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ABSTRACT

It has been shown through previous data examples that ni@mstey deconvolution,
and in particular the CREWES Gabor nonstationary deconvalupoovides significant
enhancement for deep georadar reflections. In many exant@amprovement extends
the radar image from a few meters to a few tens of meters.

We find here through controlled experiment that nonstatp&convolution has an
attenuation correction property - the frequency and phasgonents of attenuation loss
are compensated for. Though the compensation effect isaaitie on seismic data, the
effect on georadar data is quite a bit more obvious and we liiai in terms of attenuation
factor@, (Q is about an order of magnitude smaller (so the attenuatfente$ much larger)
for georadar than it is for seismic. We show that it thisompensation probably accounts
for the significant signal improvements that we see in gearddta.

INTRODUCTION

Recent application of the CREWES Gabor nonstationary decaimolalgorithm (Ga-
bor decon, Margrave et al. (2011)) to georadar data hasdesigrtificant improvements in
depth of image penetration. For example, in Ferguson 2@L1) increase the image from
meters to ten meters in a quarry. Ferguson et al. (2010) anelRewal. (2010) extend the
image in basalt to 35 meters. In each of Ferguson et al. (26&tyuson et al. (2010), and
Rowell et al. (2010), data acquisition time (the number of gl@nacquired) appears to be
the limiting factor in image depth when Gabor decon is used.

More recently Ferguson et al. (2012b) provide images temseaiérs below a nuclear
weapons repository in the French Alps, and Ferguson et@12@) triple the effective time
length of their data with Gabor decon.

We postulate that Gabor decon has significamompensation attributes and so it will
return very good results for signals like georadar that haeek () values. We then es-
timate Q for a recent georadar acquisition in the Alps of Central Italye find that the
extracted valué@ = 21.8) is about 10 times smaller than what is typical of seismic data
(Q ~ 10%). We then generate two synthetic signals - a georadargram aegsmogram -
for the same reflectivity sequence and we scale these by adpowavelet of 200 MHz
central frequency and a seismic wavelet of 20 Hz respegtividle georadargram is then
attenuated usin@ = 21.8 and the seismogram is attenuated ugihg 218, and then they
are both input to Gabor deconvolution. We find that the geaoraynal is significantly at-
tenuated in amplitude and that reflections appear to besdhidt earlier times. In contrast,
the seismic signal is much less attenuated and reflectiensadias severely time shifted.

As expected, Gabor decon does an excellent job of restdmm@rmplitude and phase
characteristics of the seismogram, but that the phaseatkasdics of the georadargram do
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remain shifted though they are improved. We conclude thatipus findings that Gabor
decon drastically improves georadar images is most prgluhld to() compensation.

THEORY
Gabor deconvolution

Gabor decon is based on Margrave et al. (2011) and we wileweii's most salient
points here. This nonstationary deconvolution algoriterhased on assumptions of white
reflectivity and minimum-phase source wavelet similar tan&e deconvolution (Robin-
son, 1967). The data model upon which Margrave et al. (2GLhased is that the Gabor
transform of a trace is approximately equal to the Gaborstaams of reflectivity, the
source wavelet, and the attenuation mechanism multiphigether. Margrave et al. (2011)
compute the Gabor spectrum of estimated reflectivity thinadigision of the spectrum of
the trace by the spectrum of the combined estimate of theleia\atenuation function.

The deconvolution operator is determined from the datactlyreso attenuation that is
removed is consistent with the data such that the decomenlptocess is stable Margrave
et al. (2011). The source waveletand the attenuation functiom are treated as sepa-
rate, convolutional (in time) effects where the waveletdsiamed to be stationary, and all
nonstationary effects are due to attenuation Margrave. €2@11). Attenuation includes
constant() that causes frequency-dependent loss of amplitude anchtiregath multi-
ple effect of O'Doherty and Anstey (1971); they combine tonian effective attenuation
mechanism with the frequency dependent and minimum phasadieristics.

In the Gabor domain of time and frequencyf, the model of an attenuated seismic
trace is R
Sq(t, [) = (f) a(t, [) 7 (L, f), (1)
where

o (tes f) = / g () r (1) e dy @

o0

is the Gabor transform of time-domain reflectivityandg is a partition of unity (POU).
Variablest;, and f are the two coordinates of the Gabor domain (Gabor time arbGa
frequencyy):

A POU is a set of localizing windows within which the propaggtwavefield is as-
sumed to be stationary and who's superposition sums to Matgrave et al. (2011). Fig-
ure 1 demonstrates this property. In Figure 1(a), 20 ovpintpGaussians are plotted on a
time axis between 0 and;3s - they are identical except for a time shift. Figure 1(b)vgho
a plot of the sum of the amplitudes of the 20 Gaussians in I{ag triangles annotated
on the resulting curve indicate the range of complete opesfahe Gaussians, and within
this range, the sum is identically unity. Any process thapplied in the Gabor domain,
then, will be correct only within this range. An example oé thpplication of a POU to a

*The Gabor time coordinatg is given ag, in Margrave et al. (2011). We use the subscgipere rather
thank to reduce confusion between the discrete number of windows: < M and the discrete number of
Gabor time samples < g < N.
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FIG. 1. Example of a partition of unity (POU). a) 20 identical Gaussian windows shifted by a
constant increment. b) The sum of the Gaussian windows in (a). The sum is identically unity within
the time range indicated by the triangles on (b).
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time-domain reflectivity series is given in Figure 2. A refieity time-seriesr is plotted

in Figure 2(a) and the Gaussigp_; that is highlighted on Figure 1 is plotted for refer-
ence. Figure 2(b) is a plot af;; r - reflections outside the range gf, are zeroed, and
reflections withing,; are scaled according to the shapegqf Plotted in Figure 2(c) is the
reconstruction of as a sum of the 20 windowed reflectiviti®s, g . Within the exact
range (indicated by the triangles) reflectivitys precisely recovered while outside of this
range (in particular between 0 ang.5) reflections are reduced in amplitude. To arrive at
this practical solution fof,, (equation 2), a number of assumptions are made and these are:
a) the attenuation function varies slowly with respect to the POU, b) the time-domain
convolution of the wavelet with the attenuation functiorcas rapidly away from = 0

(is centred ort = 0) due tow being short in time relative to the POU, and c) reflectivity
r is windowed twice - once by the analysis window and again leysynthesis window,
so the combined effects of the two windowsois to pass small values except where the
windows overlap Margrave et al. (2011).

Deconvolution then proceeds as a solutionfprsing equation 1:

N

g (8, f) = Sy (L, f) = [ (f) a(t, f)], (3)
(Margrave et al., 2011) followed by an inverse Gabor tramsfaccording to
r(6) ~ > g () IFT s {7y (1, )} (4)
k

where IFT;_,; indicates thef — ¢ inverse Fourier transform (Margrave et al., 2011). Esti-
mation ofw « is done using either boxcar smoothing$for, more commonly, hyperbolic
smoothing ofS, (Margrave et al., 2011) analogous to the wavelet prediati@thod of

Robinson (1967) in that the Hilbert transform is used to eethe amplitude and phase of
w.

() estimation by the spectral-ratio method

Most media attenuate individual frequencies of a propagatiavefield (Zener, 1948).
@ is a common measure of this attenuation, and it is usuallyheeéfin terms of peak
strain-energy and energy loss per perigilE according to (Zener, 1948):

Q) =-35" ©)

Because) estimates are often stationary frthey can be estimated in the frequency do-
main through fitting a slope to the amplitude spectrum -gteetral ratio method (Bath,
1974). Two different measurements of the source wavefornwio different receivers are
obtained and) is estimated by slope fitting along thfecoordinate of théog of the ratio

of their amplitude spectra.

—1 AL

Q=—"r ©)

tFor brevity we have left out the forward and inverse Fouri@nsforms as well as a Gabor-domain filter-
ing process applied to the windowed reflectivity so that we e@ncentrate on the conceptual foundations
of the POU.
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FIG. 2. Reflectivity example. a) A random reflectivity series. The accurate range of the Gabor
transform is indicated by triangles, and the Gaussian highlighted in 1(a) is over-plotted. b) The
reflectivity in (a) multiplied by the Gaussian. Reflectivity beyond the range of the Gaussian is set to
zero and the passed reflectivity is scaled according to the shape of the Gaussian. c) The sum of all
20 windowed reflectivities. Within the accurate range, the reconstruction (inverse Gabor transform)
is exactly the same at the original reflectivity in (a).
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| Parameter | Value |

Points in prediction filter 3
Points in Burg spectral estimate 105

Table 1. Parameterization of burg (Burg amplitude spectrum estimator) from the CREWES seismic
tool box.

whereM is the slope of the log-spectral ratio

d A (f) }
M= —1lo 7
i {A2 ) @

The resulting stationary estimate f@ris assumed to be constant for @l(though this is
not precisely consistent with equation 5).

Using raw data from Ferguson et al. (2012a) (line 40) the¥alhg () estimation pro-
cedure is followed:

1. Compute the mean trace of the data and subtract this trabatdaterally coherent
system noise is attenuated .

2. Pick two time windows the same size that spans the rangead gignal. The
separation between the windows should be 3 times (or magejzle of the windows.

3. Useburg.m from the CREWES toolbox to compute the Burg amplitude spectra for
the two windows. Burg spectra are more robust than Fouriestisspéor small win-
dows Table 1.

4. Input the burg spectra inkprat .m from the CREWES toolbox to estimafgusing
the spectral ratio method. Thsrat.m algorithm will compute the log-spectral-
ratio (LSR) and plot it versus frequency. Theory suggeststti@ LSR will be a
straight line with negative slope. In practice we find thikidaour over a limited
frequency range only.

The @) estimate for our data is shown in Figure 3. As expected, tigathe LSR slope
is linear between a fixed frequency range between 60 MHz a@dv#2z. This value is
consistent with) values reported by others (Irving and Knight, 2003, for eglan

SYNTHETIC EXAMPLES
Forward modelling

Based on the attenuation work of Futterman (1962) we genaraddflectivity series
which we then convolve with a minimum phase wavelet. Theltieguband limited trace
is then transformed into the Gab@r f) domain. There, the trace amplitude is multiplied
by a real-valued exponentidl that attenuates the amplitude

At f) = /9, ®)
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FIG. 3. Q estimate for the data of line 40 (Ferguson et al., 2012a).

where(@ = 21.8 for georadar and) = 218 for seismic, and then by a complex valued
exponential that causes phase dispersion according to

B = ¢ tH{-7tf/Q} (9)

The results of the above process are given for georéflgr, = 200MHz) and seismic
(faom = 20Hz) respectively in Figure 4. Not that the reflectivity signadsd curves) are
identical with the exception of the different time axes (@&econds verses seconds), and
the bandlimited reflectivities (blue curves) are very sandue to the choice of dominant
frequencies. The applied attenuation, however, causesisant differences in the signals
(green curves). The seismic signal (Figure 4(a)) is attuljdout this effect is not strong
and the dispersion is not obvious until later times aroud8 8econds where misalignment
of peaks and troughs becomes apparent. By 0.4 seconds,gnisalit of zero crossings is
evident. Attenuation of the georadar signal (Figure 4(®)Ynuch stronger and dispersion
is evident at 5 ns and increase significantly from there. Ttemaated reflection data from
4 are then input to Gabor decon functigabordecon from the CREWES toolbox. The
results shown in 5 are what we consider to be an optimal balahinput values. The
seismic signal (Figure 5(b)) has been phase corrected amelclay Gabor decon such that
there is significant overlap with the bandlimited signal atsinof the reflection features
with some over estimation of amplitude at the later timese gboradar signal (Figure
5(a)) is quite will restored at early times but some fidelgylast beginning at about 20
ns where amplitudes and trough / peak / zero crossings beglivérge. Though not a
perfect restoration, the signal is still interpretable éimekefore very useful in particular
when compared with it's original, attenuated and dispessat® (Figure 4(a)).

CONCLUSIONS

We present a theoretical and synthetic development thajesii) that) compensa-
tion by Gabor decon (nonstationary deconvolution) is thelmaaism by which so many
georadar datasets are improved. The attenuation fgrfor georadar is about 10 times
smaller and therefore georadar attenuation effects ofiaudpldecay and phase dispersion
are much more pronounced. We find that, for realistic fregigsnGabor decon enhances
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FIG. 4. Comparison of georadar attenuation (Q=21.8) and seismic attenuation (Q=218) for the
same reflectivity series. Figures 4(a) and 4(b) have reflectivity r plotted in red, r - w plotted in blue,
and r - w - « plotted in green. a) For ¢, = 1077 S, faom = 200 MHz, and @ = 21.8, the georadar
signal is strongly attenuated (the green curve departs significantly from the blue curve) relative to
the seismic signal. b) For t,,,.. = 1S, faom = 20 Hz, and @ = 218, the seismic signal is not strongly
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FIG. 5. Gabor decon applied to the attenuated signals from Figure 4. Green curves are the
restored signals. a) The georadar signal is fairly well restored with amplitude and phase departures
beginning at about 20 ns. b) The seismic signal is very well restored.
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seismic signals as expected and that georadar signals carebamore significantly en-
hances. The amplitude and phase restoration for georaglamoauperfect, of course, but
the improved signal presence at later times is significartt,vee find that a small amount
of phase dispersion and amplitude error remains.
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