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Linear and nonlinear poroelastic AVO 

Steven Kim and Kris Innanen 

ABSTRACT 

The purpose of our research is to merge the results of two recent theoretical and 
practical studies.  First, Russell, and his fellow co-authors, has argued for a 
parameterization of the linearized AVO problem which highlights jumps in poroelastic 
properties across a reflecting boundary.  The parameterization brings the Biot fluid term 
to the foreground.  Second, Innanen has recently introduced an approach to analyzing 
linear and nonlinear AVO which mirrors the more general problem of scattering, and 
which accounts for low order nonlinearity in an intuitive way.  This paper summarizes a 
project in which the poroelastic AVO problem is cast in terms of this nonlinear 
formalism.  We derive first, second, and third order terms in an expansion for Rpp.  The 
expansion is in terms of changes in density, shear modulus, and the Biot fluid term.  We 
confirm mathematically the role second and third order fluid terms play in determining 
Rpp amplitudes.  We comment on future directions the work can take, including moving 
towards a general poroelastic scattering picture, and incorporating dynamic poroelastic 
models also. 

INTRODUCTION 

As mentioned in the abstract, future research is expected to extend poroelastic AVO 
modeling methods to scattering theory (Weglein et al., 2003) and dynamic poroelastic 
models (Gurevich et al., 2004; and Cowin, 2013). In recent years, the geophysical 
community is showing interest in both of these categories. Scattering theorists have 
shown the benefits of Weglein-based methods (Weglein et al., 2009; Zhang et al., 2009; 
and Innanen et al., 2010). Dynamic poroelastic theory is discussed in detail to show that 
two compressional waves (a fast P-wave and a slow P-wave) and one shear wave is 
generated when an incoming P-wave, described as ݁௜ఠ௧ interacts with a geological 
boundary. This slow P-wave has lower amplitude and can be simulated in numerical 
simulations such as the work done by Arntsen (2001) where he models the microseismic 
events of a physical model that consists of a plate of unconsolidated sediment using 
Biot’s theory, introducing stiffness and viscodynamic dissipation based on viscoelastic 
theory to model additional attenuation mechanisms. 

Amplitude variation with offset (AVO) analysis of seismic reflections has become an 
important tool for hydrocarbon prospecting (Foster 2010). Various AVO 
parameterizations exist, all of which involve the sum of three weighted elastic-constant 
terms (Russell et al. 2011). Zoeppritz (1919) has provided the mathematical derivation 
for reflected and transmitted plane wave amplitudes which is the precursor that explains 
how AVO has evolved from it. The Zoeppritz equations provide exact values for 
reflected and transmitted plane waves in a 2D environment. However, the downside of 
the Zoeppritz equations is their highly complex nature of these equations which make 
interpretation of the amplitude data difficult. This includes the use of nonlinear 
techniques to estimate parameter values from the observed seismic amplitudes, which can 
be unstable (Russell et al. 2011).  
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The Zoeppritz equations used in this research are provided by Keys (1989). This 
formulation takes the form 
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where P is a 4x4 matrix that contains sixteen elements. Each element is defined by 
elastic parameters ௉ܸ, ௌܸ, and ߩ. Here we have shown equation (1) in a condensed form 
to save space. Collapsing all of the weighting factors into ܣ’s will allow us to abbreviate 
each element in ۾ so that  
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The vector on the right hand side of equation (1) is a vector containing four elements 
of ܽ’s that are also defined by elastic parameters ௉ܸ, ௌܸ, and ߩ and is shown in equation 
(2). Vector ܕ௉ four elements that appear as a column vector 
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This version of the Zoeppritz equations will be further evaluated later in this paper to 
show we derive exact, linear, and nonlinear poroelastic AVO expressions. In order to 
demonstrate how to achieve these AVO expressions, the goal of this paper will be to: 1) 
Discuss Biot and Gassmann’s poroelastic parameters 2) show the exact, linear, and 
nonlinear poroelastic AVO expressions in perturbation and reflectivity domains and 3) 
show results of numerical study using poroelastic AVO expressions. These three points 
are summarized by the following: 

In the first step, we show that Biot (1941) and Gassmann (1951) have found a way to 
write bulk modulus (ܭ), shear modulus (ߤ), and Lamé parameter (ߣ) under poroelastic 
conditions. This is shown by Russell et al. (2011) where they demonstrate how this is 
beneficial for AVO analysis. 

In the second step, we achieve exact, linear, and nonlinear poroelastic AVO 
expressions for PP reflections. This requires a modification of the Zoeppritz equations 
where two substitutions need to take place. The first substitution is a transition from 
elastic constants ( ௉ܸ, ௌܸ, ߩ)  to poroelastic constants (݂, ߩ ,ߤ) and the second transition is 
from poroelastic (݂, ߩ ,ߤ) constants to perturbations (ܽ௙, ܽఓ, ܽఘ). This transition changes 
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the Zoeppritz equations into the poroelastic Zoeppritz equations in the perturbation 
domain. An application of Cramer’s rule is performed such that the PP reflection 
coefficient, ܴ୔୔, can be isolated and an exact expression for poroelastic ܴ୔୔ is a result. 
With the exact expression, a truncation of terms thus produces the linear and nonlinear 
poroelastic AVO approximations of ܴ୔୔. With this method, we may also produce exact, 
linear, and nonlinear expressions that are in terms of reflectivity parameters (Δ݂/݂, Δߤ/ߤ, Δߩ/ߩ). 

Once the exact, linear, and nonlinear poroelastic AVO expressions are found, a 
numerical study was performed for the set of poroelastic AVO expressions in the 
perturbation domain and reflectivity domain. 

 

POROELASTICITY THEORY 

Poroelasticity theory concerns what happens when we introduce a pore fluid into an 
initially dry (or drained) porous rock (Russell et al., 2011). Biot (1941) and Gassmann 
(1951) show that this pore fluid may be compensated by a fluid term (݂ =  that is (ܯଶߙ
the dissipative term corresponding to the viscoelastic effects associated with the 
squeezing of the fluid in the small, cracklike volumes surrounding the areas of contact 
(Biot, 1962). There are three elastic moduli that this theory applies to. The first modulus 
comes from the conclusion that Biot (1941) was able to acquire for the Lamé parameter ߣ 
where   

 2
sat dry Mλ λ α= + ,  (3) 

the coefficient ୢߣ୰୷ represents the elastic compressibility due to the elastic grains, and ߙଶܯ consists of the Biot coefficient (ߙ) and poroelastic modulus. The second elastic 
modulus involves the bulk modulus that also compensates for fluid in the same way ߣୱୟ୲ 
can such that 

 2
sat dryK K Mα= + ,  (4) 

The third and modulus involves the shear modulus and is unaffected by pore where 

 sat dryμ μ= .  (5) 

Gassmann’s (1951) contribution involves the Biot coefficient ߙ and parameter ܯ 
where both may be written in terms of elastic parameters. 

Given the relations in equations (3), (4), and (5) the elastic equations for P-wave 
velocity and S-wave velocity may be rewritten such that they will account for poroelastic 
effects. For elastic media, expressions for P- and S-wave velocities can be written such 
that  
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where ߩ is density and ݏ is the ‘skeleton’ term (Russell et al., 2011). Biot (1941) and 
Gassmann (1951) have developed a fluid compensation mechanism that can be applied 
directly to elastic constants. This type of compensation is also known as a Gassmann 
fluid substitution. By using this substitution, we may transition the elastic P- and S-wave 
velocities into poroelastic P- and S-wave velocities by substituting equations (3), (4), and 
(5) into (6) and (7). We write these poroelastic expressions for ௉ܸ and ௌܸ such that  
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Since equation (7) does not include the fluid modulus ߙଶܯ, the poroelastic S-wave 
velocity remains unchanged.  

The poroelastic parameters as defined by Russell et al. (2011) are ݂, ߤ, and ߩ. These 
parameters can be isolated from equations (8) and (9) where we may write ݂, ߤ, and ߩ in 
terms of ௉ܸ, ௌܸ, and ߩ. We can then transition from these poroelastic parameters (݂, ߩ ,ߤ) 
into perturbation parameters (ܽ௙, ܽఓ, ܽఘ) or reflectivity parameters (Δ݂/݂, Δߤ/ߤ, Δߩ/ߩ) . 
Perturbation and reflectivity notation is useful as they may be used as a dialing 
mechanism to measure relative change between two adjacent media. We may solve for a 
set AVO expressions either in terms of perturbation or reflectivity depending on the user 
preference. Thus, we may have two sets of equations that represent exact, linear, and 
nonlinear poroelastic AVO expressions. 

In order to implement perturbation or reflectivity into the Zoeppritz equations, we 
must introduce the definitions for them. Perturbation terms for fluid, shear modulus, and 
density show the property contrasts of two adjacent media and are written such that  

 0 0 0

1 1 1
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= − = − = − . (10) 

The reflectivity terms are written differently  
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where each reflectivity term is a difference divided by the average. Equation (10) or 
(11), when substituted back into equation (1), will yield a new set of Zoeppritz equations 
that will effectively change all of the ܣ௜௝ elements in ۾ and ௝ܽ elements in ܕ௉. This new 
set of Zoeppritz equations will be referred to as the poroelastic Zoeppritz equations and 
are written as 
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The four-by-four matrix ۾෩, containing a total of sixteen elements, is characterized by 
the poroelastic parameters ݂, ߩ ,ߤ and the incident angle of the P-wave, sin  ଴. Theߠ
vector, ܕ෥௉, on the right hand side of equation (12) is a column vector of four elements 
that is characterized the same as ۾෩. The details of ۾෩ and ܕ෥௉ are shown in the appendix. 

ACHIEVING EXACT, LINEAR, AND NONLINEAR ࡾ෩۾۾ 

After redefining each element of the Zoeppritz equations to account for poroelastic 
perturbation paameters, Cramer’s rule is then implemented to solve for ෨ܴ୔୔. Doing so 
requires rearranging ۾෩ in equation (12) such that another matrix is created. That is, it 
requires substituting the first column of ܣሚ௜௝ elements in ۾෩ with the column of ෤ܽ௝ elements 
in ܕ෥௉. This new matrix will be called ۾෩௉. The next step, according to Cramer’s rule, is to 
calculate the determinant of matrices ۾෩௉ and ۾෩ and to take their quotient such that we can 
calculate PP reflection coefficient ෨ܴ୔୔ where 

 PP

det

det
PR = P

P




 .  (13) 

The solution for equation (13) is very large as it contains many instances of non-first 
order elements. The use of mathematical processing software Maple was useful to 
calculate the ratio of determinants for ෨ܴ୔୔, eliminate (cull) ordered terms that were 
unnecessary, and organize the algebra. There are two sets of approximations that bring 
the number of approximations to six: three that measure perturbation and another three 
that measure reflectivity. The first set of equations is shown in equations (14) – (16). 
These equations show the first, second, and third order approximations with respect to 
perturbations. In equation (14), the first order approximation shows three linear terms 
marked by a weighting coefficient, ܹ, and a first order perturbation term. Equation (15) 
represents the second order approximation and contains the three linear terms from the 
first order approximation in addition to six second order terms that are also marked by a 
weighting coefficient and perturbations in second order. Equation (16) is the third order 
approximation contains a total of nineteen terms, ten of which are in third order. The 
second set of approximations, written with respect to reflectivity, is shown in equations 



Kim and Innanen 

6 CREWES Research Report — Volume 25 (2013)  

(17) – (19). This set of approximations contains the same number of ordered terms that is 
found in the equations representing perturbation. 

In the set of approximations that measure perturbation, the first order approximation is  

 ( )
1 2 3PP 0 1 a f a aR W a W a W aμ ρθ = + + , (14) 

the second order approximation is 

 
( )

1 2 3 4 5 6

7 8 9

2 2 2
PP 0 2

,

a f a a a f a a

a f a f a

R W a W a W a W a W a W a

W a a W a a W a a

μ ρ μ ρ

μ ρ μ ρ

θ = + + + + +

+ + +


  (15) 

and the third order approximation is 

 

( )
1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17

18 19

2 2 2
PP 0 3

3 3 3

2 2 2 2 2

2 .

a f a a a f a a

a f a f a a f a a

a f a f a f a a f

a a f

R W a W a W a W a W a W a

W a a W a a W a a W a W a W a

W a a W a a W a a W a a W a a

W a a W a a a

μ ρ μ ρ

μ ρ μ ρ μ ρ

μ ρ μ μ ρ ρ

ρ μ μ ρ

θ = + + + + +

+ + + + + +

+ + + + +

+ +



  (16) 

In the other set of approximations that measure reflectivity, the first order 
approximation is 
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the second order approximation is 
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and the third order approximation is 
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The ܹ coefficients in these two sets of approximations may be found in the appendix. 

VALIDATION WITH RUSSELL AND GRAY 

Russell and Gray have presented a linearized poroelastic approximation for PP 
reflection coefficients that resembles forms shown by Aki and Richards (2002), Shuey 
(1985), Wiggins et al. (1983), and Smith and Gidlow (1987). It is different from those 
mentioned by having the ability to detect fluid of the target of interest by predicting fluid 
directly from the amplitude data. Their equation takes the form 
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where ߠ is the average between the incidence and refraction angles, Δ݂/݂, Δߤ/ߤ, Δߩ/ߩ are the reflectivities, ߛdry = ൫ ௉ܸబ + ௉ܸభ൯ୢ୰୷/൫ ௌܸబ + ௌܸభ൯ୢ୰୷ and  ߛsat =൫ ௉ܸబ + ௉ܸభ൯ୱୟ୲/൫ ௌܸబ + ௌܸభ൯ୱୟ୲, where the subscripts ‘dry’ and ‘sat’ represent the skeleton 

framework of the geologic matrix of the material and the skeleton framework that has 
been saturated in fluid, respectively. By comparing the first order approximation of ෨ܴ୔୔ 
in reflectivity with the Russell and Gray approximation, we argue that this would validate 
our method. Our result yielded a first order approximation such that 
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Equation (20) and (21) are relatively similar to each other in comparison. The only 
difference is the fact that the Russell and Gray approximation uses parameter averages 
instead of incident medium parameters for the first order approximation. This is 
explained by the two different approaches that are used to each equation (20) and (21). 
The Russell and Gray approximation  is derived through the Aki and Richards 
approximation which, in itself, is parameterized by averages of the elastic properties ௉ܸ, ௌܸ, ߩ and average angle ߠ. The first order approximation is derivative of the Zoeppritz 
equations that is written in terms of elastic property components ( ௉ܸబ, ௉ܸభ, ௌܸబ, ௌܸభ, ߩ଴, ߩଵ). By ultimately transforming the property components into perturbations, it was by 
choice to leave the parameters in terms of medium 0. The same form of AVO 
expressions, using our derivation technique, would result in the same form if we chose to 
involve parameters in terms of medium 1. Thus, equation (20) and (21) are equivalent. 

NUMERICAL RESULTS 

In figures (1) – (6), AVO modeling is performed on a model consisting of two 
homogeneous layers separated by a horizontal interface. The top layer (medium 0) 
contains its own unique set of fluid, shear modulus, and density parameters as does the 
bottom layer (medium 1). The numerical results are calculated such that fluid, shear 
modulus, and density are predetermined for medium 1. Depending on the level of 
contrast between medium 0 and medium 1 would be selected by the 
perturbation/reflectivity value. This value would then be used to calculate fluid, shear 
modulus, and density for medium 0. 

This could also be done where medium 0 is used as the reference medium and the 
properties of medium 1 change relative to. For future work, we would need to consider 
emphasis on modeling AVO curves to match geophysically realistic properties. 

For medium 1 the values selected are 

1

1

3
1

7.000GPa,
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f

μ
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and medium 0 values are calculated using 
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The AVO curves in figures (1) – (6) demonstrate the performance of the perturbation 
based equations and the reflectivity based equations. Figure (1) shows perturbation-based 
AVO modeling where all three perturbation constants are equal. Figure (2) shows 
reflectivity-based AVO modeling using where all three reflectivity constants are equal. In 
figures (3) – (5), a comparison is made between the perturbation and reflectivity models 
using perturbation/reflectivity constants that vary. By this we mean that we remain the 
perturbation/reflectivity constants to be equal and then to change the properties of either 
fluid, shear modulus, or density one at a time such that we can observe how this affects 
the amplitude trends as well as the accuracy of the approximations. Figure (6) continues 
to compare the performance of the perturbation models and the reflectivity models 
however, we select fluid, shear modulus, and density parameters such that medium 
property contrasts are equal instead of perturbation and reflectivity. 

Figure (1) illustrates the capabilities of the perturbation approximations using values 
for ܽ௙, ܽఓ, and ܽఘ where the values are shown in table (1). Figure (1a) shows the 
reflection strengths based on small perturbation values ܽ௙ = ܽఓ = ܽఘ = 0.100. With 
these perturbation values, the first, second, and third order approximations are predicting 
exact ෨ܴ୔୔ with high accuracy. Figure (1b) shows the reflection strengths based on a 0.1 
increase in perturbation for each perturbation parameter such that ܽ௙ = ܽఓ = ܽఘ =0.200. It is noticeable that the amplitude trend has increased due to the increase in 
perturbation. It is also apparent that the first order approximation has decreased in 
accuracy relative to exact ෨ܴ୔୔. An increase in perturbation to ܽ௙ = ܽఓ = ܽఘ = 0.400 
shows a more dramatic decrease in accuracy of the first order approximation as well as 
accuracy decrease for the second order approximation in figure (1c). In figure (1d), an 
increase of perturbation to ܽ௙ = ܽఓ = ܽఘ = 0.500 highlights a slight decrease in 
accuracy of the third order approximation. 

Figures (2a) through (2d) illustrate the same numerical approach to model AVO 

curves as figures (1a) through (1d) by using 
୼௙௙ = ୼ఓఓ = ୼ఘఘ = 0.100 for figure (2a) and so 

on. Figure (2) measures the accuracy of the first, second, and third order approximations 
relative to exact ෨ܴ୔୔ in the reflectivity domain (Δ݂/݂, Δߤ/ߤ, Δߩ/ߩ). In figure (2a), the 

reflectivity parameters are small, 
୼௙௙ = ୼ఓఓ = ୼ఘఘ = 0.100. Reflectivity parameters of this 

magnitude show that the first, second, and third order approximations are predicting exact ෨ܴ୔୔ very well. As reflectivity in fluid, shear modulus, and density is increased from 
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figure (2b) – (2d), the approximations do not lose any accuracy and maintain consistency 
with exact ෨ܴ୔୔. 

Figure (3) shows a comparison of the performance of the perturbation based modeling 
and the reflectivity based modeling simultaneously. (3a) and (3b) compare the differences 

in perturbation modeling and reflectivity modeling respectively using ܽ௙ = ୼௙௙ = 0.300, ܽఓ = ୼ఓఓ = 0.100, and ܽఘ = ୼ఘఘ = 0.100. (3c) and (3d) compare the differences in 

perturbation and reflectively modeling respectively using ܽ௙ = ୼௙௙ = 0.100, ܽఓ = ୼ఓఓ =0.300, and ܽఘ = ୼ఘఘ = 0.100. (3e) and (3f) compare the difference in perturbation and 

reflectivity modeling respectively using ܽ௙ = ୼௙௙ = 0.100, ܽఓ = ୼ఓఓ = 0.100, and ܽఘ = ୼ఘఘ = 0.300.  

It is clear that comparing figures (3a) and (3b) shows that the first order approximation 
written for perturbation is less accurate than the first order approximation for reflectivity. 
In comparing figures (3c) and (3d), again the first order approximation in the perturbation 
domain is less accurate than the first order approximation in the reflectivity domain. For 
figures (3e) and (3f), the trend in the AVO curves is significantly different to the previous 
two sets of figures however; the result is similar in that the first order approximation in 
perturbation is less accurate than its reflectivity domain counterpart. 

In figure (4), a similar type of analysis is performed as in (3). An increase in the single 
perturbation/reflectivity constant is measured to be 0.600. Doing so has significantly 
affected the accuracy of the first, second, and third order approximations in the 
perturbation domain. This is seen in figures (4a), (4c), and (4e). The reflectivity domain 
based equations however remain largely unaffected. 

In figure (5), another increase in the single perturbation/reflectivity constant is now 
measured to be 0.900. This increase has brought another significant decrease in accuracy 
for first, second, and third order approximations measuring perturbations. The reflectivity 
based equations still maintain close proximity to the exact equations, especially for the 
nonlinear approximations. 

In figure (6) the analysis is performed such that ݂, ߤ, and ߩ for both the upper and 
lower media remain constant while ܽ௙, ܽఓ, ܽఘ and Δ݂/݂, Δߤ/ߤ, Δߩ/ߩ are calculated 
accordingly. In table (6), we notice that the perturbation values increase by increments of 
0.200 from figure (6a) – (6c) and (6c) – (6e). The reflectivity values however, increase by 
0.278 from figure (6b) – (6d) and another increase by 0.357 from figure (6d) – (6f). 
Given that the values for ݂, ߤ, and ߩ are equally analyzed in each (6a), (6b), and (6c), 
(6d), and (6e), (6f) set, it is clear that the reflectivity domain equations are consistently 
more accurate than the perturbation based equations. 
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FIG. 1: All four panels have chosen a consistent perturbation each in ܽ௙, ܽఓ, and ܽఘ. There are 
four curves that are produced in each panel: the blue curve represents the exact solutions while 
the black, magenta, and red curve represents the 1st, 2nd, and 3rd order approximation 
respectively. 

Figures 
Values for perturbations ൫ܽ௙ = ܽఓ = ܽఘ൯ 

5.1a 0.100 

5.1b 0.200 

5.1c 0.400 

5.1d 0.500 

TAB. 1: This displays the values used for perturbations from figure (1). 
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FIG. 2: All four panels have chosen a consistent reflectivity each in Δ݂/݂, Δߤ/Δߤ, and Δߩ/ߩ. 
There are four curves that are produced in each panel: the blue curve represents the exact 
solutions while the black, magenta, and red curve represents the 1st, 2nd, and 3rd order 
approximation respectively. 

Figures 
Values for perturbations ሺΔ݂/݂ = Δߤ/ߤ = Δߩ/ߩሻ 

5.2a 0.100 

5.2b 0.200 

5.2c 0.400 

5.2d 0.500 

TAB 2: This displays the values used for reflectivities from figure (2). 
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FIG. 3: (a), (c), and (e) represent the perturbation based poroelastic AVO approximations of 1st, 
2nd, and 3rd order and are shown by the black, magenta, and red curves respectively. (b), (d), 
and (f) represent the reflectivity based poroelastic AVO approximations of 1st, 2nd, and 3rd order 
and are shown by the black, magenta, and red curves respectively. The exact amplitudes are 
shown by the blue curve. 
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Figure Δ݂/݂ Δߤ/ߤ Δߩ/ߩ 

5.3b 0.300 0.100 0.100 

5.3d 0.100 0.300 0.100 

5.3f 0.100 0.100 0.300 

TAB. 3: Values for perturbation and reflectivity for figure (3). 
 

 

 

 

 

 

 

 

 

 

Figure ܽ௙ ܽఓ ܽఘ 

5.3a 0.300 0.100 0.100 

5.3c 0.100 0.300 0.100 

5.3c 0.100 0.100 0.300 
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FIG. 4: (a), (c), and (e) represent the perturbation based poroelastic AVO approximations of 1st, 
2nd, and 3rd order and are shown by the black, magenta, and red curves respectively. (b), (d), and 
(f) represent the reflectivity based poroelastic AVO approximations of 1st, 2nd, and 3rd order and 
are shown by the black, magenta, and red curves respectively. The exact amplitudes are shown 
by the blue curve. 
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Figure Δ݂/݂ Δߤ/ߤ Δߩ/ߩ 

5.4b 0.600 0.100 0.100 

5.4d 0.100 0.600 0.100 

5.4f 0.100 0.100 0.600 

TAB. 4: Values for perturbation and reflectivity for figure (4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ܽ௙ ܽఓ ܽఘ 

5.4a 0.600 0.100 0.100 

5.4c 0.100 0.600 0.100 

5.4c 0.100 0.100 0.600 
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FIG. 5: (a), (c), and (e) represent the perturbation based poroelastic AVO approximations of 1st, 
2nd, and 3rd order and are shown by the black, magenta, and red curves respectively. (b), (d), and 
(f) represent the reflectivity based poroelastic AVO approximations of 1st, 2nd, and 3rd order and 
are shown by the black, magenta, and red curves respectively. The exact amplitudes are shown 
by the blue curve. 
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Figure Δ݂/݂ Δߤ/ߤ Δߩ/ߩ 

5.5b 0.900 0.100 0.100 

5.5d 0.100 0.900 0.100 

5.5f 0.100 0.100 0.900 

TAB. 5: Values for perturbation and reflectivity for figure (5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ܽ௙ ܽఓ ܽఘ 

5.5a 0.900 0.100 0.100 

5.5c 0.100 0.900 0.100 

5.5c 0.100 0.100 0.900 



Linear and nonlinear poroelastic AVO 

 CREWES Research Report — Volume 25 (2013) 19 

 

 

 

FIG. 6: (a), (c), and (e) represent the perturbation based poroelastic AVO approximations of 1st, 
2nd, and 3rd order and are shown by the black, magenta, and red curves respectively. (b), (d), and 
(f) represent the reflectivity based poroelastic AVO approximations of 1st, 2nd, and 3rd order and 
are shown by the black, magenta, and red curves respectively. The exact amplitudes are shown 
by the blue curve. 
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Figure Δ݂/݂ Δߤ/ߤ Δߩ/ߩ 

5.6b 0.222 0.222 0.222 

5.6d 0.500 0.500 0.500 

5.6f 0.857 0.857 0.857 

TAB. 6: Values for perturbation and reflectivity for figure (6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ܽ௙ ܽఓ ܽఘ 

5.6a 0.200 0.200 0.200 

5.6c 0.400 0.400 0.400 

5.6c 0.600 0.600 0.600 
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CONCLUSIONS 

Our method in deriving exact, linear, and nonlinear poroelastic AVO expressions 
come from manipulation of the Zoeppritz equations. This manipulation causes elastic 
parameters within the Zoeppritz equations to model poroelastic perturbation or 
poroelastic reflectivity instead. These poroelastic perturbation and reflectivity parameters 
stem from the work of Russell et al. (2011). Russell et al. (2011) provide an AVO 
expression that is able to account for fluids found in-situ. Using Biot (1941) and 
Gassmann (1951), Russell et al. (2011) are able to show how to compensate for pore 
fluids that are found in seismic amplitude data. We refer to this expression as the Russell 
and Gray approximation which is able to detect fluid directly from the amplitude data 
using a least squares technique. This approximation, however, only is able to account for 
amplitude variations for linear models. Thus, we have shown an alternate method to 
provide extensional benefit to account for nonlinearity that is typically found in AVO. 

In our numerical study, it is clear that the results show that the ability to predict AVO 
data is better handled by the third order approximation. Moreover, the reflectivity domain 
approximations showed better predictions of AVO data than the perturbation domain 
approximations.  
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APPENDIX  

The contents of this appendix show the weighting terms that are found in the first, 
second, and third order poroelastic AVO approximations for both in perturbation (ܽ௙, ܽఓ, ܽఘ) and reflectivity (Δ݂/݂, Δߤ/ߤ, Δߩ/ߩ) domains. The weighting terms for perturbation 
are shown in sections (A.1) through (A.3) and the weighting terms for reflectivity are 
shown in sections (A.4) – (A.6). The elements of the poroelastic Zoeppritz equations for ۾෩ and ܕ෥௉ are shown in section (A.7). 
 
A.1 First order poroealstic weighting terms for ࣋ࢇ ,ࣆࢇ ,ࢌࢇ 
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A.2 Second order poroelastic weighting terms for ࣋ࢇ ,ࣆࢇ ,ࢌࢇ 
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A.3 Third order poroelastic weighting terms for ࣋ࢇ ,ࣆࢇ ,ࢌࢇ 
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A.4 First order poroelastic weighting terms for ઢࢌ/ࢌ, ઢࣆ/ࣆ, ઢ࣋/࣋ 
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A.5 Second order poroelastic weighting terms for ઢࢌ/ࢌ, ઢࣆ/ࣆ, ઢ࣋/࣋ 
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A.6 Third order poroelastic weighting terms for ઢࢌ/ࢌ, ઢࣆ/ࣆ, ઢ࣋/࣋ 
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A.7 Elements for ۾෩ and ܕ෥ࡼ in the poroelastic Zoeppritz equations  
From equation (12), we write the ܣሚ௜௝ elements of ۾෩ such that 
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For ܕ෥௉, we write the ෤ܽ௝ elements as a column vector where 
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We will display each ܣሚ௜௝ element of ۾෩ row-by-row and each ෤ܽ௝ in ܕ෥௉ respectively in 
terms of poroelastic perturbations ܽ௙, ܽఓ, ܽఘ. Note that matrix ۾෩ and column vector ܕ෥௉ 
may be written in terms of poroelastic reflectivities Δ݂/݂, Δߤ/ߤ, Δߩ/ߩ. In the first row ۾෩, the ܣሚ௜௝ elements are 
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the elements of the second row are 
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and the elements of the vector, ܕ෥௉, on the right-hand side are 
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In the Zoeppritz equations shown in equation (1), there are instances of ௉ܸ/ ௌܸ ratios that 
occur. These ratios are replaced with the parameter ߛ in equation (12). We also used the 
subscript ‘0’ to indicate that the parameter is referencing the upper medium of a two-
layer model. 
 
 
 

REFERENCES 

Aki, K., and Richards, P. G., 2002, Quantitative seismology, 2nd ed: W. H. Freeman and Co. 
Arntsen, B., Carcione, J. M., 2001, Numerical simulation of the Biot slow wave in water-saturated 

Nivelsteiner Sandstone: Geophysics, 66, 890-896. 
Biot, M. A., 1941, General theory of three-dimensional consolidation: Applied Physics, 12, 155-164 
Biot, M. A., 1962, Mechanics of deformation and acoustic propagation in porous media: Applied Physics, 

33, 1482-1498. 
Cowin S. C., 2013, Continuum mechanics of anisotropic materials: Springer Science+Business Media New 

York. 
Foster, D. J., Keys, R. G., and Lane, F. D., 2010, Interpretation of AVO anomalies: Geophysics, 75, 75A3-

75A13. 
Gassmann, F., 1951, Über die elastizitat poroser median: Vierteljahrsschrift der naturforschenden 

gesellschaft, 96. 
Gurevich, B., Ciz, R., and Denneman A. I. M., 2004, Simple expressions for normal incidence reflection 

coefficients from an interface between fluid-saturated porous materials: Geophysics, 69, 1372-
1377. 

Innanen, K. A., and Lira, J. E., 2010, Direct nonlinear Q-compensation of seismic primaries reflecting from 
a stratified, two-parameter absorptive medium: Geophysics, 75, V13-V23. 

Keys, R. G., 1989, Polarity reversals in reflections from layered media: Geophysics, 54, 900-905. 
Russell, B. H., Gray, D., and Hampson, D. P., 2011, Linearized AVO and poroelasticity: Geophysics, 76, 

C19-C29. 
Shuey, R., 1985, A simplification of the Zoeppritz equations: Geophysics, 50, 609-614. 
Smith, G., and Gidlow, P., 1987, Weighted stacking for rock property estimation and detection of gas: 

Geophysical Prospecting, 35, 993-1014. 
Weglein, A. B., Fernanda, V. A., Carvalho, P. M., Stolt, R. H., Matson, K. H., Coates, R. T., Corrigan, D., 

Foster, D. J., Shaw, S. A., and Zhang, H., 2003, Inverse scattering series and seismic exploration: 
Inverse Problems, 19, R27-R83 

Weglein, A. B., Zhang, H., Ramirez, A. C., Liu, F., and Lira, J. E. M., 2009, Clarifying the underlying and 
fundamental meaning of the approximate linear inversion of seismic data: Geophysics, 74, 
WCD1-WCD13. 

Wiggins, R., Kenny, G. S., and McClure, C. D., 1983, A method for determining and displaying the shear-
velocity reflectivities of a geologic formation: European Patent Application 0113944. 

Zhang, H., Weglein, A. B., 2009, Direct nonlinear inversion of 1D acoustic media using inverse scattering 
subseries: Geophysics, 74, WCD29-WCD39. 

Zoeppritz, K,. 1919, Erdbebenwellen VIII B, Über die Reflexion und Durchgangseismischer Wellen durch 
Unstetigkeitsflächen: Gottinger Nachr, 1, 66–84. 


