
readlas

 CREWES Research Report — Volume 25 (2013) 1

Updates to readlas

Kevin W. Hall and Gary F. Margrave

ABSTRACT

The CREWES Matlab toolbox contains a script called readlas that has long had the
ability to read version 1.2 and version 2.0 Log ASCII Standard (LAS) files. A new
Matlab class called las that can handle all LAS versions has been written. The constructor
reads an entire LAS file into memory and splits it into a Matlab cell array using regular
expressions. The readlas script is now a wrapper that makes a new las object and creates
version 2.0 inputs suitable for logedit and syngram regardless of the LAS version of the
input file. Since logedit and syngram cannot handle the multiple log data sections that are
allowed in LAS 3 files, or more than ten logs effectively, or logs containing non-numeric
data (eg. lithology), readlas provides graphical user interface (GUI) windows that prompt
users to pick a section, decide which logs they want to edit, and replaces any character
data with log nulls.

INTRODUCTION

The Log ASCII Standard (LAS) format is defined in documents provided by the
Canadian Well Logging Society (CWLS). These documents, as well as software to
validate existing LAS files, are provided online (CWLS, 2013). In general, LAS files are
organized into named parameter or data sections, where the section name appears on a
line that starts with a ‘~’. Parameter sections contain mnemonics with information about
the well or about the data sections, with one mnemonic per line Versions 1.2 and 2.0
define well log data using three sections that can be minimally named: ~P, ~C, ~A. Some
LAS files extend these names to ~Parameter, ~Curve, ~Ascii for clarity. Version 3.0
allows these names, but also extends the naming system to allow ~*_Parameter,
~*_Definition and ~*_Data, where * could be Log, Tops, Core, etc. This version also
allows multiple data sections, For example ~Log_Definition[1], ~Log_Definition[2],
~Log_Data[1], ~Log_Data[2], which was not possible in earlier versions. The data
format can be optionally defined in the Definition sections in curly brackets for each data
column, for example, {F} for float, {E} for exponent, {S} for string. Finally, the separator
between data columns in the LAS file can be defined in the ~Well section as SPACE,
COMMA or TAB. Versions 1.2 and 2.0 specified that the separator must be spaces, and
{F} was implied to be the only allowed data type. Finally, long data rows are allowed to
wrap in version 2.0, but not in versions 1.2 and 3.0.

Legacy CREWES Matlab code to read LAS files for use in programs such as
LOGEDIT, LOGSEC, SYNGRAM was able to read version 1.2 and 2.0 (wrapped and
unwrapped) LAS files, but could not handle version 3.0. A project was undertaken to
write generalized code that makes as few assumptions about the LAS file as possible in
order to read the file into Matlab.

READLAS

Within the CREWES Matlab toolbox, crewes\z_legacy\io\readlas.m is now a wrapper
that calls crewes\z_legacy\io\@las\las.m to read a LAS file from disk and create a las

Hall and Margrave

2 CREWES Research Report — Volume 25 (2013)

object. The las.readlas method then interrogates the contents of the las object, and
returns the outputs expected from the original readlas to the calling program. LAS
version 2.0 information is returned regardless of the version of the input file. The original
code is still present in the CREWES toolbox, but has been renamed readlas_old. Keeping
this code appears to be important, as we have had issues where we were told the new
code does not work, but the issue turned out to be users running old versions of Matlab.

The new readlas has been tested on many LAS files, and is now officially being used
by SYNGRAM and LOGEDIT. If you have a LAS file that our code fails to read, we’d
like to request that you send a copy of it to support@crewes.org. These files are editable
in any text editor, such as notepad – so for the sake of confidentiality, please feel free to
delete any location or company information. We would, however, ask that you provide at
least three data lines.

Public methods of primary importance

w = las(filename)

las() is the constructor for the las object, w. Inputs are either void or a filename as a
character string. Output is a single las object. An entire LAS file is read into the las
object after being split into individual character strings by the regular expression
documented in Appendix A.

[logmat,mnem,desc,name,id,loc,null,units,kb,tops,ztops,lash]=w.readlas()

w.readlas() interrogates the las object and returns the variables (Figure 1) expected by
other programs in the CREWES toolbox in LAS version 2.0 format. If multiple data
sections (LAS version 3.0) exist, las.uiSelectSection() is called (Figure 2). If more than
ten logs exist in the selected data section, las.uiDeleteLogs() is called (Figure 3), as
LOGEDIT cannot be effectively used on more than ten logs.

% logmat ... matrix containing the logs in the file. Each log is in a
% column and the first column contains the depths. Thus,
% if logmat has n columns, then there are n-1 logs
% mnem ... matrix of standard 4 letter mnemonics of the n columns
% of logmat
% desc ... matrix of string descriptors of the n columns of the
% logmat
% name ... string with the well name
% id ... the unique well id
% loc ... string containg the well location
% null ... the null value used in the logs
% units ... string indicating the depth units of the log
% kb ... elevation of the kelly bushing
% tops ... names of tops found in the file
% ztops ... depths of tops
% lash ... matlab string matrix containing the entire las header

FIG. 1. Description of variables returned by readlas.

readlas

 CREWES Research Report — Volume 25 (2013) 3

FIG. 2. Example of las.uiSelectSection() forcing user selection of a single data section.

FIG. 3. Example of las.uiDeleteLogs() asking for user selection of fewer than ten logs.

Public methods of secondary importance

In the following, w is a las object, ca is a cell array, st is a character string, db is a
double, sn is character string containing a full or partial section name, mn is character
string containing a full mnemonic, and w is a las object

ca = getSectionNames(sn)

w.getSectionNames(sn) returns a cell array of character strings containing all of the
section names in the las object that match sn. Example: w.getSectionNames(‘~w’) might
return {‘~Well’}, but w.getSectionNames(‘~log_data’) might return {‘~Log_Data[1]’,
’~Log_Data[2]}.

Hall and Margrave

4 CREWES Research Report — Volume 25 (2013)

ca = getSectionAssociation(sn)

w.getSectionAssociation(sn) returns a cell array containing all of the section names
containing definitions that are associated with section names that match sn. This method
will be renamed getSectionDefinitions in a future release. For example:
w.getSectionAssociation(‘~log_data’) might return {‘~Log_Definition[1]’,
’~Log_Definition[2]’}.

ca = getSection(sn)

w.getSection(sn) returns a cell array containing all of the contents associated with all
section names in the las object that match sn.

ca = getSectionData(sn)

w.getSectionData(sn) returns a cell array of character strings containing all data for all
section names in the las object that match sn.

db = getSectionDataAsDouble(sn)

w.getSectionDataAsDouble(sn) returns an array of doubles or a cell array of doubles
containing all data for all section names in the las object that match sn, depending on
whether there are single or multiple matches to sn. Any numeric data stored as character
strings are converted to doubles, and any non-numeric data are converted to the log null
value. This method is particularly useful if you want to use math on well log curves.

ca = getParameterSectionMnemonics(sn)

w.getParameterSectionMnemonics(sn) returns a cell array of character strings
containing all mnemonics for all section names in the las object that match sn. If the
section is a data section rather than a parameter section, this method will return {‘’}.

ca = getParameterSectionUnits(sn)

w.getParameterSectionUnits(sn) returns a cell array of character strings containing all
mnemonic units for all section names in the las object that match sn. If the section is a
data section rather than a parameter section, this method will return {‘’}.

ca = getParameterSectionValues(sn)

w.getParameterSectionValues(sn) returns a cell array of character strings containing
all mnemonic values for all section names in the las object that match sn. If the section is
a data section rather than a parameter section, this method will return {‘’}.

ca = getParameterSectionValuesAsDouble(sn)

w.getParameterSectionValuesAsDouble(sn) returns a cell array of doubles containing
all mnemonic values for all section names in the las object that match sn. If the section is
a data section rather than a parameter section, this method will return {‘’}. If the data is
non-numeric, this method will return NaN. This method will return log nulls instead of
NaN in a future release.

readlas

 CREWES Research Report — Volume 25 (2013) 5

ca = getParameterSectionDescriptions(sn)

w.getParameterSectionDescriptions(sn) returns a cell array of character strings
containing all mnemonic descriptions (comments) for all section names in the las object
that match sn. If the section is a data section rather than a parameter section, this method
will return {‘’}. This will be renamed getParameterSectionComments in a future release.

ca = getParameterSectionFormats(sn)

w.getParameterSectionFormats(sn) returns a cell array of character strings containing
all mnemonic formats for all section names in the las object that match sn. If the section
is a data section rather than a parameter section, this method will return {‘’}.

ca = getParameterSectionAssociations(sn)

w.getParameterSectionAssociations(sn) returns a cell array of character strings
containing all mnemonic associations (definitions) for all section names in the las object
that match sn. If the section is a data section rather than a parameter section, this method
will return {‘’}. This will be called getParameterSectionDefinitions in a future release.

st = getMnemonicUnit(sn,mn)

w.getMnemonicUnit(sn,mn) returns a character string containing the unit for the
mnemonic mn contained in the parameter section sn. This method will return ‘’ if there
are no units associated with mn,For example, w.getMnemonicUnit
('~log_definition[1]','dept') might return ‘M’

st = getMnemonicValue(sn,mn)

w.getMnemonicValue(sn,mn) returns a character string containing the value for the
mnemonic mn contained in the parameter section sn. This method will return ‘’ if there
are no values associated with mn, For example, w.getMnemonicValue('~w','lati') might
return ‘34.56789’.

st = getMnemonicDescription(sn,mn)

w.getMnemonicDescription(sn,mn) returns a character string containing the
description (comment) for the mnemonic mn contained in the parameter section sn. This
method will return ‘’ if there are no values associated with mn, For example,
w.getMnemonicDescription ('~w','API') might return ‘API NUMBER’. This method will
be renamed getMnemonicComment in a future release.

st = getMnemonicFormat(sn,mn)

w.getMnemonicFormat (sn,mn) returns a character string containing the value for the
mnemonic mn contained in the parameter section sn. This method will return ‘’ if there
are no values associated with mn, For example w.getMnemonicFormat
('~log_definition[1]', 'dt') might return ‘F’.

v = getMnemonicAssociation(sn,mn)

w.getMnemonicAssociation(sn,mn) returns a character string containing the
association (definition) for the mnemonic mn contained in the parameter section sn. This

Hall and Margrave

6 CREWES Research Report — Volume 25 (2013)

method will return ‘’ if there are no values associated with mn, For example,
w.getMnemonicAssociation('~log_parameter','dref') might return ‘RUN[1]’. This method
will be renamed getMnemonicDefinition in a future release.

SUMMARY AND FUTURE WORK

While well tested, the code needs to be optimized, better commented, and extended.
Set methods need to be written that would allow creation of LAS file. Also, it would be
desirable to have a writelas method. Finally, while we haven’t seen such a file yet, it may
be desirable to be able to merge multiple data sections before editing in LOGEDIT.

REFERENCES

Canadian Well Logging Society (CWLS), 2013, http://www.cwls.org/las_info.php

APPENDIX A

The following code (Figure A.1) splits a LAS file into a Matlab array of structures
containing the variables named section, comment, mnemonic, munits, mvalues,
mcomment, mformat, mdefinition and data, each of which may be empty or contain
character strings, depending on which line from the LAS file was stored. The data lines
produced by the code shown will need to be further split into arrays, where columns of
data are separated by spaces (LAS versions 1.2, 2.0) or commas, spaces or tabs (LAS
version 3.0).

%Linetype1: ~SECTION NAME
%Linetype2: ddd.ddd [comma, space or tab] ccccc cccc cc [comma,
% space or tab] ...
%Linetype3: ccc cc ccc [comma, space or tab] ddd.ddd
% *** NOT HANDLED ***
%Linetype4: MNEMONIC .UNITS VALUE1 VALUE2 : COMMENT {FORMAT} |
% DEFINITION
% Pattern definitions used for regexp
% ?<variablename> = variablename to assign a match
% ^ = match beginning of string
% [] = match any characters listed in the square
% brackets
% [^] = match any characters not listed in the square
% brackets
% \s = white space characters
% \d = digit
% \S = non-white space characters
% () = group
% ? = match zero or one character
% * = match zero or more characters
% + = match one or more characters
% . = wildcard, stands in for any character
% | = logical or

readlas

 CREWES Research Report — Volume 25 (2013) 7

% \| = '|'
% ~ = '~'
pattern = [...
 %Linetype 1 if first character is '~', *OR*
 '^\s*(?<section>^~.*)|' ...
 %Linetype 2 if first char is '#', *OR*
 '^\s*(?<comment>^#.*)|' ...
 %Linetype4 if the first '.' is not followed by a digit
 '^\s*(?<mnemonic>[^.]*)\.(?=[^\d])' ...
 % mnemonic units
 '(?<munits>\S*)' ...
 % mnemonic values
 '\s*(?<mvalues>[^:]*)' ...
 % a single ':' followed by zero or more spaces
 '\:?\s*' ...
 % mnemonic comment, all characters to the left of a '{' or '|'
 '(?<mcomment>[^|{]*)' ...
 % log data format; eg. {F},{E},{S} for float, exponent, string
 '{?(?<mformat>[^|}]*)}?' ...
 % zero or more spaces, single '|', zero or more spaces
 '\s*\|?\s*' ...
 % associated section name or mnemomic, *OR*
 '(?<mdefinition>.*)|' ...
 %Linetype3 contains data; This line will need to be split
 '^\s*(?<data>.*)'
];

las_struct = regexp(las_strings, pattern, 'names');

Figure A.1. Code to split a LAS file into a Matlab array of structures

