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ABSTRACT 
Global optimization algorithms are generally computationally intensive processes, 

where a significant amount of time is required to generate a solution. Therefore, methods 
to improve the efficiency are desired for problems that require their use. In this study we 
present a hybrid method to improve the convergence rate of an AVO inversion through 
implementation of a trace integration method followed by a simulated annealing 
optimization. The method eliminates the need for an additional model parameter to 
represent the layering solution and reduces the compute time of the global optimization 
by generation of an initial model that is close to the final solution.  

INTRODUCTION 
Inverse problems that contain local minima in their objective function require the use 

of global optimization algorithms, which may need a significant amount of computational 
effort. Therefore, conditioning of the initial model to a state that is close to the final 
solution can greatly reduce the compute time. In this study, we attempt to minimize the 
compute time associated with an AVO inversion through implementation of a trace 
integration method followed by a simulated annealing optimization to refine the model. 
We first present the problem formulation and subsequently demonstrate the methodology 
to obtain the inverse solution.  

PROBLEM FORMULATION 
In an AVO inversion, the objective is to estimate the P- and S-wave velocities and 

density from the angle-dependent reflectivity. This is typically achieved through 
iteratively updating an initial model until the data residuals are minimized, where the 
initial model is often obtained from a low-pass filtered version of measured well logs. 
The role of the seismic data is then to provide the high frequency variations in the elastic 
properties. Given this description, the elastic properties can be written as 

 ααα ∆+= 0 , (1) 

 βββ ∆+= 0 , (2) 

and 

 ρρρ ∆+= 0 , (3) 

where α is the P-wave velocity, β is the S-wave velocity and ρ is the density. The 
quantities with subscript 0 and prefix ∆ then represent the low and high frequency 
contributions respectively. The quantities α0, β0 and ρ0 are assumed to be known 
functions and are referred to as the low frequency model, which are typically used as the 
initial model for the inverse problem. Since the low frequency model is a smooth 
function, a layering solution is required and therefore adds an additional parameter to the 
inverse problem (e.g. Coulon et al., 2006). Alternatively, a layering solution can be 
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defined prior to the estimation of the elastic properties. In the following, we discuss a 
methodology to obtain the layering solution in addition to an initial model that is closer to 
the final solution relative to the low frequency model.  

Consider the normal incidence reflectivity function given by  
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where Ij=αjρj is the acoustic impedance of layer j. The reflectivity is therefore obtained 
through a scaled difference operation on the impedance. Conversely, if the reflectivity is 
known, the impedance can be recovered using 
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which involves integrating the reflectivity function (in practice this is assumed to be 
processed seismic data where the wavelet has been deconvolved) followed by 
exponentiation and scaling by I1 (e.g. Oldenburg et al., 1983). An inherent problem with 
this method is that all frequencies are required for a proper solution. In seismic data, the 
low frequencies are not present due to the bandlimited response and integration generally 
leads to a deviation from the correct low frequency trend. To avoid this problem, low 
frequency information from well logs can be used to calibrate the solution. Therefore, 
trace integration followed by a series of filtering operations can be performed to obtain an 
impedance estimate.  

Now, given an estimate of the impedance and the known functions of α0, β0 and ρ0, 
an initial model can be obtained and is given by  
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and 

 






 ∆
+==

00

)( 1
α

αρ
α

ρ Iinitial . (8) 

Equations 6 to 8 demonstrate that the initial model for the elastic properties has an error 
on the order of the property reflectivities (e.g. ∆x/x0), which is a small quantity. In 
addition, since the impedance estimate from the seismic data provides the fluctuations 
about the low frequency model, we have defined layer boundaries given by the zero 
crossings upon the subtraction of the low frequency trend. The layer amplitudes can 
subsequently be perturbed using a global optimization algorithm to obtain the final 
solution.  
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INITIAL MODEL GENERATION 
To demonstrate the proposed methodology, we generate synthetic data using measured 

well logs. Figure 1 shows the P- and S-wave velocity and density logs and the associated 
angle gather. The reflectivity was calculated using the Aki-Richards approximate AVO 
equation (Aki and Richards, 1980) and subsequently convolved with a [0 10 50 60] 
Ormsby wavelet to generate the seismic response.  

 

FIG. 1. P- and S-wave velocity and density well logs and the associated angle gather. 

To prepare for the inversion, we first estimate the acoustic impedance from the 
deconvolved near angle traces in the seismic gather using equation 5. Subsequently, 
equations 6 to 8 are implemented to generate the initial model where the low frequencies 
provided by α0, β0 and ρ0 were added through a series of filtering operations. Figure 2 
shows the low frequency (red), true (blue) and initial (green) model, where the true model 
was filtered back to match the seismic frequencies.  
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FIG. 2. Low frequency (red), true (blue) and initial (green) model for the P- and S-wave velocity 
and density.  

INVERSION 
To perform the inversion, we implement a simulated annealing algorithm as discussed 

in Cho and Margrave (2012) to adjust the amplitudes layer by layer. Figure 3 shows a 
discrete set of states in the solution space between the upper and lower bounds in color 
and the true model in black for the elastic properties. The optimization algorithm then 
perturbs the model amplitudes and selects a solution that minimizes the objective 
function. Since the initial model is close to the final solution, a lower initial temperature 
and fewer iterations are required in the simulated annealing process for convergence, 
therefore reducing the compute time. Figure 4 illustrates the results of the inversion 
where the low frequency (red), true (blue) and estimated (green) models are shown. The 
inversion demonstrates a reasonable fit to the well logs and produces a minimal amount 
of residual energy in the difference between the input seismic and synthetic as shown in 
Figure 5. The finite errors are then attributed to the imperfect deconvolution process and 
the corresponding layering solution imposed by the impedance estimate from trace 
integration.  
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FIG. 3. Discrete set of states in the solution space displayed in color with the true model in black.  

 

FIG. 4. Low frequency (red), true (blue) and estimated (green) model for the P- and S-wave 
velocities and density.  
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FIG. 5. Seismic angle gathers for the a) input data, b) synthetic data and c) residuals (color scale 
is the same for all panels).  

CONCLUSIONS 
A hybrid method to improve the convergence rate of an AVO inversion was presented. 

A trace integration method was performed to obtain a layering solution and an initial 
model that consist of small errors on the order of the property reflectivities. 
Subsequently, a global optimization algorithm was applied to refine the solution to 
achieve the final result. Using this approach, a separate model parameter representing the 
layering solution is not required. In addition, the time devoted to the computationally 
intensive global optimization is reduced due to a pre-defined layering solution and an 
initial model that is close to the final solution.  
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