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ABSTRACT

Previous efforts to characterize the scattering problem for anelastic waves have been
carried out in the anacoustic regime, and in the full anelastic regime but for single reflectors
(i.e., the anelastic AVO problem). Here we begin to frame the full anelastic scattering prob-
lem, focusing on some key issues: transformation of anelastic scattering potentials to the
P-, Sv-, and Sh- potential domain, and the consequences to that transformation of moving
from an elastic reference/anelastic perturbation model to an anelastic reference/anelastic
perturbation model. We use the scattering potentials thus derived to produce sensitivity
kernels for full waveform inversion iterates wherein VP , VS , ρ updates are carried out in
elastic target determination, and QP and QS updates are added in anelastic target determi-
nation.

INTRODUCTION

The linear and nonlinear “anacoustic” scattering problem, involving a single scalar ve-
locity and quality factor Q, has received some focused attention in recent years (Innanen
and Weglein, 2003, 2007; Mulder and Hak, 2009; Innanen and Lira, 2010; Hak and Mulder,
2010), in particular with regard to the inverse problem. A 2-parameter, single component
SH model has also been considered (Ribodetti and Virieux, 1998). A major conclusion of
those studies concerned the importance of dispersion in the backscattered amplitudes to the
estimation of target Q and P-wave velocities.

With this foreknowledge, a subsequent effort has since been made to characterize dis-
persive backscatter in the full anelastic regime. As of this writing, anelastic backscatter
has been more or less fully characterized in a simple prototype environment, involving a
single specular reflection generated at a planar interface between two anelastic half-spaces.
These studies, of what is essentially anelastic amplitude-variation-with-offset (AVO) or
frequency (AVF) modelling (i.e., an extension to attenuating media of elastic AVO meth-
ods, e.g., Castagna and Backus, 1993; Foster et al., 2010), further confirmed the dominant
role dispersion plays in producing interpretable amplitude signatures. The resulting com-
munications (Innanen, 2011; Bird et al., 2011) join a growing set of discussions of the
practical applicability of dispersive AVO/AVF analysis to exploration and monitoring seis-
mology (e.g., Odebeatu et al., 2006; Chapman et al., 2006; Quintal et al., 2009; Lines
et al., 2008, 2012). Furthermore, since the AVO/AVF framework is a special case of the
layered-medium wave problem, these results are connected with the full viscoelastic theory
of Borcherdt (2009).

In this paper we will build on the conclusions drawn from this simple anelastic reflec-
tion problem, formulating instead the full anelastic scattering problem for waves in 3D
interacting with arbitrary heterogeneous perturbations. This is expected to act as a foun-
dation for both linear and nonlinear inverse scattering algorithms, and for the analysis of
gradients and sensitivities in anelastic seismic inversion of the “full waveform” type. We
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will adopt the methodology recently published for elastic scattering by Stolt and Weglein
(2012), in particular the approach to rotating the scattering operator such that its elements
are interpretable in terms of the potentials of a volume element to scatter waves from P-P,
P-Sv, Sh-Sh, etc. That framework will be adapted to allow reference and/or perturbed me-
dia to take on finite QP and QS values. We will formulate the problem such that in addition
to driving inverse procedures, we ultimately may be able to extend many of Borcherdt’s re-
sults, concerning reflection and conversion of homogeneous and inhomogeneous anelastic
waves in layered media (Borcherdt, 2009), to scattering from arbitrary anelastic hetero-
geneities.

In the main portion of the paper, we formulate anelastic wave equations in terms of fa-
miliar versions of QP and QS , show that these are consistent with viscoelastic/continuum
models and macroscopice/exploration seismic models, and discuss transformations of these
equations to P- and S-potential domains. Scattering potentials and their role in Born ap-
proximate data models are discussed next; these are seen to be matrices with elements inter-
pretable in terms of P-P, P-Sv, Sv-P, Sv-Sv, and Sh-Sh conversions. The case of an elastic
reference medium leads to relatively straightforward extensions of the elastic derivations
of Stolt and Weglein (2012), whereas the case of an anelastic reference medium produces
some significantly altered behaviour which varies depending on the degree of homogeneity
and inhomogeneity of the incoming and outgoing waves. Finally, we use the framework
to derive sensitivities associated with multicomponent anelastic data and variations in the
five anelastic parameters VP , VS , ρ, QP , and QS , which will form the basis for study of the
anelastic full waveform inversion problem.

1. ANELASTIC MODELS AND WAVE EQUATIONS

1a. Anelasticity

Linear anelasticity is formulated via a change in the constitutive (stress-strain) relations.
Whereas for the elastic case the stress σij(r, t) and the strain ekl(r, t)∗ are instantaneously
related by σij = cijklekl, for the anelastic case we require a more general relationship:

σij(t) =

∫ ∞
−∞

dτ rijkl(t− τ)ekl(τ). (1)

This permits the current value of the stress to depend on the current and past values of the
strain, and vice versa, a necessity for anelastic models. For isotropic media, the tensor rijkl
simplifies to

rijkl(t) =
1

3
[rK(t)− rS(t)] δijδkl +

1

2
rS(t) (δikδjl + δilδjk) , (2)

in analogy to the elastic problem. Rather than the Lamé parameters we have instead their
counterparts the bulk and shear relaxation functions rK and rS , which are defined such that

∗We will from now on avoid the variables r and t wherever possible, but they are always implied.
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in the Fourier domain they satisfy

K(ω) =
1

3
iωRK(ω), and

µ(ω) =
1

2
iωRS(ω).

(3)

HereK(ω) and µ(ω) are the complex, frequency-dependent generalizations of the bulk and
shear moduli.

1b. Anelastic wave equations

Anelastic disturbances propagate through a 3D continuum according to an equation of
the form

LAu(r, ω) = f(r, ω), (4)

where f(r, ω) is a distribution of sources, u is the displacement from equilibrium, r =
(x, y, z) and ω is the angular frequency. The operator LA, whose various possible forms
in “displacement space” are given in Appendix A, is in this paper primarily considered in
“potential space”, i.e.,

LA = Π−1


LP 0 0 0
0 LS 0 0
0 0 LS 0
0 0 0 LS

Π (5)

where

Π =


∂x ∂y ∂z
0 −∂z ∂y
∂z 0 −∂x
−∂y ∂x 0

 (6)

transforms 3-length vectors into 4-length vectors as follows: ux
uy
uz

→

∇ · u

(∇× u)x
(∇× u)y
(∇× u)z

 , (7)

and (for all wave-like displacements) has the inverse

Π−1 = ∇−2ΠT . (8)

Under the transform being inverted in equation (5), the anelastic wave operator has the
elements

LP = ρ2ṼP

[
∇2 +

(
ω

ṼP

)2
]
, (9)

CREWES Research Report — Volume 24 (2012) 3



Innanen

and

LS = ρ2ṼS

[
∇2 +

(
ω

ṼS

)2
]
. (10)

The velocities ṼP and ṼS contain the anelastic moduli:

Ṽ 2
P =

K(ω) + (4/3)µ(ω)

ρ
=
γ(ω)

ρ
,

Ṽ 2
S =

µ(ω)

ρ
.

(11)

This technically does enough to bring anelasticity into the formalism leading to the scatter-
ing description, but we will take the extra step to parametrize in terms of “nearly constant”
QP and QS models (NCQ) before continuing. Standard NCQ models (Aki and Richards,
2002) are framed in terms of the propagation constants

kP =
ω

VP

[
1 +Q−1

P FP (ω)
]
,

kS =
ω

VS

[
1 +Q−1

S FS(ω)
]
,

(12)

where, following “anacoustic” scattering theory (Innanen and Weglein, 2007), we have
sequestered the attenuation and dispersion terms in the functions

FP (ω) =
i

2
− 1

π
log

(
ω

ωP

)
, FS(ω) =

i

2
− 1

π
log

(
ω

ωS

)
. (13)

Equations (12) imply

ṼP = VP
[
1 +Q−1

P FP (ω)
]−1

, ṼS = VS
[
1 +Q−1

S FS(ω)
]−1

, (14)

and hence in terms of P-wave and S-wave quality factors the elements of the potential-space
anelastic wave operator are

LP = ρ2VP
[
1 +Q−1

P FP (ω)
]−1

[
∇2 +

(
ω

VP

)2 [
1 +Q−1

P FP (ω)
]2] (15)

and

LS = ρ2VS
[
1 +Q−1

S FS(ω)
]−1

[
∇2 +

(
ω

VS

)2 [
1 +Q−1

S FS(ω)
]2]

. (16)

The real-valued constants VP and VS are the phase velocities with which the P- and S-waves
propagate at the reference frequencies ωP and ωS respectively.
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1c. QP and QS

To finish this section, let us compare the NCQ forms quoted above with the quality
factors of continuum mechanics, which are commonly defined as the ratios of the imaginary
and real parts of the two moduli (White, 1983). Combining equations (11) and (14) and
neglecting nonlinear terms in Q−1

S we have

µ(ω) ≈ ρV 2
P

[
1− iQ−1

S +
1

π
Q−1
S log

(
ω

ωS

)]
. (17)

Equating the real and imaginary parts of the right-hand side with µ(ω) = µR(ω) + iµI(ω),
we obtain

µR(ω) ≈ ρV 2
P

[
1 +

1

π
Q−1
S log

(
ω

ωS

)]
µI(ω) ≈ −ρV 2

PQ
−1
S ,

(18)

and from this, again neglecting Q−2
S , we have

µI
µR
≈ −Q−1

S

[
1− 1

π
Q−1
S log

(
ω

ωS

)]
≈ −Q−1

S . (19)

Similarly
γI
γR
≈ −Q−1

P . (20)

Hence indeed the NCQ models we have adopted have quality factors which agree with
the standard continuum-mechanical definitions. Thus comforted, we next use the anelas-
tic wave formulation to define scattering quantities, knowing that the formal results will
be consistent with both the macroscopic Q models common to exploration seismology
(e.g., Hargreaves and Calvert, 1991) and those of viscoelasticity and continuum mechanics
(Borcherdt, 2009).

2. BORN-APPROXIMATE MODELLING OF SEISMIC DATA

The Born approximation as a forward model for seismic primaries dates to the 1970s
(Bleistein, 1979; Bleistein et al., 2000). Subsequently it has been used as the basis for seis-
mic imaging and inversion in multiparameter problems (the literature is to vast to cite, but
Clayton and Stolt, 1981; Beylkin, 1985, are classical examples). Here we apply the partic-
ular approach used by Stolt and Weglein (2012) to treat the 3D elastic problem because of
its appropriateness for, and proximity to, the anelastic case of interest.

In the model, any particular scalar component of the measured data (e.g., P-P, or P-S)
is related to all contributing medium perturbations ∆ai/ai by

D(r, rs, ω) ≈
∫
V

dr′GL(r, r′, ω)V(r′, ω)GR(r′, rs, ω)

≈
∫
V

dr′GL(r, r′, ω)

[∑
i

ALi (r′, ω)
∆ai
ai

(r′)ARi (r′, ω)

]
GR(r′, rs, ω),

(21)
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where GL and GR are appropriate Green’s functions. A key result for the approach of Stolt
and Weglein (2012) is that the weighting operators ALi and ARi , which generally involve
both multiplicative and gradient operations, can be altered through integration by parts such
that they act on the left and right Green’s functions instead:

D(r, rs, ω) ≈
∑
i

∫
V

dr′
[
ÃLi (r′, ω)GL(r, r′, ω)

] ∆ai
ai

(r′)
[
ÃRi (r′, ω)GR(r′, rs, ω)

]
.

(22)

This will lead to considerable simplification. For instance, as long as the Green’s function
represents plane wave propagation in a homogeneous or smoothly varying medium, any
gradient operations in the scattering potential, now acting solely on the Green’s functions,
will appear in the form

∇r′GR(r′, rs, ω) = ikR(r′)

∇r′GL(r, r′, ω) = −ikL(r′)
(23)

where kR is the vector propagation constant, pointing in the direction of propagation, for
the right hand Green’s function, which has the interpretation of a wave incident on the
volume scattering element, and kL is the propagation constant for the left hand Green’s
function, the wave propagating away from the scattering element after the interaction.

3. THE ANELASTIC SCATTERING POTENTIALS VAA AND VAE

We next prepare the wave operators for anelastic propagation such that a volume scatter-
ing element involving perturbations inQP andQS can be included in the linear formulation
of equations (21)–(22). We will cast the elastic components of the scattering problem as

∆VP
VP

= 2
VP1 − VP0

VP1 + VP0

,
∆VS
VS

= 2
VS1 − VS0

VS1 + VS0

,
∆ρ

ρ
= 2

ρ1 − ρ0

ρ1 + ρ0

, (24)

and to these will add, for anelastic reference media and anelastic perturbations,
∆QP

QP

= 2
QP1 −QP0

QP1 +QP0

,
∆QS

QS

= 2
QS1 −QS0

QS1 +QS0

, (25)

and for elastic reference media and anelastic perturbations,
∆QP

QP

= Q−1
P1
,

∆QS

VS
= Q−1

S0
. (26)

The elastic reference definitions are consistent with those studied in the anacoustic scatter-
ing problem (Innanen and Weglein, 2007).

3a. VAA and VAE in terms of displacement

It is possible to pose elastic and anelastic scattering problems in displacement space
and in potential (P- and S-wave) space. The value of the latter is that the reference medium
propagations can be exactly or approximately expressed in terms of independently prop-
agating waves, and the scattering operator can be expressed as a matrix whose elements
are interpretable in terms of conversions P-P, P-Sv, Sv-Sv, etc. We will begin with the dis-
placement space formulation, and, following Stolt and Weglein (2012), transform to the P-
and S-domain.

6 CREWES Research Report — Volume 24 (2012)



Potentials for anelastic scattering

Scattering operators for anelastic reference media

The scattering operator is defined as the difference between a perturbed and a reference
wave operator. In Appendix A (and above) we formulate the displacement-space anelastic
wave operator LA and quote the form of the elastic wave operator LE . The displacement
space scattering operator is, then, for anelastic reference media, of the form

VAA = LA − LA0. (27)

Substituting the definitions of Appendix A, equations (64)–(66), into equation (27), we
obtain

VAA(r, ω) =

 VAA
xx (r, ω) VAA

xy (r, ω) VAA
xz (r, ω)

VAA
yx (r, ω) VAA

yy (r, ω) VAA
yz (r, ω)

VAA
zx (r, ω) VAA

zy (r, ω) VAA
zz (r, ω)

 , (28)

where the diagonal elements are

VAA
ii =ρ0

{
V 2
P0

[
∂i

∆ρ

ρ
∂i + 2

(
∂i

∆VP
VP

∂i −Q−1
P0
FP (ω)∂i

∆QP

QP

∂i

)]
+V 2

S0

∑
j 6=i

[
∂j

∆ρ

ρ
∂j + 2

(
∂j

∆VS
VS

∂j −Q−1
S0
FS(ω)∂j

∆QS

QS

∂j

)]
+ ω2 ∆ρ

ρ

} (29)

for all i, j = x, y, z, and the off-diagonal elements are

VAA
ij =ρ0

[(
V 2
P0
− 2V 2

S0

)
∂i

∆ρ

ρ
∂j + 2V 2

P0

(
∂i

∆VP
VP

∂j −Q−1
P0
FP (ω)∂i

∆QP

QP

∂j

)
− 4V 2

S0

(
∂i

∆VS
VS

∂j +Q−1
S0
FS(ω)∂i

∆QS

QS

∂j

)
+V 2

S0

(
∂j

∆ρ

ρ
∂i + 2∂j

∆VS
VS

∂i − 2Q−1
S0
FS(ω)∂j

∆QS

QS

∂i

)]
,

(30)

where i 6= j.

Scattering operators for elastic reference media

Continuing, for an elastic reference medium, making use of equations (64)–(69), we
determine a scattering operator of the form

VAE = LA − LE0, (31)

which has elements

VAE(r, ω) =

 VAE
xx (r, ω) VAE

xy (r, ω) VAE
xz (r, ω)

VAE
yx (r, ω) VAE

yy (r, ω) VAE
yz (r, ω)

VAE
zx (r, ω) VAE

zy (r, ω) VAE
zz (r, ω)

 , (32)
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where the diagonal elements are

VAE
ii =ρ0

{
V 2
P0

[
∂i

∆ρ

ρ
∂i + 2

(
∂i

∆VP
VP

∂i − FP (ω)∂i
∆QP

QP

∂i

)]
+V 2

S0

∑
j 6=i

[
∂j

∆ρ

ρ
∂j + 2

(
∂j

∆VS
VS

∂j − FS(ω)∂j
∆QS

QS

∂j

)]
+ ω2 ∆ρ

ρ

} (33)

for all i, j = x, y, z and the off-diagonal elements are

VAE
ij =ρ0

[(
V 2
P0
− 2V 2

S0

)
∂i

∆ρ

ρ
∂j + 2V 2

P0

(
∂i

∆VP
VP

∂j − FP (ω)∂i
∆QP

QP

∂j

)
− 4V 2

S0

(
∂i

∆VS
VS

∂j + FS(ω)∂i
∆QS

QS

∂j

)
+V 2

S0

(
∂j

∆ρ

ρ
∂i + 2∂j

∆VS
VS

∂i − 2FS(ω)∂j
∆QS

QS

∂i

)] (34)

where i 6= j. Although the anelastic reference case and the elastic reference case look
quite similar, it is important to remember that this is partly because the differences are
hidden—the two cases have significantly different definitions for ∆QP

QP
and ∆QS

QS
.

3b. Scattering operators in terms of P- and S-potentials

We next map the displacement space scattering operators in equations (28) and (32) to
potentials, wherein we will perform our analysis and consider sensitivities for inversion.
This occurs through an extension of the transformations of Stolt and Weglein (2012) to
anelastic reference media. We envision four different possible scattering scenarios: an
incoming P-wave and outgoing P-wave (Figure 1a), an incoming P-wave and outgoing S-
wave (Figure 1b), an incoming S-wave and outgoing P-wave (Figure 1c), and an incoming
S-wave and outgoing S-wave (Figure 1d).

The left (L) and right (R) Green’s functions in the Born model above involve: incoming
P- or S-waves with directions kLP or kLS , and outgoing P- or S-waves with directions kRP or
kRS , respectively. Since the Π operators discussed above, through the integration by parts
that changes equation (21) to equation (22), act on the left and right Green’s functions, all
of the partial derivatives therein appear in the form of products of i times components of
these vectors. Specifically, the Π operator acting from the left has the form

ΠL = i

[
kLP ·
kLS×

]
, (35)

and the Π operator acting from the right has the form

Π−1
R = − i

ω2

[
V 2
P0

kRP ·H V 2
S0

kRS×H
]
. (36)

The result of applying these operators, for instance ΠlVAAΠ−1
R , is a scattering operator

in terms of P- and S-waves, consistent with Lamé’s theorem (Aki and Richards, 2002,
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kR
S

kR
P

kL
P kL

S

êR
Sv

êL
Sv

êL
Sh

êR
Sh

kR
P

êR
Sv

êL
Sv

êL
Sh

êR
Sh

kL
P

êR
Sv

êL
Sv

êL
Sh

êR
Sh

êR
Sv

êL
Sv

êL
Sh

êR
Sh

kL
S

kR
S

(a) (b)

(c) (d)

FIG. 1. Anelastic scattering scenarios: (a) P-P, (b) P-S, (c) S-P, and (d) S-S. The plane defined
by the incoming and outgoing wave vectors contains the Sv waves, and the coordinate direction
perpendicular to that plane (i.e., out of the page) contains the Sh waves. All of these vectors are
potentially complex for anelastic waves.

pg. 67). Continuing in the vein of Stolt and Weglein (2012), we will next add a set of
transformations that further subdivide the wave types into P-, Sv, and Sh. We formulate
rotation matrices

EL =

 1 0T

0 êLSv
T

0 − êLSh
T

 , (37)

and

ER =

 1 0T

0 êRSv
T

0 − êRSh
T

 , (38)

such that the full action of Π and E on the displacement space scattering operators is

VAA = ELΠL

(
VAA) Π−1

R ER, (39)

for scattering within an anelastic reference medium, and

VAE = ELΠL

(
VAE) Π−1

R ER, (40)

for scattering in an elastic reference medium. Under this transformation, the elements

VAA =

 VAA
PP VAA

PSh VAA
PSv

VAA
ShP VAA

ShSh VAA
ShSv

VAA
SvP VAA

SvSh VAA
SvSv

 =

 VAA
PP 0 VAA

PSv
0 VAA

ShSh 0
VAA

SvP 0 VAA
SvSv

 , (41)
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and

VAE =

 VAE
PP VAE

PSh VAE
PSv

VAE
ShP VAE

ShSh VAE
ShSv

VAE
SvP VAE

SvSh VAE
SvSv

 =

 VAE
PP 0 VAE

PSv
0 VAE

ShSh 0
VAE

SvP 0 VAE
SvSv

 , (42)

are directly interpretable as the potentials for incoming waves of type P, Sv and/or Sh to
scatter into waves of type P, Sv, and/or Sh. Returning to Figure 1, we see that, by these
rotations, Sv waves involve displacements in the plane formed by the incoming and out-
going wave vectors, and Sh waves involve displacements perpendicular to this plane. This
is a deliberate rotation to a coordinate system in which no conversion from P- or Sv- to
Sh-waves occur, nor any conversion from Sh- to P- or Sv-waves, which explains the zeros
in the right-hand parts of equations (41) and (42).

3c. Anelastic scattering potentials given elastic reference media

If the reference medium is elastic, then the geometric framework developed by Stolt
and Weglein (2012) can be used without alteration for the anelastic problem—we simply
add the appropriate scattering contributions from the new QP and QS changes to those
already in existence for VP , VS and ρ (or γ, µ, and ρ, which is Stolt’s parametrization).

In it, we treat each element of VAE separately. Here as an example we will express
explicitly the P-P scattering potential; the other four nonzero potentials expand similarly.
Evaluating the row-column multiplications in equation (40) that give rise to the (1, 1) ele-
ment of equation (42), we have

VAE
PP (r, ω) =

(
VP0

ω

)2

kLP
T · VAE · kRP , (43)

where kLP and kRP are real vectors of size ω/VP0 with directions aligned with the outgo-
ing and incoming propagation directions respectively. Taking the matrix VAE in equation
(32), replacing the left and right derivative operators with ikLP and ikRP respectively, and
evaluating the inner products in equation (43), we obtain

VAE
PP (r, ω) = VAE

PPvp(r, ω) + VAE
PPvs(r, ω) + VAE

PPρ(r, ω) + VAE
PPqp(r, ω) + VAE

PPqs(r, ω), (44)

where each perturbation (in VP , VS , ρ, QP and QS) is a possible contributor: for VP we
have

VAE
PPvp(r, ω) = −2

(
ρ0V

2
P0

ω

)2
∆VP
VP
|kLP |2 |kRP |2, (45)

for VS we have

VAE
PPvs(r, ω) = 2

(
ρ0VP0

ω

)2

V 2
S0

∆VS
VS
|kLP × kRP |2, (46)

for ρ we have

VAE
PPρ(r, ω) = ρ0V

2
P0

∆ρ

ρ

[
kLP · kRP −

(
VP0

ω

)2

|kLP |2 |kRP |2
]
, (47)
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for QP we have

VAE
PPqp(r, ω) = 2FP (ω)

(
ρ0V

2
P0

ω

)2
∆QP

QP

|kLP |2 |kRP |2, (48)

and for QS we have

VAE
PPqs(r, ω) = −2FS(ω)

(
ρ0VP0

ω

)2

V 2
S0

∆QS

QS

|kLP × kRP |2. (49)

Each of these scattering potentials can be inserted into a Born integral to determine the
contribution to the reflection primary data due to variations in that parameter. We will
return to these presently, and use them to calculate sensitivities for anelastic full waveform
inversion.

SCATTERING COORDINATES FOR ANELASTIC REFERENCE MEDIA

For the case of anelastic reference media, the situation becomes significantly altered.
In particular, the geometry and interpretation of the transformations from displacement to
P- and S- potential space must be revisited. This is because the four propagation vectors
for incoming and outgoing P- and S-waves are now complex:

kLP = kLPr + ikLPi,

kRP = kRPr + ikRPi,

kLS = kLSr + ikLSi,

kRS = kRSr + ikRSi,

(50)

specifically having the magnitudes

|kLP | =
ω

VP0

[
1 +Q−1

P0
FP (ω)

]
,

|kRP | =
ω

VP0

[
1 +Q−1

P0
FP (ω)

]
,

|kLS | =
ω

VS0

[
1 +Q−1

S0
FS(ω)

]
,

|kRS | =
ω

VS0

[
1 +Q−1

S0
FS(ω)

]
,

(51)

as discussed above. Following Borcherdt (2009), we recall that plane wave solutions for
anelastic P- and S-waves are of the form

G ∼ G0e
−kL

Pi·reik
L
Pr·r, (52)

and

G ∼ G0e
−kL

Si·reik
L
Sr·r, (53)

respectively. In other words, the real and imaginary parts comprise the propagation vector
and the attenuation vector respectively, and they may not be parallel. A P-wave for which
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kLPr ‖ kLPr is said to be homogeneous, and a P-wave for which kLPr 6‖ kLPr is said to be
inhomogeneous, and likewise with the S-wave.

In either case, if we follow Stolt’s prescription, beginning with the incoming and out-
going wave vectors, then defining the Sh direction to be:

êLSh = êRSh = êSh =
kLS × kRS
|kLS × kRS |

, (54)

and the incoming and outgoing Sv directions to be

êLSv =
VS0

ω
kLS × êSh,

êRSv =
VS0

ω
kRS × êSh,

(55)

then we must grapple with the fact that all of these vectors are complex. The consequences
of the complexity range from no consequence, to perhaps significant consequence, depend-
ing on whether the waves in question are homogeneous or inhomogeneous. In Figure 2 we
illustrate schematically the four possible cases, which we will discuss briefly in turn.

kL
Pr kL

Pr

kL
Pi kL

PikR
Pi kR

Pi

kR
Pr kR

Pr

kL
Pr kL

Pr

kL
Pi kL

PikR
Pi kR

Pi

kR
Pr kR

Pr

Case I Case II

Case III Case IV

FIG. 2. Schematic diagram for incoming and outgoing waves in anelastic reference media. Case
I: homogeneous incoming and outgoing waves. Case II: homogeneous incoming and inhomoge-
neous outgoing waves. Case III: inhomogeneous incoming and homogeneous outgoing waves.
Case IV: inhomogeneous incoming and outgoing waves.

Case I: homogeneous incoming and outgoing waves

In this simplest case we can remain with the precise geometrical interpretation of the P,
Sv, Sh decomposition of the elastic problem, because, since the attenuation vector and the

12 CREWES Research Report — Volume 24 (2012)
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propagation vector are parallel before and after scattering, the direction of the anelastic êSh

is the same as that of the elastic case:

êSh =
kLPr × kRPr
|kLPr × kRPr|

. (56)

Case II: homogeneous incoming and inhomogeneous outgoing waves

If the incoming wave is homogeneous, then the real and imaginary parts of the right-
hand kR are collinear, and

êSh ‖
[(

kLPr − kLPi
)

+ i
(
kLPr + kLPi

)]
× kRPr. (57)

Case III: inhomogeneous incoming and homogeneous outgoing waves

If the opposite is true, then the real and imaginary parts of the left-hand kL are collinear,
but the right-hand parts are not, and

êSh ‖ kLPr ×
[(

kRPr − kLPi
)

+ i
(
kRPi + kRPr

)]
. (58)

Case IV: inhomogeneous incoming and outgoing waves

If both incoming and outgoing waves are inhomogeneous, then the Sh direction is max-
imally complicated and has real and imaginary parts

êSh = |kLP × kRP |−1
[(

kLPr × kRPr − kLPi × kRPi
)

+ i
(
kLPr × kRPi + kLPi × kRPr

)]
. (59)

ELASTIC AND ANELASTIC SENSITIVITIES

With the anelastic scattering potentials derived it is relatively straightforward to com-
pute the corresponding sensitivities.

Sensitivity of the P-P field to VP

To demonstrate, we begin by replacing the left and right Green’s functions by P-wave
Green’s functions, and forming the scattered field. If all perturbations except that associated
with VP are set to zero, we refer to the resulting scattered field as δPPvp, which is given by

δPPvp(rg, rs, ω) =

∫
V

dr′GP (rg, r
′, ω)VAE

PPvp(r, ω)GP (r′, rs, ω)

− 2ρ0

(
ω

VP0

)2 ∫
V

dr′GP (rg, r
′, ω)δVP (r′)GP (r′, rs, ω),

(60)

where for notational convenience we have set δVP = ∆VP/VP . Following standard meth-
ods, we construct the sensitivities by focusing on the response of the scattered field to a
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small change at a fixed point r. We do this by setting δVP (r′) = δVP δ(r− r′), whereupon
the volume integration is carried out analytically. Dividing through by δVP and taking the
limit as this perturbation goes to zero, we form the derivative

∂PPvp(rg, rs, ω)

∂VP (r)
= −2ρ0

(
ω

VP0

)2

GP (rg, r, ω)GP (r, rs, ω), (61)

which is identifiable as the P-P sensitivity to VP changes.

Sensitivity of the P-P field to QP

Of more interest in the current paper is the sensitivity of the P-P data to local QP

variations. Following exactly the same procedure, we begin with the variation in the P-P
data from a variation in QP only:

δPPqp(rg, rs, ω) =

∫
V

dr′GP (rg, r
′, ω)VAE

PPqp(r, ω)GP (r′, rs, ω)

= 2FP (ω)ρ0

(
ω

VP0

)2 ∫
V

dr′GP (rg, r
′, ω)δQP (r′)GP (r′, rs, ω),

(62)

where δQP = ∆QP/QP ; setting δQP (r′) = δQP δ(r− r′), we finally have

∂PPqp(rg, rs, ω)

∂QP (r)
= 2FP (ω)ρ0

(
ω

VP0

)2

GP (rg, r, ω)GP (r, rs, ω). (63)

All other sensitivities follow immediately from similar analysis.

CONCLUSIONS

Characterization of the scattering problem for anelastic waves has been carried out in
full anelastic regime, focusing on some key issues: transformation of anelastic scattering
potentials to the P-, Sv-, and Sh- potential domain, and the consequences to that trans-
formation of moving from an elastic reference/anelastic perturbation model to an anelastic
reference/anelastic perturbation model. We use the scattering potentials thus derived to pro-
duce sensitivity kernels for full waveform inversion iterates wherein VP , VS , ρ updates are
carried out in elastic target determination, and QP and QS updates are added in anelastic
target determination.

Key next steps are: (1) use the anelastic reference medium framework to further under-
stand the ability of homogeneous waves to scattering into inhomogeneous waves, (2) use
the same framework to discuss scattering of Borcherdt’s Type-I and II anelastic S-waves,
(3) use the anelastic sensitivities to analyze potential gradient-based and Newton iterates of
full waveform inversion based thereupon.
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APPENDIX A - WAVE OPERATORS IN DISPLACEMENT SPACE

In displacement space we consider two types of wave operator. First, the anelastic case:

LA(r, ω) =

 LA11 LA13 LA14

LA21 LA22 LA23

LA31 LA32 LA33

 , (64)

where the diagonal elements are given by

LAii =∂i
[
ρV 2

P

(
1− 2Q−1

P FP (ω)
)]
∂i

+
∑
j 6=i

∂j
[
ρV 2

S

(
1− 2Q−1

S FS(ω)
)]
∂j + ω2ρ, (65)

for i, j = x, y, z, and the off-diagonal elements by

LAij =∂i
[
ρV 2

P

(
1− 2Q−1

P FP (ω)
)
− 2ρV 2

S

(
1− 2Q−1

S FS(ω)
)]
∂j

+ ∂j
[
ρV 2

S

(
1− 2Q−1

S FS(ω)
)]
∂i

(66)

for i 6= j. In general the parameters VP = VP (r), VS = VS(r), ρ = ρ(r), QP = QP (r)
and QS = QS(r) are all functions of space. And second, the elastic case, which is re-
parametrization of the operator discussed by Stolt and Weglein (2012):

LE =

 LE11 LE13 LE14

LE21 LE22 LE23

LE31 LE32 LE33

 , (67)

where the diagonal elements are

LEii = ∂i
(
ρV 2

P

)
∂i +

∑
j 6=i

∂j
(
ρV 2

S

)
∂j + ω2ρ (68)

as before for i, j = x, y, z, and the off-diagonal elements are

LEij = ∂i
(
ρV 2

P − 2ρV 2
S

)
∂j + ∂j

(
ρV 2

S

)
∂i (69)

for i 6= j. We will also discuss “reference” and “perturbed” versions of these operators,
indicating the former with a subscript 0.
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