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Comments on wavefield propagation using Reverse-time and 
Downward continuation 

John C. Bancroft 

ABSTRACT 

Each iteration a of Full-waveform inversion requires the migration of the difference 
between the real data and the new data created from an updated model.  The migration 
process has typically used the Reverse-time algorithm, though alternative algorithms are 
now being used.  The reflectivity estimate from a migration may use a cross-correlation 
with forward modelled data and will contains artifacts that have a very low frequency and 
bias the reflectivity.  The cause of these low frequency artifacts is identified and 
evaluated using Reverse-time and Downward-continuation wavefield propagation of 
energy using a wavelet on a one dimensional model.  The model contains varying 
velocities that produce multiples that are displayed with a two dimensional array in space 
and time.  The wavefields are propagated using finite difference and phase-shift 
algorithms, with various initial and boundary conditions.  The resulting cross-correlations 
are then processed to evaluate their potential for representing the reflectivity of the 
model. 

INTRODUCTION 

Motivation 

Full-waveform inversion (FWI) is an iterative process that uses forward modelling and 
migration to estimate the rock properties of the subsurface.  The ideal properties are the P 
and S velocities, along with the density.  Practical applications currently estimate the 
impedance, which is a combination of the P velocities and density.  The initial theory of 
FWI required the Reverse-time migration algorithm (RTM).  This was assumed to be the 
ultimate algorithm as it was capable of migrating multiples, and dips up to ninety 
degrees.  It was anticipated that use of the multiple energy would aid in reconstructing the 
best reflectivity model of the subsurface.   

However, RTM only partially recreates the energy in the subsurface volume (x, y, z) 
as the required energy is not accessible from a surface recording.  Consequently, only a 
partial reconstruction is available.  In addition, the missing energy allows the reverse-
time energy to produce additional unwanted energy that appears as artifacts in the 
reconstructed reflectivity.   

Method 

The flaws of RTM are demonstrated with a simple model that illustrates the effects of 
using data recorded on the surface to reconstruct the subsurface wavefield.  A one 
dimensional (1D) model with varying velocities was used to forward model the primary 
and multiple energy as a function of space and time.  The energy at all the boundaries 
was used with a reverse time process to reconstruct the complete wavefield with 
negligible error, validating the simple features of the process.  Reconstruction of the 
wavefield using only the surface boundary was then compared with alternate methods 
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such as downward continuation.  The Claerbout imaging condition was used to 
reconstruct an estimate of the reflectivity.  However, the error contained in the estimated 
reflectivity reveals the weakness of the process. 

Comments on RTM 

RTM and other algorithms using the Claerbout imaging condition are really an 
inversion approximation, not a migration, as they attempt to estimate the reflectivity.  A 
better name would be reverse-time inversion or RTI. 

It was an objective of FWI to use all the information possible, including multiple 
energy, to reconstruct the reflectivity.  That may not be the case now, as the FWI process 
assumes the input data from forward modelling and migration to contain information 
regarding multiples.  If the modelled data was created with multiples, then the processing 
of the data leading to the migration should not attenuate the multiples.  In contrast, if the 
processing sequence of the data leading to the migration has attenuated the multiples, 
then the forward modelling should not create multiples. 

Low frequency problem 

An additional problem with Reverse-time migration is the contamination with very 
low frequency energy.  This is illustrated in Figure 1, which shows data from a Marmousi 
model immediately after RTM, and the same image filtered to remove the low frequency 
noise (Liu 2010).  This example used a Laplacian filter to remove the noise.    

Another example by Jiang (2012) also shows an example of data from the same 
Marmousi model in Figure 1a.  In this case, the migration was high pass filtered, with 
results in (b).  The amplitude spectrum of the filter is shown in (c).  Details of the filter 
are available in Jiang (2012).   

The low frequency problem is a result of using the cross-correlation used for the 
imaging condition (Claerbout 1971).  This is not a problem of RTM but will result in any 
migration that uses cross-correlation for the imaging condition.  The filters required to 
remove the low frequency noise also distort the wavelets that represent the reflectivity.  
For example the Laplacian filter, which for 1D data is usually defined with the three 
points [ 1  -2  1 ], does an excellent of removing local low frequency noise.  This filter is 
also the finite difference approximation to the second derivative.  An example of the low 
frequency noise is illustrated in Figure 3a, which shows a single trace that represents the 
direct output from a RTM.  Part (b) shows the consequence of using a derivative filter, 
and (c) using the Laplacian filter.  Note the difference in the shape of the wavelets. 

More recent research has indicated that the original theory of FWI can be simplified to 
use any migration algorithm such as the Phase-shift method, or the Kirchhoff method as 
long as the modelling process matches the migration algorithm (Margrave 2010). 
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a)     b) 

FIG. 1  An example of a) low frequency noise contamination, and b) after a Laplacian filter was 
applied (Liu 2010). 

    

a)      b) 

 
c) 

FIG. 2  An example of a) low frequency noise contamination, and b) after a low pass filter was 
applied, and c) the amplitude spectrum of the filter (Jiang 2010). 

  



Bancroft 

4 CREWES Research Report — Volume 25 (2013)  

 
a) 

 
b) 

 
c) 

FIG. 3  Example of a cross-correlation from a RTM in a) showing the low frequency 
contamination, b) after a differential filter, and c) after a Laplacian filter. 

THE MODELLING SYSTEM 

Introduction 

A simple one dimensional (1D) model was used to evaluate the wavefield.  This is 
often referred to as the wave on a string model in which a wave propagates along a string, 
hits a reflecting or absorbing boundary, then propagates back along the string.  This 
simple model has been used to demonstrate the linearity of wave propagation and the 
production of standing waves.  The math and programing are simple, with a finite 
difference approximation to the wave-equation.  The problem becomes more complex 
when the velocity of the wave on the string varies as the finite difference solution that 
was used assumed a constant velocity.  Now the amplitudes and polarities of the 
reflection and transmission coefficients may be in error.  I was able to circumvent many 
of these problems by using very high sampling rates in time and depth. 
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Finite difference solution to wavefield propagation 

The wavefield was propagated using a two-way finite difference solution to the 
acoustic wave equation  
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with the second derivative approximated by (1, -2, 1) giving  
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This solution is illustrated in Figure 4 that shows the five points and their relative 
location on a grid of x with increments in i, and time t with increments j. 

 

FIG. 4  Finite-difference models for the full wave equation. 

The direction of propagation is controlled by solving for one of the extreme values.  
The movement of the energy in positive time (seismic modelling) is controlled choosing 
P at the next time location, i.e. , 1i jP + , or in reverse time (migration) as , 1i jP − .  The 

wavefield may also be propagated in depth as in downward continuation with 1,i jP+ , or in 

upward continuation with 1,i jP− . 

For forward modelling, the finite difference solution is  
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the reverse time solution is 
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More accurate finite difference solutions are available that allow variable velocities 
and densities.  The above simple finite difference solution is defined for a constant 
velocity, but in practice, it can perform reasonably well with varying velocities.  In these 
cases, the sample intervals of xδ  or tδ  must be very small relative to the size of the 
wavelets.  A slight error in the wavefield may occur at velocity boundaries.  These errors 
may be undone when reversing the direction of propagation, but will become visibly 
evident when combining time propagations with depth propagations.  The errors in 
location (time or space) are usually much smaller than the errors in the amplitudes. 

The ratio preceding the bracketed term in equations (3) to (5) must be less than or 
equal to unity to ensure stability, i.e. 
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v t
x
δ

δ
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When v = 2,000 m/s, xδ  =0.125 m, and tδ  = 0.0000625 s the time modelling was 
stable.  A time increment of tδ  = 0.0000626 s made the modelling unstable.  Usually 

xδ  and tδ  are values on a grid, so the stability criterion is established with the 
maximum velocity.  

This does create differences in the application of the algorithms when used as a time 
propagation or as a depth propagation as in either equations (3) and (4).  The stability 
criterion for depth is the inverse of that for time.   
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Since the velocity of the model must be the same, a change in the grid sample intervals 
of xδ  or tδ  is required.  I choose to increase the time sampler interval tδ  when 
propagating in depth. 

Phaseshift solution 

The wavefield may also be propagated with a oneway solution to the wave equation.  
There are numerous finite difference solutions available, but I will use the Phase-shift 
method for downward and upward propagation solutions.  The solution in the depth-
frequency domain is 

 ( ) ( ), ,
i z

vP z z P z e
δ ω

δ ω ω
±

+ = , (8) 
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where dz is the depth increment, ω  the frequency, and the sign of the exponent 
determines the up or down direction.  This solution is ideal as the velocities are constant 
at each depth level, and dz can be any size over the areas with constant velocity. 

The phaseshift solution is a square-root of the wave equation and requires only one 
initial condition at the surface, and assumes the wavefield to be moving toward t = 0.  
This is the case for all oneway solutions.   

Major points of a five point FD solution 

1. Efficient and simple to program. 

2. Simple FD solution (grid dispersion, frequency limitation). 

3. Artifacts reduced by finer sampling in x, and t. 
4. Requires two initial conditions. 

5. Direction of wave travel established by the second IC. 

6. Requires boundary conditions at each end, (open, closed, or absorbing). 

7. Forward and reverse process compensate for errors to give identical solutions. 

8. Stable for propagation in one direction, e.g. t, but requires different sampling for 
propagation in the other direction, e.g. x. 

a. Rather than reduce the depth increment, it is easier to down sample the time 
data. 

9. Considerable wavefield complexity can be handled with a simple model. 

10. Gaussian wavelet aids in identifying polarity of the reflections. 

11. Bipolar wavelet aides in verifying low frequency content in the correlations. 

Boundary conditions 

Each end of the string requires the definition of a boundary condition.  I use three 
possible conditions, closed, open, and absorbing.  The open and closed conditions are 
named after the end condition of organ pipes as illustrated in Figure 5.  At a closed 
boundary there is no particle motion and a positive reflection results.  If the organ pipe is 
open, then a negative reflection results.  The results on a string are similar.  A fixed and 
of the string created a positive reflection, and an end that is free to move creates a 
negative reflection.  This is simulated by terminating the string with another piece of 
string with zero density. (The particle motion in the organ pipe is longitudinal, along the 
string it is typically illustrated as transverse.) 

 

FIG. 5  Wave motion devices showing open and closed boundaries for an organ pipe and string. 

My objective is to simulate wave motion within the Earth, so I choose an open 
boundary at the surface, and an absorbing boundary at the basement to prevent unwanted 
reflections. 
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Initial conditions 

The second derivatives of the wave equation require two initial conditions.  When 
forward modelling in time, we require two time images of the wavefield at starting times 
of j = 1 and j = 2, referred to as snapshots.  I insert the wavelet into the string at j = 1, 
then repeat the same wavelet with an advance along the string z∇ , at j = 2, to define the 
direction that the wavelet will travel in.    The distance is defined from the velocity on the 
string and the time increment tδ , i.e., z V tδ∇ = .  Note that z zδ∇ ≠ . 

The initial conditions and boundary values vary for the type of wave propagation that 
is to be considered.  We traditionally think of a movie with wave motion on the string, 
which is defined at different times.  That is forward modelling.  However, we can define 
the initial conditions at the boundaries of the 2D data (z, t), and recreate an accurate 
representation of the complete wavefield. 

Surface seismic assumes there is only one IC at the surface, with all other boundaries 
defined to be zero.  We can simulate this same condition with the string model, to 
evaluate the effects of various initial conditions and boundary values that affect the 
various migration algorithms.  Examples of the boundary conditions are described in 
Figure 6.  
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a)  FM with IC and BC    b)  FM 

    
c)  RT full IC and BC   d)  RT only surface IC 

    
e)  DC full IC and BC   f)  DC One way IC 

    
g)  PS One IC    h)  Any oneway migration 

FIG. 6  Initial and boundary conditions for RT and DC wave propagation. 
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The imaging condition and inversion 

Claerbout (1971) introduced an inversion process that computed the reflectivity from 
an upgoing wavefield U that is divided by the downgoing wavefield D.  The downgoing 
wavefield D was obtained by forward modelling the data through the subsurface using an 
estimate of the velocity and density, as illustrated in Figure 7a.  The figure represents an 
expanding 2D wavefield in time (x, z, t) as it arrives at a reflecting surface, i.e. D, 
identified by the blue plane.  Part (b) shows the reflected energy moving along the blue 
arrow towards the surface where it is recorded.  I use this same figure to represent 
migration with the red arrow that moves the energy from the recorded data at the surface 
back towards the reflector using migration.  At the reflector, this energy is the reflection 
energy U. 

The data on the blue plane in (a) is D and in (b) is U.  Rather than dividing U by D, the 
migration process is more stable if D is cross-correlated D with U to obtain an estimate of 
the reflectivity.  This is referred to as the imaging condition where the down and up going 
energies are focused. 

   
a) Forward modelled D wavefield  b) Migrated U wavefield 

FIG. 7  Wavefields at the imaging condition (blue plane) with a) the downward propagating 
wavefield from forward modelling, and b) the upward propagating wavefield (blue arrow) that has 
been migrated from the surface back (down) to the imaging surface (red arrow). 

Computing the forward model data for the imaging condition 

The data is forward modelled in time with two initial conditions at t = 1 and t = 2, a fre 
or open reflection at the surface z = 0, and an absorbing boundary at the maximum depth 
z = zmax.  The wavefield is then create to maximum time t = tmax.  This data is used as the 
downward propagating wavefield for cross-correlation at the imaging condition. 

Computing the migrated data for the imaging condition 

Since this is a modelling exercise, the forward modelled data was also used to create 
the simulated data that will be used for migration.  Both the reverse time and downward 
continuation can completely recover the full wavefield when using all the data on the 
boundaries.  That does not represent the real world case where the wavefield is only 
recorded as the surface, but does validate the similarities of reverse-time and downward 
continuation migration. 
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The recovered wavefield represents the upgoing wavefield U used for cross-
correlation at the imaging condition.  Cross-correlations at all depths recover an estimate 
of the reflectivity at all depths. 

Comparisons are made of the recovered wavefield and the cross-correlation imaging 
condition for various initial conditions. 

THE MODEL 

The data in Figure 7 displayed a 2D source record in a 3D perspective view.  The 
wavefield cannot be easily displayed as a function of time.  The model chosen will be 1D 
seismic data, or a single trace, as if it was located at the source location x.  This 1D model 
is similar to the movement of waves on a string.  The amplitudes of the wavefield can 
then be easily displayed to show the down going incident wavelet, the primary reflection, 
surface multiples, and interbed multiples. 

The velocities along the string were chosen to be blocky with values of 1000, 200, and 
800 m/s as illustrated in Figure 8.  Blocky velocities are aliased, so a smooth transition of 
five samples was used between each block.  The maximum depth was chosen to be 200 
m, with an initial sample interval of 0.25 m and the maximum time to be 0.4 s with an 
initial time increment of 0.00025 s.  The modelling took approximately 5 seconds when 
using these parameters, and some error may be visible in the wavefield.  These errors are 
not visible when sample intervals of 0.03125 m and 0.000015625 s are used. 

 
FIG. 8  Velocity array in depth. 

The basement (maximum depth zmax) was modelled with an absorbing boundary to 
simulate a continuing depth model.  The top surface z0 used an open boundary to simulate 
the free surface where the reflection coefficient is -1.  A Gaussian shaped wavelet was 
used as it is easy to identify its location in areas where the wavelets pass.  It also has 
positive amplitude at zero frequency (i.e. DC component > 0).  The derivative of the 
Gaussian wavelet is an anti-symmetric wavelet with zero amplitude at zero frequency 
(i.e. DC = 0).  These properties were useful when evaluating the low frequencies of the 
reflectivity.  The second derivative of the Gaussian wavelet produced a wavelet with a 
“W” shape that also has DC = 0. 

The wavefield was initiated with wavelet energy on the first two time intervals (initial 
conditions) at 0.00000 and 0.00025 s as required by equation (3).  These initial conditions 
establish the initial direction the wavelet travels, which is to the right as illustrated in 
Figure 9.  The reflecting boundaries are indicated by blue “+” symbols.  The figure also 
contains a wavelet (green dash) at a later time of 0.05 s to verify the preservation and 
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direction of travel of the wavelet after it has passed the first boundary, and also shows a 
reflection moving to the left.  Note the change in the width and amplitude of the green 
wavelet when it is in the central area with high velocity. 

 

 FIG.  9  Wavelets for two initial conditions, and one at time 0.010 s. 

The wavefield at depths 0 and 5 m is shown in Figure 10 to illustrate the approach of 
the wavelets at the open boundary of the surface.  At the boundary, the amplitude in blue 
is twice that of the body waves, represented by the green wavelets at a depth of 5 m.  The 
body wave does contain the incident and the reflected wavelets as they spread away from 
their location at the surface.  The wavelets arriving at approximately 0.075 and 0.15 s are 
primary reflections.  The other wavelets are from multiple reflections. 

 
FIG. 10  Wavelets at time 0.200 and 0.210 s.  The direction of movement is from the blue to the 

green wavelet. 

The surface recording at z = 0 is most important as that is the data recorded with 
surface seismic.  This is the information that we will used to recreate the energy within 
the subsurface using the various migration algorithms.   

A three dimensional plot of the wavefield is shown in Figure 11.  The downgoing 
incident energy, primary reflected energy, surface multiple energy, and interbed multiples 
can be identified.  It is only the downgoing incident energy and the primary reflected 
energy that we desire for the cross correlation.  All other energy will contribute noise. 

The complete wavefield was recreated using only the energy on the boundaries, as 
identified by Figures 6c and 6e, using reverse time and downward continuation.  The 
reverse time reconstruction had amplitude errors less than 10-12 and is not shown, 
however, the difference of the forward model and the reverse time reconstruction is 
shown in Figure 12.  These small errors do not represent the accuracy of the finite 
difference modelling.  The modelling errors that will have occurred are “undone” by 
using the same algorithm when reversing the wave propagation procedure.   
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The complete reconstruction of the finite difference downward continuation wavefield 
is shown in Figure 13.  This process required increasing the time sample rate by 3 to 
maintain stability.  Some differences from the forward model are identifiable but are 
more evident in the difference between the forward model and the reconstructed 
downward continuation, as shown in Figure 14. 

 
FIG. 11  View of the complete wavefield. 

 
FIG. 12  Difference between the forward model and the reverse time reconstruction. 
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FIG. 13  Reconstructed wavefield using downward continuation. 

 

FIG. 14  Difference between the forward model and the downward continued reconstruction. 
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The difference between the forward model and the downward continuation 
reconstruction is quite large, in the order of 2%.  These errors are now a result of the 
difference in the applications of the finite difference algorithm.  This is evident by the 
change in error at the internal reflecting boundaries.   

Wavefield reconstruction using the surface seismic. 

The above wavefield reconstruction does not represent the wavefields that can be 
recovered using only the surface seismic.  We now use only the surface seismic for the 
initial condition at z = 0.  There are three examples, the reverse time in Figure 15, finite 
difference downward continuation in Figure 16, and the phase shift downward 
continuation in Figure 17.  The two initial conditions for the reverse time at tmax are both 
zero.  The finite difference downward continuation requires two initial conditions at the 
surface.  This is accomplished by defining the IC at z = zδ  to be the same as z = 0, but 
time shifted towards t = 0 with a time increment equal to the velocity multiplied by the 
depth increment.  

 

FIG. 15  Reconstructed wavefield using reverse time with only the surface IC. 
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FIG. 16  Reconstructed wavefield using FD downward continuation with only the surface IC. 

 

FIG. 17  Reconstructed wavefield using phase-shift downward continuation with only the surface 
IC. 
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Estimates of the reflectivity using cross-correlation 

The reflectivity is computed from a velocity model that had smoothed transitions 
between the velocity interfaces.  The reflectivity appears in Figure 18 as a narrow 
wavelet whose width is equal to the transition zone.   When the velocity change is small, 
(not this case), the sum of the sampled reflectivity will approximate the reflectivity 
between the two velocity layers.  However, this example is a close enough approximation 
to allow the peaks of the reflectivity to be close enough for visual comparisons. 

 

FIG. 18  An approximation to the reflectivity computed from the velocity model. 

 

The reflectivity is estimated using the cross-correlation of the forward modelled 
wavefield with the reconstructed wavefields.  According to the assumption of the 
imaging condition, we only want the initial downward propagating wave and the primary 
reflected waves.  This is somewhat illustrated in Figure 19 where the forward and reverse 
time wavefield have been windowed.    

    
a)      b) 

FIG. 19  The initial downgoing wave, and the primary reflected wave. 
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The cross correlation (CC)of the windowed forward modelled wavefield (wFM) with 
the windowed fully reconstructed wave filed with reverse time (wRT) is displayed in 
Figure 20a.  The derivative of (a) is in (b) and the Laplacian filter of (a) in (c). 

 
a) 

 
b) 

 
c) 

FIG. 20  CC of wFM with wRT, a) the windowed CC, b) differentiated CC, and c) Laplacian 
filtered CC. 

These results are supposed to be optimal, but don’t even have the correct polarity. 
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A better result is obtained when using the windowed forward modelled (wFM) data 
with the complete reverse time migration (RT).   

 
a) 

 
b) 

 
c) 

FIG. 21  CC of wFM with the complete RT, a) the windowed CC, b) differentiated CC, and c) 
Laplacian filtered CC. 
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The CC of the fully modelled wavefield (FM) with the fully reconstructed RT 
wavefield is displayed in Figure 22a.  The differentiated CC is in (b), and the Laplacian 
filtered CC is displayed in (c).  (Not seismic.) 

 

a) 

 
b) 

 
c) 

FIG. 22  CC of FM with the fully reconstructed reverse time wavefield, a) the windowed CC, b) 
differentiated CC, and c) Laplacian filtered CC. 
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The CC of the fully modelled wavefield (FM) with RT using only the surface IC is 
displayed in Figure 23a.  The differentiated CC is in (b), and the Laplacian filtered CC is 
displayed in (c).   

 

a) 

 

b) 

 

c) 

 

d) 

FIG. 23  CC of FM with the reconstructed reverse time wavefield using only the surface IC, a) the 
windowed CC, b) differentiated CC, c) Laplacian filtered CC, and d) the correlation coefficient.
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The CC of the fully modelled wavefield (FM) with the migrated downward continued 
wavefield using only the surface IC is displayed in Figure 23a.  The differentiated CC is 
in (b), and the Laplacian filtered CC is displayed in (c). 

 

a) 

 

b) 

 

c) 

FIG. 23  CC of FM with the reconstructed reverse time wavefield using only the surface IC, a) the 
windowed CC, b) the differentiated CC, and c) the Laplacian filtered CC. 
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The CC of the fully modelled wavefield (FM) with the phase shift one-way wavefield 
using only the surface IC is displayed in Figure 22a.  The differentiated CC is in (b), and 
the Laplacian filtered CC is displayed in (c). 

 

a) 

 

b) 

 

c) 

FIG. 24  CC of FM with the reconstructed phase shift with only the surface IC, a) the windowed 
CC, b) differentiated CC, and c) Laplacian filtered CC. 
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Points to note 

1. Multiples create low frequency artifacts. 

2. Multiples create high frequency artifacts. 

3. Multiples create more multiples that were not on the forward model. 

4. Multiples do not reconstruct. 

5. It may be better to remove multiple energy. 

6. Alternatives to reverse-time migration: 

a. Downward continuation, 

b. Phase-shift, PSPI, 

c. Finite difference. 

7. There may be an advantage in windowing the modelled data using the velocity model. 

8. The size of the reflectivity was exaggerated to display artifacts 

9. Reverse time migration requires the full volume of data (x, z, t) to be created and 
stored in memory before the cross-correlation process proceeds. 

10. The downward continuation processes perform the cross-correlation process at each 
downward step. 

11. Reverse-time migration can produce a zero-lag correlation during each time step of 
the reverse time process. 

 

CONCLUSIONS 

Multiple energy can align over an interval and remain correlated to produce a constant 
value at depths.  This low frequency energy is difficult to remove. 

Alternate forms of migration may be preferable to the Reverse time algorithm. 

It may be better to remove the multiple energy with conventional seismic processing, 
and create forward modelled data without the multiples. 

The results used a simple 1D model to visualize the motion of wavefield energy to aid 
in identifying the artifacts present in the cross-correlation imaging condition.  Further 
tests will be required with more complex and higher dimensional data to fully evaluate 
the best process to recover the reflectivity. 

Oneway migration, such as phase shift, reduces the multiple energy created in the 
reconstructed wavefield. 
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APPENDIX 

The following table identified the runtimes and memory requirements when using a 
desktop computer with 8 G of memory.  The intent is to demonstrate that processing with 
very small sample intervals can become impractical with full waveform modelling.  

Table 1 Results of varying the sampling size of the data on runtimes and memory requirements. 

Nx Nz zδ  m tδ  ms Mem. GB. Time s 

101 401 2.0 1.0 ? Died 

201 801 1.0 0.5 ? 5.5 

401 1601 0.5 0.25 ? 5.4 

801 3201 0.25 0.125 1.93 6.3 
22.9 

1601 6201 0.125 0.0625 2.29 7.6 
85.4 

3201 12801 0.0625 0.03125 3.67 16.5 

6401 25601 0.03125 0.015625 7.5+Paging 65.5 
14579.7 

12801 51201 0.015625 0.0078125 ∞   

 


