︷ ︸︸ ︷(

∂B

∂p

)†
B−1†B−1︸ ︷︷ ︸

geometrical spreading

∂B

∂p
×u

 (43)
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The expression (43) corresponds precisely to exactly to equation (36), using the same cor-
respondences as for the gradient.

The KEY TERM is the autocorrelation of the modeled forward propagated wavefield
u with the gain correction for geometrical spreading and a scatterer weighting operator. If
we consider the symbolic division of the gradient by the inverse approximate Hessian, we
recover the deconvolution imaging condition.

5. QUASI-NEWTON STEPS AND DECONVOLUTION IMAGING CONDITIONS

In the previous section, we showed how to derive the approximate discrete Hessian
using the discrete Jacobian. It is now a straightforward matter to show directly how this
amounts to migration with a deconvolution imaging condition. We begin with equation
(37).

We substitute equations (41) and (43) into equation (37), and use the correspondences
described in the previous section. Then we obtain

∆p =
gradient

KEY TERM
=

Re
[
uT × ω2 × (B−1)

T ×∆d∗
]

Re
[
u† × ω4 (B−1)† (B−1)× u

] (44)

Now the term (B−1)
†
(B−1) represents geometrical spreading, which for a homogeneous

medium is r−2; the term (B−1)
T ×∆d∗ is the backpropagated time-reversed data residual,

which in reverse-time migration is simply the back-propagated time-reversed data. With
these simplifications in mind, we have

∆p =
gradient

KEY TERM
=
r2

ω2

Re
(
uT × BPTR

)
Re (u†u)︸ ︷︷ ︸
deconvolution

imaging condition

. (45)

We recognize that equation (45) in the time-domain is the gain-corrected zero lag cross-
correlation between the downward propagated field and the time-reversed recorded data
field divided by the autocorrelation of the downward propagated field. This is equivalent,
after appropriate gain, to deconvolving the back-propagated data by the downward propa-
gated data at the image point. We have demonstrated that the first quasi-Newton step in the
least squares inversion algorithm has the exact analog to common processing work flow in
industrial reverse-time migration.

Let us re-express our arguments less formally. We argue that the simplest form of
full waveform inversion, gradient-based stepping, uses a correlation imaging condition that
lacks gain correction. It follows that a line search to scale the gradient is a crude average
gain correction, but probably not as good as standard practice. We have argued that the
approximate Hessian, used in the quasi-Newton approach, is as a gain correction and has
a direct interpretation as applying a deconvolution imaging condition. As used in industry
practice, the deconvolution imaging condition is a direct estimate of a reflection coefficient.
Since we are seeking an update to an impedance model, which is a velocity model in the
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constant density acoustic approximation, it is desirable to convert the reflection coefficient
into an impedance update. In Margrave et al. (2010) this was done entirely by matching to
well control; however, we could also use the approximation

R =
∆I

2I
→ Rk =

∆Ik
2Ik−1

→ ∆Ik = 2Ik−1Rk. (46)

In the last expression, the impedance model at iteration k− 1 is used to scale the reflection
coefficient estimated at iteration k to obtain an impedance update for iteration k. The es-
timate for Rk might come from a deconvolution imaging condition applied in an industry
standard migration, or from a correlation imaging condition if the data are gained before
migration. The estimate of ∆Ik is presumably what is obtained from a quasi-Newton im-
plementation of full waveform inversion.

DISCUSSION AND CONCLUSIONS

Seismic imaging, which we take as generally as possible to mean the creation of a
subsurface image from seismic data by any means, has advanced a great deal in the roughly
40 years since the advent of digital data processing (in the early 1970s). Most of the
imaging algorithms developed in the first 30 years, or up until about 2000, have been called
migration algorithms. In the last ten years, inversion methods such as FWI have been
steadily gaining prominence and we are gradually learning what novelty they have to offer.
It should come as no surprise, that migration and FWI are closely related since both are
derived from the same wave theory and since the developers of FWI initially thought of it
as iterative migration (e.g., Lailly, 1983).

In last year’s CREWES report, Margrave et al. (2010) presented an iterative migration
scheme using well control and simple impedance inversion as a practical approach to FWI.
They advocated using standard industry migration algorithms, such as the depth-stepping
PSPI, as alternatives to reverse-time migration. Here we have extended that perspective by
examining the role of Claerbout’s two imaging conditions (correlation and deconvolution
Claerbout, 1971) in full waveform inversion. Standard migration practice often uses the
correlation imaging condition, because of its inherent stability, but always the data is gain
corrected first. Less common, but still frequent, is the use of a stabilized deconvolution
imaging condition. Simple arguments suffice to show that the latter does not require a prior
gain correction and can directly estimate reflection coefficients (provided that source and
receiver consistent amplitude scalars have been applied).
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APPENDIX A: GÂTEAUX DERIVATIVES - A PIECE OF CAKE!

Gradients of the type we take in equation (6) derive from the theory of Gâteaux deriva-
tives. The Gâteaux differential or Gâteaux derivative is an essential mathematical tool that
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is used to compute the variation of a functional. In our case the functional is the misfit
between the predicted data and measured data and is calculated using Euclidean distance
squared (the L2 norm). The variation is taken with respect to the velocity parameters de-
scribing our functional. Usually, this variation is computed using the Fréchet derivative,
which is a stronger form of the derivative. With new misfit functionals, we may have to
appeal to the Gâteaux derivative to define gradients properly.

Simply put the Gâteaux derivative is a generalization to function spaces of the idea of
the directional derivative, usually taught in a second year calculus course. Thus, we begin,
via a basic example, with a simple review of the directional derivative. Let’s assume that we
have a function that is smooth and we can take its derivatives. Denote this scalar function,
in two dimensions, by F (u), with u being the point (x, y). We would like to compute its
derivative in the direction v, where v = (a, b). A reasonable way to do this would be to
write it as

dF (u; v) = lim
t→0

F (u + tv)− F (u)

t
=

d

dt
F (u + tv)

∣∣∣∣
t=0

(47)

Let’s now do this explicitly using the chain rule for derivatives:

d

dt
F (u + tv)

∣∣∣∣
t=0

=
d

dt
F (x+ ta, y + tb)

∣∣∣∣
t=0

=
∂F (x+ ta, y + tb)

∂(x+ ta)

d (x+ ta)

dt
+
∂F (x+ ta, y + tb)

∂(y + tb)

d (y + tb)

dt

∣∣∣∣
t=0

=
∂F (x, y)

∂x
a+

∂F (x, y)

∂y
b

= ∇F (x, y) · v (48)

We can see from (48) that the directional derivative is a scalar product of the gradient of
F (x, y) and a displacement vector v and as a result, we also see the motivation for using
the expression Gâteaux differential instead of Gâteaux derivative.

Now with the motivation behind us, we use exactly the same definition for the Gâteaux
differential as in (47). The only difference is that we generalize all the items in (47). The
point u = (x, y) becomes a member of a topological vector space, denoted by X . On this
space an inner product is defined. If our space is a Hilbert space then the inner product of
two functions f and g is given by

< f, g >=

∫
f ∗(x)g(x) dx, (49)

where the integral is performed over the domain of the function and ∗ refers to complex
conjugate. The vector v, is now also a member of the Hilbert space, X . We can call it
φ. Our scalar function F (x, y) becomes our functional, which is a mapping from X to the
real numbers. Two points are worth noting. First, there is no single Gâteaux differential
at u. The differential depends on φ. Secondly, the Gâteaux differential may be nonlinear
in φ, which is not the case for the Fréchet derivative. Thus a functional which is Fréchet
differentiable is Gâteaux differentiable, while the converse is not true. We can now write
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our Gâteaux differential as

dF (u;φ) = lim
t→0

F (u + tφ)− F (u)

t
=

d

dt
F (u + tφ)

∣∣∣∣
t=0

. (50)

A simple example is now in order. Consider the functional

F (u) =

∫ b

a

[(
∂u

∂x

)2

+ u2

]
dx. (51)

So, now

dF (u;φ) =
d

dt

{∫ b

a

[(
∂u

∂x
+ t

∂φ

∂x

)2

+ (u + tφ)2

]
dx

}∣∣∣∣∣
t=0

. (52)

After interchanging differentiation with respect to t and integration with respect to x, under
the usual smoothness assumptions, and then setting t = 0, we finally obtain

dF (u;φ) =

∫ b

a

(
uφ+

∂u

∂x

∂φ

∂x

)
dx. (53)

We can now integrate by (53) by parts and assume that ∂u
∂x

vanishes at the endpoints a and
b and finally obtain

dF (u;φ) =

∫ b

a

(
u− ∂2u

∂x2

)
φdx, (54)

which is clearly an inner product of φ with(
u− ∂2u

∂x2

)
.
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