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ABSTRACT

Reverse-time migration (RTM) is a powerful migration method provided that an accu-

rate velocity model can be constructed. In any discrete operation on a sampled field we

need to consider aliasing before, during, and after that operation. Reverse-time migration

takes a sampled seismic experiment and creates an image of the subsurface. In reverse-

time migration the sampled wavefield and the forward modelled shotfield are propagated

as a solution to the wave equation. This often requires re-sampling the data to a regular

sampled and finer grid for wavefield propagation. Additionally aliasing can occur when

cross-correlating the two wavefields to form an image.

INTRODUCTION

Aliasing occurs in prestack Kirchhoff migration when the data is sweeped from steep

angles into its correct position. Steeply dipping data is aliased so that seismic data needs to

be interpolated to reduce the trace spacing or by applying anti-aliasing filters (Gray, 1992;

Biondi, 2001; Zhang et al., 2003) during migration which results in the inability to image

steeply dipping beds and faults.

Aliasing can occur in two places for prestack wavefield continuation migrations. The

downward propagated record wavefield and the forward modelled shotfield must be ade-

quately sampled for the propagation algorithm. Aliasing can also occur during the appli-

cation of the cross-correlation imaging condition. This requires that the downward propa-

gated shot and receiver fields are sampled at half the Nyquist sampling (Zhang et al., 2003).
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BORN FORWARD MODELLING AND ITS INVERSE

Let G0(x⃗, x⃗s⃗, t) the causal Green’s function for the acoustic wave equation,

[
∂2

∂t2
− c0(x⃗)

2∆

]
G0(x⃗, x⃗s⃗, t) = δ(x⃗− x⃗s⃗), (1)

with a background velocity c0 and where ∆ = ∂xx + ∂yy + ∂zz.

The Born scattering approximation can be used to create a synthetic seismic shotrecord

or as a bases for a linearized inversion. For seismic data recorded at point x⃗r⃗ for a shot

at location at x⃗s⃗ with a velocity c(x⃗), a background velocity c0 and a velocity perturbation

δc(x⃗) = c(x⃗)− c0(x⃗), the weak scattering approximation (Schuster, 2002) in the frequency

domain is

D(x⃗r⃗, x⃗s⃗, ω) =

∫
G0(x⃗r⃗, x⃗, ω)G0(x⃗, x⃗s⃗, ω)m(x⃗)dx⃗, (2)

where m(x⃗) = 2δc/c30 is the scattering potential. Let G∗
0 be the solution to the adjoint of

equation (1). An approximate inverse of equation (2) can be formed by applying the adjoint

of the forward modelling operator,

m(x⃗) ≈ ω2

∫
G∗

0(x⃗, x⃗s⃗, ω)G
∗
0(x⃗r⃗, x⃗, ω)D(x⃗r⃗, ω)dx⃗r⃗. (3)

The Green’s function G∗
0(x⃗, x⃗s⃗, ω) is called the forward propagated shotfield. A band-

limited version of G∗
0 can be calculated by finite-differencing solution of equation (1) with

the delta function multiplied with a wavelet W (ω). The greens function applied to the

recored data G∗
0(x⃗r⃗, x⃗, ω)D(x⃗r⃗, ω) is called the back propagated receiver field. In the time

domain the receiver field is,

Rx⃗s⃗
(t, x⃗) = G0(x⃗r⃗, x⃗, t)⊗t D(x⃗r⃗, t)

=

∫ Tmax

0

G0(x⃗r⃗, x⃗, τ)D(x⃗r⃗, t+ τ),

2 CREWES Research Report — Volume 23 (2011)



Reverse-time migration

where Tmax is the length of the seismic record and ⊗t is cross-correlation in the time

variable. Integrating the recored wavefield D(x⃗r⃗, t+ τ) with Green’s function G0(x⃗r⃗, x⃗, τ)

can be accomplished by solving the wavefield equation using the trace as a time shifted

source, [
∂2

∂t2
− c0(x⃗)

2∆

]
R(x⃗, t) = D(x⃗, tmax − t). (4)

For converted waves from a P-wave source the analogous forward born modelling that

is kinematically correct is

DPS(x⃗r⃗, x⃗s⃗, ω) =

∫
GP

0 (x⃗r⃗, x⃗, ω)G
S
0 (x⃗, x⃗s⃗, ω)m

PS(x⃗)dx⃗, (5)

here mPS is the scatter potential for PS conversion. The forward Born approximation for

elastic waves (Snieder, 2002) will have much better dynamic amplitudes. Applying the

adjoint to the recorded PS-wavefield gives an approximate inverse,

mPS(x⃗) ≈ ω2

∫
GP∗

0 (x⃗, x⃗s⃗, ω)G
S∗
0 (x⃗r⃗, x⃗, ω)D

PS(x⃗r⃗, ω)dx⃗r⃗. (6)

Migration aliasing

In the cross-correlation imaging condition the backpropgated receiver field R(t, x⃗) is

cross-correlated at zero lag with forward propagated shotfield S(t, x⃗). The simplest imag-

ing condition is

I(x⃗) =

∫ T

0

S(t, x⃗)R(t, x⃗)dt, (7)

for a shotrecord of length T . This imaging condition is equivalent to by Parsavel’s the-

orem to the imaging condition in the frequency domain used by wavefield continuation

migrations,

I(x⃗) =

∫ ωmax

0

S(ω, x⃗)R(ω, x⃗)dω. (8)
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In practice both receiver and shot fields are sampled with a spacial sampling of δx. The

Nyquist frequency for any component of the wavenumber is |kxi
| = π/2δx. Once the

wavefields are correlated the largest wavenumber will double the maximum in either shot

or the receiver field Zhang et al. (2003). Alternatively equation (7) in the wavenumber

domain is

I(k⃗) =

∫ T

0

S(t, k⃗) ∗R(t, k⃗)dt, (9)

where ∗ denotes convolution in the wavenumbers. If the data has a maximum frequency

fmax and a minimum velocity of the model is cmin then the maximum wavenumber is

kmax = 2fmax/cmin.

Since R(t, k⃗) and S(t, k⃗) are convolved in the wavenumber domain the maximum fre-

quency in I will doubled that in R or S. Hence prior to the application of imaging condition

R(t, k⃗) and S(t, k⃗) must be sampled at half the Nyquist frequency sampling rate.

DISCUSSION

We now look at a few migration impulse responses to better understand migration alias-

ing. In the first example a constant 2000m/s velocity. The migration trace is a far offset

trace with 5 Ormsby wavelets with a maximum frequency of 60Hz and the grid spacing is

12m. Figure 1(a) is the impulse response of a single trace to reverse-time migration with

the shot and receiver field resampled to half of the Nyquist. Figure 1(b) is the same impulse

response however there was no resampling done and the migrated image contains aliasing.

CONCLUSIONS

We presented an aliasing condition for the imaging condition for reverse-time migra-

tion. If the the shotfield and backpropagated receiver field have spatial frequencies up to the

Nyquist then it necessary to resample these fields to half the Nyquist prior to the application

of the imaging condition.

4 CREWES Research Report — Volume 23 (2011)



Reverse-time migration

 

Distance (km)

D
ep

th
 (

km
)

1 2 3 4 5 6

0.5

1

1.5

2

2.5

3

(a)

 

Distance (km)

D
ep

th
 (

km
)

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

(b)
FIG. 1. (a) Impulse migration response for a single far offset trace resampling prior to crosscorration
to half Nyquist. (b) Impulse migration response without resampling.
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