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ABSTRACT 
The conventional approach of elastic Full Waveform Inversion (FWI) requires a 

forward modeling and a depth migration.  The forward modeling engine, which is usually 
based on a finite difference solution of the elastic wave equation, computes the data 
residual that compares the data derived from the current model with the real data from the 
true model.  Migration is an adjoint operator of the forward modeling, which is usually 
based on Reverse Time Migration (RTM) on the data residual,  and finds the gradient 
function from the current model toward the true model. 

Numerically, this scheme suffers from huge computational costs associated with the 
time stepping of forward modeling and the migration. Assuming multiple free data and 
smooth lateral variation of subsurface properties, this work serves as an introduction to 
elastic waveform inversion using Pre-Stack Time Migration (PSTM) and the 
corresponding forward modeling. 

INTRODUCTION 
Seismic FWI was introduced by Tarantola (1984) to estimate high resolution 

subsurface properties from waveform information contained in seismic data. FWI is a 
least-squares approach to minimize the differences between synthetic and observed data 
during the updating of the model parameters.  

Several authors have undertaken full waveform inversion in the time domain based on 
finite difference solution to elastic waveform inversion. To study the long history of FWI 
the reader is referred to Virieux and Operto (2009) and Sears et al (2007).  

This work is based on the conclusion of Tarantola (1984) that showed that classical 
Kirchhoff migration and corresponding forward modeling can be used in the FWI 
procedure. Our effort is to reduce the computational costs associated with gradient 
calculation and data prediction. In other work we have described the use of forward Pre-
Stack time Kirchhoff operator for the prediction of P-P data from the reflectivity function 
(i.e. Schneider, 1978, Bleistein et. al., 2001) and the corresponding PSTM migration for 
the inversion process in FWI algorithm (Khaniani et al., 2012).  

The mathematical expressions of the linearized inverse scattering problem in this 
paper are mainly cited from Beylkin and Burridge (1990). The inversion expression used 
in this work is mathematically expressed on a least-squares minimization proposed by 
Tarantola (1984, 1996 and 1987). 

Using the elastic inversion schemes that usually require the inversion of the model 
parameters in depth, we have developed an algorithm that predicts the mode converted P-
S wave using the velocity in time. The algorithm is based on the scatter point response in 
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P-wave reflection intercept time. This facilitates the updating process using the 
parameters of traveltime and amplitudes of scatter points. 

The methodology is fast compared to corresponding depth migration techniques in 
forward and inverse iterations however, since we are doing time migration, we are 
limited to models with moderate complexity. In this work, we assume the data are 
multiple free because of limitation in the forward and adjoint operator to handle the 
multiple data.   

FORWARD PROBLEM FOR ACOUSTIC REFLECTED WAVE 

In an acoustic medium, the pressure field ( , , )U s x t satisfies the equation 
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where ( )C x is the velocity of the acoustic wave in the subsurface coordinate x , and ( , )S x t  
is the source component injected into the medium at time t .  

Using a casual Green’s function ( , , ', ')G x t x t satisfying equation (1) 
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the problem can be simplified to reflected P-P wave by defining ( , , ', ')G x t x t to be 

 ( )( , , ', ') ' ( , ) ,PPG x t x t K t t s rδ φ= − −  (3) 

where s and r are source and receiver position, and ( , )s rφ is the total traveltime from s to 
the r which is reflected from x  

 ( , ) ( , ) ( , ),s r s x x rφ φ φ= +  (4) 

where ( , )s xφ is traveltime from s to the scatter point located at x and ( , )x rφ is the 
traveltime from x  to receiver r . The parameter PPK is an amplitude term and is 
approximated by the amplitude loss of the P-wave propagated from s to x  (i.e., ( , )PA s x ) 
and from x  to r (i.e., ( , )PA x r ) 

 1 1( , ) ( , ) .PP P PK A s x A x r
s x x r

= =
− −

 (5) 

 By adding the background medium ( )C x with the small perturbation ( )C x∆ (i.e., 
C C∆ << ), we get the Taylor series expansion of perturbed medium given by 
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The term o is a higher order approximation of the Taylor series expansion. The difference 
between the wavefield corresponding to the true medium PP

C CU +∆  and the one 
corresponding wavefield in the homogeneous reference medium PP

CU is the scattered field 
PP
CU∆ due to a perturbation C∆ (Tarantola (1984, 1986), Beylkin and Burridge (1990)) 
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PP PP PP PP
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C xU U U dx K t s x x r S t
C x

δ φ φ∆ +∆

∆
∆ = − = ∂ − −∫  (7) 

The term PP
CU∆∆  is the scattered field and does not contain the unperturbed field due to the 

background medium.  

INVERSE PROBLEM FOR ACOUSTIC REFLECTED WAVE 

Beylkin  and Burridge (1990) derived  the direct inversion for ( )C x∆ considering the 
forward operator f of the integral function in (7) as a generalized Radon transform (see 
also Bleistein et al (2001). Tarantola (1986) used an alternative approach that uses the 
concept of a generalized nonlinear least-squares inverse problem to minimize an 
objective function S defined by 

 
2

,PP PP PP
C obs CS U U U∆= ∆ = −  (8) 

where, PP
obsU is approximation of PP

C CU +∆ .  In order to simplify the problem, the density is 
assumed to be constant, even though it is variable over C∆ . Tarantola (1986) considered 
the integral function in (7) as a forward operator f on ( )C x∆ , (i.e., ( )PP

CU f Cδ∆ = ∆ and 

used a linear operator F as the derivative of f at the point C (i.e., 
fF
C
∂

=
∂

) 

 ( )2( ) ( ) ,f C C f C F C o C+ ∆ = + ∆ + ∆  (9) 

which has a solution of  

 1 ,k k kC C αγ+ = −  (10) 

with kγ to be the gradient function to minimize (8) and defined by 

 * 1[ ],PP
k m p C

S c F c U
C

γ −
∆

∂
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∂
 (11) 

where mc and pc are the general covariance operator corresponding to a priori model and 
data sets measurements (Tarantola, 1986). In each iteration of the algorithm the model is 
updated using the two following steps: 

1. Perform forward modeling for computation of scattered data (i.e, ( )PP
CU f Cδ∆ = ∆ ) 
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2. Perform the data residual backward in time and correlate the upgoing and 
downgoing wavefield at each scatter point. This resembles the migration method 
based on the imaging principle of Claerbout (1971) over the data residual (i.e.,

*( )PP
CF U∆∆ ).  

Equations (7) and (10) are within the medium that the velocity model ( )C x needs to be 
inverted having an initial model ( )C x and the scattered field PP

CU∆∆ . Using a least squares 
fitting approach, the update procedure requires a forward modeling to have a velocity 
model in depth (i.e., ( )C x ) and a corresponding depth migration that requires traveltime 

( , )s rφ . ( , )s rφ can also be obtained by ray tracing Tarantola (1986) or PSPI (Margrave et. 
al., 2011). 

The implementation of time imaging forward modeling and corresponding migration 
is discussed in another paper (Khaniani et al., 2012).  In the geological models with 
smooth lateral variations in velocity, approximation of ( , )s rφ  can be obtained using the 
Double Square Root (DSR) equation (Yilmaz, 2001)  

 ( ) ( )2 22 2

( , ) ,
4 4

PP
P P
rms rms

X h X h
s r

v v
τ τφ

+ −
= + + +  (12) 

whereτ is the zero offset two-way travel time, h  is the half source/receiver offset, X is 
the distance from the source/receiver midpoint to the lateral coordination of the scatter 
point and P

rmsv ( ,x )τ  is the migration velocity that is defined in time instead of depth. In 
this approach, the forward modeling and migration are designed based on equation (12) 
so, the velocity ( , )C xτ  is updated on time by ( , )C xτ∆ . 

FORWARD PROBLEM FOR ELASTIC REFLECTED WAVE 
Wave propagation in an inhomogeneous anisotropic elastic solid in the absence of 

source is 

 ( )2
, ,

( ) ( ) ( , ) 0,t l lmpq p q m
x U c x U x tρ ∂ − =  (13) 

where ( . )lU x t is the is l -component of the displacement vector, ( )xρ is density and 
( )lmpqc x are the elastic constant of the subsurface medium and x  is subsurface coordinate.  

For a 2D, continuous, elastic wave equation in a homogeneous, isotropic medium the 
elastic constant are simplified as  

 ( ) ,lmpq lm pq lp mq lq mpc λδ δ µ δ δ δ δ= + +  (14) 

where λ and µ are lame’s constant and here lpδ  are Kronecker delta function. Then the 
equation (13) can be expressed by a pair of equations (Manning, 2007), 
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and 
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where xU and zU are the horizontal and vertical displacements of the particle motion 
respectively. Figure (1) shows an example wavefield snap created by an explosion source 
injected in the medium. The direct P- wave reflected and transmitted P-P and P-S waves 
are illustrated. 

 

FIG. 1: Elastic wave propagation. A snap produced by a P- wave producing reflected and 
transmitted P-P and P-S. 

 Let ( , , )jl jlG G s x t= be the incident field which satisfies the following equation: 
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<
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Here, jlG  is the displacement in the l − direction at point x due to a point source in thj
direction at point s . Beylkin (1990) derived high frequency approximation of the integral 
representation of the single scattered field using  
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to get 

 ( ) ( ) ( ) ( ) ( ), , , , , , , , , , ,PP PS SP SS
jk jk jk jk jkU s r t U s r t U s r t U s r t U s r t∆ ∆ ∆ ∆ ∆= + + +  (19) 

where PP
jkU∆ is the scattered P-P data (same as equation (7) for constant ρ )  
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The scattered P-S wave PS
jkU∆ is  

 ( )2 0 sin sin 2 ,PS PS PS P S PS P SS
jk t j k lD

P

cU A A t dx
c

∆ρ ∆µ∆ ρ θ θ β δ φ φ
ρ µ
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∫  (21) 

and SP
jkU∆ is scattered energy if the source is shear wave 
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and finally the SS
jkU∆ is combination of reflected S-wave and mode converted S- wave 
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∫

∫
 (23) 

Equations (20) to (23) are the perturbed waves in the shot records due to the perturbed 
elastic properties of the medium. The terms inside the bracket describes their radiation 
patterns. In this work we perform the inversion scheme on only P-P and P-S waves and 
ignore the effects of S-P and S-S waves because of the source mechanisms and 
attenuation pattern make their amplitude small compared to P-P and P-S waves. 

INVERSE PROBLEM FOR ELASTIC REFLECTED WAVE 
As proposed by Tarantola (1996) the least squares criterion for the elastic inversion 

 ( )21 ,
2 trueS U U= −  (24) 

Here,U represents the data predicted by the model parameters m (i.e., PCρ , SCρ and ρ )  
similar to the acoustic procedure, Tarantola (1994) suggested the method of steepest 
descent algorithm for the inversion of the model parameters.  

 1( ) ( ) ( ),n n nm x m x xαγ+ = −  (25) 

which minimizes the equation (24). His suggested algorithm includes the following two 
main steps: 

1. Forward modeling for calculation of data residuals ( , ; )U r t s∆ by  
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which requires forward modeling of different waves using equation (20) to (23). This step 
is used for calculation of α .   

2. Depth migration of data residuals for gradient calculation ( )n xγ . This step is 
done by  applying an “imaging principle” with forward propagation of the 
source ( , ; )iiU x t s and back propagation in time of ( , ; )x t sψ∆  

 
0

( ) ( , ; ) ( , ; ) ,
T ii jj

n n n
s

x dtU x t s x t sγ ψ= ×∆∑∫  (27) 

where, ( , ; )jj
s nx t xψ∆  is back propagated in time using a Green’s function ( ,0; , )ij

rG x x t
which satisfies equation (17) 

 ( , ; ) ( ,0; , ) ( , ; ) .ij j
n nx t s G x r t U r t sψ∆ = ∗∆∑  (28) 

TIME IMAGING CONSIDERATIONS FOR INVERSE PROBLEM FOR 
ELASTIC REFLECTED WAVE 

In equation(28), the Green function ( ,0; , )ijG x r t  is useful for analytical developments, 
but it never has to be used explicitly in numerical computation (Tarantola, 1996). Using a 
similar form of equation (7) in the form of equations (20) - (23), the method of the 
waveform inversion requires applying a forward operator to create the data (circle 
summation) and a migration based on hyperbola summation of scattered data. 

This is based on the generalized solution of Tarantola (1984), but contains forward 
modeling and migration of scatter point responses using the time migration algorithm. In 
this approximation the associated traveltimes are calculated from Root Mean Square 
(RMS) velocity. The amplitude function is obtained using an estimation of reflectivity 
function obtained from the Zoeppritz solvers (Aki and Richards, 1980). Assuming lower 
amplitude of S-P and S-S data from the injected source in z-component, in this work, the 
forward operator is designed only for reflection data of P-P and P-S data. In the forward 
modeling, the traveltime for P-P data is approximated by 

 ( , ) ( , )( , ) ( , ) ,pp P P
P P

RMS RMS

r s x r x rt s x x r
v v

φ φ≈ + = +  (29) 

and the traveltime for the P-S data is obtained by 

 ( , ) ( , )( , ) ( , ) .ps P S
P S

RMS RMS

r s x r x rt s x x r
v v

φ φ≈ + = +  (30) 

To study the different methodologies for converted wave data processing and migration 
the reader is referred to Mi and Margrave (2001). A common approach for the time 
migration of P-S data is to find the image based on Common Converted Point (CCP), this  
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ultimately maps the energy on P-S time. This procedure is useful during imaging if the 
shear velocity of the subsurface is unknown. We displayed the graphical representation of 
this approach on a synthetic model shown in Figure (2). Here, the pC  and SC  of the 
medium are plotted versus PPt and PSt respectively. Figure (2b) shows the migrated 
section of the data obtained from Figure (2a). This shows that the P-S data space is 
mapped to the model space in PSt coordinate, inferring that after imaging both P-P and P-
S waves, a P-P and P-S registration are required to identify the events for interpretation. 

To perform the waveform inversion, we need to implement both traveltime and amplitude 
considerations during forward modeling and migration of both P-P and P-S waves. 
Therefore, for the migration operator as the adjoint of the forward operator, we design an 
algorithm that considers the common traveltime for the scatter point, ( , )P s xφ . Then, at 
each scatter point, the algorithm sums the hyperbola corresponding to PPt  and PSt  for P-P 
and P-S data respectively. Hence, the migration operators for P-P and P-S data maps the 
data to the model space, τ , in the same time coordinate. This facilitates computation of 
the gradient function for P-P and P-S data. 

 

 
                               a)                                                               b) 

Fig. 2: Inconsistency between time of velocity model vs migrated CCP a) velocity profile of P and 
S in P-P and P-S time b) migration of P-P and P-S data in P-P and P-S time. 

Figure(3) shows a single shot record on the vertical component of the elastic forward 
operator over a simple geological model with a single reflector. Figure (3a) is obtained by 
a finite difference solution of a pair of equations (15) and (16). Figure (3b) is obtained 
with the solution of the elastic Kirchhoff solution to the same model. The amplitude and 
traveltime of direct P-wave, S-waves and the reflected P-P and P-S waves obtained from 
the Kirchhoff is consistent with that obtained from the finite difference. For example, the 
shear wave has zero amplitude near the zero-offset positions as determined by the 
Zoeppritz solvers inside the algorithm. 
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The migration result of the modeled data as the adjoint of the forward operator for P-P 
and P-S waves are shown in figures (3c) and (3d) respectively. Both P-P and P-S data are 
mapped on the same P- time ( , )s xφ . 

                                    a)                                                        b) 

 
                                   c)                                                       d) 

FIG. 3:  Forward modeling vs migration of P-P and P-S data based on P-P time. a) a shot record 
simulated by finite difference solution of elastic wave equation b) a shot record simulated by 
Kirchhoff solution of elastic wave equation c) P-P data migrated in P- time ( , )s xφ  d) P-S data 
migrated in P- time ( , )s xφ .  

In figure (4) the flowchart of the developed algorithm for elastic inversion is 
illustrated. The algorithm begins with an acoustic inversion using time migration 
procedure. We can set up the program to perform the inversion on P-P data to obtain the 

PC and then perform the P-S inversion to calculate the SC . The alternative approach is to 
do the inversion simultaneously so that at each step the model update for P-P data is used 
for updating the model in P-S algorithm. 

Figure (5) shows a synthetic waveform inversion result from a synthetic model. Note 
that the geologic model ( , )PC xτ  and ( , )SC xτ , are defined in the same time, which is 
consistent with the time of the event found in the inverted model. In Figures (6a) and 
(6b), all of the variations in the RMS velocities P

RMSV  and S
RMSV  during all iterations are 

shown. This shows the stability of the updates obtained from Kirchhoff migration as the 
traveltime changes in equations (29)and (30). 
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FIG. 4: simplified simultaneous inversion of P-P and P-S for P- and S-wave velocity  

 
                                   a)                                                          b) 
FIG.5: inversion result of P- and S-wave velocity. a) P-wave inversion b) S- wave velocity  
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                                   a)                                                          b) 

FIG.6: Stability of Time imaging during inversion a) comparison of the P- wave velocity inversion 
result (red line), with true velocity profile (blue line), the iteration variation of PC (green) and P

RMSV
(black line) b) comparison of the S- wave velocity inversion result (red line), with true velocity 
profile (blue line), the iterations variation of SC (green) and S

RMSV (black line). 

FORWARD MODELING AND MIGRATION OF FIELD DATA 
Figure (7a) shows the migration result of a field vertical component (P-P dominant) of 

51 shot records in NE-BC acquired by Nexen Inc.  For a comparison, as shown in Figure 
(7b), the modeled shot records were migrated with the same migration algorithm used for 
field P-P data in Figure (7a). Figure (7c) shows the radial component (P-S dominant) data 
of the same shot records migrated using PSt defined in equation (30). The velocity for 
migration is obtained by well log information shown in Figure (8a). Since the area has 
smooth lateral variation in velocity, we modeled the shot records using ( , )PC xτ and 

( , )SC xτ  from well log. The small difference in time of the migrated sections is due to 
the different static correction datum used during the processing.  

Figure (8) compares the migration and the forward modeling of P-S data based on the 
Zoeppritz solver implemented in the program. It can be seen that the radiation pattern of 
the reflected P-S events (e.g. events A, B, C, D and E) in Figure (8b) are consistent with 
the events in the migrated field P-S data shown in Figure (8c). This is because of the 
radiation pattern of P-S data is angle dependant. 
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   a)                                  b)                                   c) 

FIG. 7: comparison of Migration result in P- time ( , )s xφ . a) migrated field P-P data b) migrated 
synthetic P-P data c) migrated field P-S data 

 
                          a)                                        b)                                      c) 

FIG. 8: Forward modeling result and the angle dependency of P-S waves. a) well log information 
b) modeled P-S Shot data c) migrated field P-S data on P- time ( , )s xφ . 
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We note that our waveform inversion is based on linearization of seismic reflection 
data as expressed by equations(19). In the field data we will have to eliminate the noise in 
order to minimize the objective function defined by equation (24). Noise in this case, are 
any signals that are not of interest and are not included in the forward modeling. 
Examples of noise are multiple data, surface waves, surface noise and dead traces. In 
Figure (9), we compare one sample shot record before and after processing. The key 
factor for processing is to preserve the original amplitude.  This can be seen by 
comparing the strong reflector across the center of the raw shot (Figure 9a) and processed 
shot (Figure 9b).  

The radial component data of a sample shot is currently under process.  We aim to 
improve the Signal to Noise Ratio (SNR). Figure (9c) shows the raw radial component 
acquired near the record shown in Figure (9a).  So far, the processed radial component is 
shown in Figure (9d) for the inversion of P-S data parameters.  Additional processing will 
follow in the future. 

                                     a)                                                      b) 

                                    c)                                                      d) 
FIG. 9: Processing of reflection vertical and radial component a) Raw shot on vertical component 
b) processed vertical component c) Raw shot on radial component. (AGC applied for illustrations) 
d) processed radial component (AGC applied for illustrations). 

The preliminary result of velocity inversion is shown in Figure (10). The initial 
velocity for inversion of ( , )PC xτ  is obtained using a linear increment (green dotted line) 
of the well log (solid blue curve) contained in Figure (10).  We inverted for the data after 
0.5s because our migration algorithm is limited to migration of deeper reflectors.  
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FIG. 10: Comparison of P-P inversion results correlated with overlaying sonic well log 
(solid blue curve). The frequency range of iterative inversion is 5 -13 HZ. Initial model is 
shown as green dotted line.  The color scale is velocity. 

Seismic data contains band limited frequencies; therefore we were restricted to do the 
inversion from 5Hz to 13Hz. This lack of frequency content of the source and non-
linearity of the inverse problem caused ill-posedness for the result of inversion. 
Consequently, as shown by the color scale in Figure (10), we had to display the inversion 
result within the range of 2000 to 6000 m/s. However, the result of inversion shows good 
correlation with the well log data overlain on the figure.  We also observe the variation of 
inverted velocities within the shale formation of the Muskwa and Otter Park (OP) as 
indicated inside the ellipse. These results highlight the value in employing waveform 
inversion for the extraction of subsurface physical properties.  The simultaneous use of 
travel time and amplitude in the wavefield analysis provides insight to an improved 
understanding of shale gas reservoirs for unconventional resource development and 
extraction. 

CONCLUSIONS 
In case where the geological structure has small lateral velocity variations, the 

linearized solution of the seismic reflection inverse problem can be obtained using the 
Pre-Stack Kirchhoff Time Migration (PSTM) and corresponding forward modeling. It 
requires updating the velocity in time and it incorporates accurate diffraction stack 
weighting of the PSTM data.  

We have developed an algorithm that performs waveform inversion on the mode 
converted P-S data. We have used the Zoeppritz solvers for amplitudes and the Double 
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Square Root (DSR) equation for traveltime consideration of P-S and P-P data during the 
waveform inversion.  
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