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ABSTRACT

A velocity-stress staggered-grid 2D finite difference algorithm was developed in Mat-
lab to model the wave propagation in poroelastic media. The Biot’s equations of motion
were formulated using a finite difference algorithm with fourth order accuracy in space and
second order accuracy in time. We examined two examples, where the first was a single
layer sandstone saturated with brine and CO2 and second, a two-layered sandstone model
with same matrix properties in both layers, but with different fluid content. As predicted by
Biot’s theory a slow compressional wave was observed in the particle velocity snapshots.
In the layered model, at the boundary, the slow P-wave converts to a P-wave that travels
faster than the slow P-wave. The results showed that our algorithm handles the layered
model perfectly and should be examined for more complicated models. In the future, this
finite difference algorithm could be used for inversion to obtain the properties of the porous
media, such as saturation.

INTRODUCTION

Seismic modeling is an important part of the seismic inversion algorithm. In elastic
seismic modeling the pore fluid properties such as density, velocity, viscosity and satura-
tion are neglected in spite of the reservoir rocks being porous media saturated with fluids.
Wave propagation in porous media has attracted attention in the last fifty years since Mau-
rice Biot established his theory on poroelasticity (Biot, 1962). Biot’s theory could be used
in the oil and gas industry for exploration and monitoring purposes. It could also be used for
detection of CO2 at Carbon Capture and Storage projects where CO2 is injected into deep
geological formations for permanent storage. Wave propagation in a poroelastic media is
more complicated than the elastic media due to the existence of pore fluid. The relative
movement of the fluid with respect to the solid generates a second P-wave called "slow
P-wave" which is strongly dissipative and has a velocity close to the velocity of the fluid.
Numerical examination of the Biot’s theory has been done in several ways (Carcione et al.,
2010). Finite difference method is one of the most commonly used methods for numeri-
cal modeling. The Biot’s equations have been formulated using various finite difference
schemes. Zhu and McMechan (1991) used central-difference approximation to formulate
the particle displacements. Others employed velocity-stress staggered-grid finite difference
formulation (Dai et al., 1995; Sheen et al., 2006; Zeng and Liu, 2001).

In this study, we developed a velocity-stress finite difference algorithm in Matlab to
model the wave propagation in the porous media. This algorithm can be used for inversion
in the future to calculate the properties of the porous rock which are neglected in elastic
modeling. In the next pages, the Biot’s theory of poroelasticity will be briefly reviewed and
the finite-difference formulation of the corresponding equations will be presented. At the
end, the program is examined with numerical examples.
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Biot’s theory of poroelasticity

Maurice Biot was the first who established the theory of poroelasticity. He made the
following assumptions to derive the equations of motion in the porous media: (1) the rock
frame is assumed to be elastic;(2) the pores are connected so that the fluid could travel
through the pore space; (3) the seismic wavelength is much larger than the average pore
size; (4) the deformations are so small that the mechanical processes become linear; (5) the
medium is statistically isotropic(Zhu and McMechan, 1991). Although Biot extended his
theory to more general cases such as anisotropic porous media, in this work we concen-
trate on the isotropic case. The partial differential equations for the wave propagation in
poroelastic media was also derived by Pride et al. (1992) using direct volume averaging.

From the stress-strain relation for a porous medium (Biot, 1962), the solid stress τ and
the pore fluid pressure P are given by

τij = 2µeij + (λcekk + αMεkk)ij (1)

P = −αMekk −Mεkk (2)

where eij = ∇.u = 1
2
( ∂ui
∂xj

+
∂uj
∂xi

) is the solid strain, with u being the particle velocity
of the solid, and εij = ∇.(u− U), where U is the particle displacement of the fluid. µ
is the shear modulus and λc is the Lame parameter of the saturated rock. α is defined by
1− KDry

KSolid
where KSolid and KDry are the bulk moduli of the solid and the dry rock frame,

respectively. M is coupling modulus defined by [ φ
KFluid

+ (α−φ)
KSolid

], with KFluid being the
bulk modulus of the fluid.

In addition, based on Biot’s theory, equations of motion for a statistically isotropic
porous media saturated with viscous fluid are:

(mρ− ρ2f )
∂2ui
∂t2

= m
∂τij
∂xj

+ ρfb
∂wi
∂t

+ ρf
∂P

∂xi
(3)

(mρ− ρ2f )
∂2wi
∂t2

= −ρf
∂τij
∂xj
− ρb∂wi

∂t
− ρ∂P

∂xi
(4)

where w = u − U is the particle displacement vector of the fluid relative to the solid. ρf
and ρ are the fluid and saturated rock densities and b is the fluid mobility defined by η/κ,
with η being the viscosity of the fluid and κ being the permeability of the porous rock.
m = T

ρf
φ

is the effective density of the fluid, with T being the tortuosity. Equations (3)
and (4) are second order differential equations in time. By defining the solid and relative
particle velocities V = ∂u

∂t
and W = ∂w

∂t
these equations could be written as first order

equations in time:

(mρ− ρ2f )
∂Vi
∂t

= m
∂τij
∂xj

+ ρfbW + ρf
∂P

∂xi
(5)

(mρ− ρ2f )
∂Wi

∂t
= −ρf

∂τij
∂xj
− ρbW − ρ∂P

∂xi
(6)
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Furthermore, by taking derivatives with respect to time from both sides of equations (1)
and (2) we will have:

∂τij
∂t

= 2µ
∂eij
∂t

+ (λc
∂ekk
∂t

+ αM
∂εkk
∂t

)δij (7)

∂P

∂t
= −αM ∂ekk

∂t
−M∂εkk

∂t
(8)

In the 2D case, equations (5), (6), (7) and (8) make a set of 8 coupled equations which can
be used for finite difference modeling. These equations are:

∂τxx
∂t

= (λc + 2µ)
∂Vx
∂x

+ λc(
∂Vz
∂z

) + αM(
∂Wx

∂x
+
∂Wz

∂z
) (9)

∂τzz
∂t

= (λc + 2µ)
∂Vz
∂z

+ λc(
∂Vx
∂x

) + αM(
∂Wx

∂x
+
∂Wz

∂z
) (10)

∂τxz
∂t

= µ(
∂Vz
∂x

+
∂Vx
∂z

) (11)

∂P

∂t
= −αM(

∂Vx
∂x

+
∂Vz
∂z

)−M(
∂Wx

∂x
+
∂Wz

∂z
) (12)

∂Vx
∂t

= A(
∂τxx
∂x

+
∂τxz
∂z

) +BWx + C
∂P

∂x
(13)

∂Vz
∂t

= A(
∂τzx
∂x

+
∂τzz
∂z

) +BWz + C
∂P

∂z
(14)

∂Wx

∂t
= D(

∂τxx
∂x

+
∂τxz
∂z

) + EWx + F
∂P

∂x
(15)

∂Wz

∂t
= D(

∂τzx
∂x

+
∂τzz
∂z

) + EWz + F
∂P

∂z
(16)

where A = m
(mρ−ρ2f )

, B =
ρf b

(ρ−ρ2f )
, C =

ρf
(mρ−ρ2f )

, D =
−ρf

(mρ−ρ2f )
, E = −ρb

(mρ−ρ2f )
and F =

−ρ
(mρ−ρ2f )

. These stress-particle velocity equations can be used for finite difference modeling
using staggered-grid scheme.

Staggered-grid finite difference algorithm

To model the wave propagation in poroelastic media, equations (9) to (16) need to be
discretized using the finite difference algorithm. The unknowns are the solid stresses τxx,τzz
and τxz, the fluid pressure P , the solid particle velocities Vx and Vz, and the fluid particle
velocities Wx and Wz. For more accuracy a velocity-stress staggered-grid finite difference
scheme was used for numerical modeling. In this scheme the solid stresses τxx,τzz and the
fluid pressure P , are calculated on the regular grid whereas other unknowns are calculated
on the staggered grid where the grid points are shifted by half a grid size (Figure 1).

By discretizing the differential equations (9) to (16) using the staggered-grid scheme
we have:

V
n+1/2

xi+1/2,j = V
n−1/2

xi+1/2,j +4t[A(4xτxx +4zτxz) + C
∂P

∂x
]|ni+1/2,j +B4tW n−1/2

xi+1/2,j (17)
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V
n+1/2

zi,j+1/2 = V
n−1/2

zi,j+1/2 +4t[A(4xτxz +4zτzz) + C
∂P

∂z
]|ni,j+1/2 +B4tW n−1/2

zi,j+1/2 (18)

W
n+1/2

xi+1/2,j = W
n−1/2

xi+1/2,j +4t[D(4xτxx +4zτxz) + F
∂P

∂x
]|ni+1/2,j + E4tW n−1/2

xi+1/2,j (19)

W
n+1/2

zi,j+1/2 = W
n−1/2

zi,j+1/2 +4t[D(4xτxz +4zτzz) + F
∂P

∂z
]|ni,j+1/2 + E4tW n−1/2

zi,j+1/2 (20)

τn+1
xxi,j

= τnxxi,j +4t[(λc + 2µ)4xVx + λc4zVz + αM(4xWx +4zWz)]|n+1/2
i,j (21)

τn+1
zzi,j

= τnzzi,j +4t[(λc + 2µ)4zVz + λc4xVx + αM(4xWx +4zWz)]|n+1/2
i,j (22)

τn+1
xzi+1/2,j+1/2 = τnxzi+1/2,j+1/2 +4t[µ(4xVz +4zVx)]|n+1/2

i+1/2,j+1/2 (23)

P n+1
i,j = P n

i,j −4t[αM(4xVx +4zVz) +M(4xWx +4zWz)]|n+1/2
i,j (24)

where superscripts and subscripts denote temporal and spatial indices, respectively. At any
time t, t = t0 + n4t, where t0 is the initial time and 4t is the temporal sampling. At
location (x, z), x = x0 + ih and z = z0 + jh, where(x0, z0) is the initial location, and h is
the spatial sampling. 4x and4z are fourth-order O(h4) partial differential operators with
respect to x and z, that are centred about the quantity being calculated(Levander, 1988).
For example :

4xVx|n+1/2
i,j = [−c2(V n+1/2

xi+1/2 − V
n+1/2

xi−1/2 )− c1(V
n+1/2

xi+3/2 − V
n+1/2

xi−3/2 )]/h (25)

where c2 = 9/8 and c1 = 1/24, are the inner and outer difference coefficients defined by
Levander (1988).

FIG. 1. The staggered-grid layout and the locations of stress, velocity and pressure components.
In this diagram τxx,τzz and P are marked by X, Vx and Wx by Y, Vz and Wz by Z, and τxz by O.

Numerical examples and analysis

Equations (17) to (24) were programmed in Matlab to simulate the wave propagation
in a homogenous, isotropic, poroelastic media. To examine this program, two models
were defined based on the Quest Carbon Capture and Storage project in Alberta. The
purpose of the Quest project is to reduce the CO2 emission from Scotford Upgrader by
storing CO2 in a deep geological formation (Shell, 2010). The location of the Scotford
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Upgrader is about 5 km northeast of Fort Saskatchewan, Alberta, within an industrial zone.
The selected geological formation for the CO2 storage is Basal Cambrian Sands or BCS,
which is a saline aquifer within the Western Canadian Sedimentary Basin (WCSB) with
an approximate depth of 2000 m from the surface. The first numerical example used in
this study was a single layer model generated using the properties of the storage formation,
BCS. The rock properties of the BCS were obtained from the log data available at the
area of study(Moradi and Lawton, 2012). The purpose was to have a model of BCS after
injecting the CO2. Change of the pore fluid leads to the change in the physical properties
of the rock including the P-wave velocity and the density(Gassmann, 1951; Smith et al.,
2003). In order to calculate these changes, Gassmann fluid substitution modeling was
undertaken for BCS using the Gassmann method (Moradi and Lawton, 2012). Figure 2
shows the changes of the P-wave velocity in BCS versus the CO2 saturation. Note that
the velocity changes rapidly for the saturation values below 20% and gradually for values
above 20%. The maximum change occurs between values of 40% to 45% CO2 saturation.
Therefore our single layer model was a porous sandstone saturated with a mixture of brine
and CO2 where CO2 saturation was chosen to be 40%. The properties of this model are
listed in Table 1.
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FIG. 2. The Change in P-wave velocity in the BCS after injecting CO2. The maximum change
occurs at 40% saturation.

Table 1. Physical properties of the example models

Single layer model Two layer model
Layer one Layer two

ρf 937 (kg/m3) 1070 (kg/m3) 937 (kg/m3)
ρ 2370 (kg/m3) 2400 (kg/m3) 2370 (kg/m3)
Vp 3800 (m/s) 4100 (m/s) 3800 (m/s)
Vs 2400 (m/s) 2390 (m/s) 2400 (m/s)
φ 16% 16% 16%
κ 1(mD) 1(mD) 1(mD)
η 0.001(Poise) 0.003(Poise) 0.001(Poise)

The stability condition is the same as the one in the elastic case (Zhu and McMechan,
1991):

4t ≤ h

(V 2
p − V 2

s )
1/2

(26)

where Vp and Vs are the compressional and shear wave velocities of the saturated rock.
However this condition can be used only for the internal grid, and for the boundary condi-
tion a different condition must be used(Kamel, 1989).
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Snapshots of the particle velocities were then calculated for this single layer model. A
ricker wavelet with the dominant frequency of 50 Hz was used as the source. To inject
the explosive source into the medium, the wavelet was added to the normal solid stresses
and fluid pressure. For this purpose, the source was weighted by a factor of φ for the fluid
pressure and by a factor of (1− φ) for the solid normal stresses, with φ being the porosity
of the rock. The size of the model was 1500m by 1500m and the source was located at the
centre of the model,(x, z) = (750, 750)m. The grid spacings chosen for this example were
dx = dz = 3m, and the time step was dt = 0.2ms.

The calculated snapshots for the vertical particle velocities of the fluid and solid are
shown in Figure 3. As predicted by Biot’s theory, there are two P-waves traveling in the
medium where the Slow P-wave travels with a speed close to the wave speed in the fluid.
The particle velocity of the slow P-wave in the solid is out of phase with the one in the
fluid. In contrast, for the fast P-wave the particle velocities are in phase in the solid and
fluid.

Figure 4 shows the fluid pressure snapshots for this model. The slow P-wave has a larger
relative amplitude than the fast P-wave which is because the slow P-wave is originated from
the fluid movement.
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FIG. 3. The snapshots for the vertical particle velocities of the solid (a and b), and the fluid with
respect to the solid (c and d) at times 0.06 s and 0.12 s.
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FIG. 4. The snapshots of the fluid pressure at times 0.06 s and 0.12 s.
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FIG. 5. Comparison between Poroelastic FD algorithm(a) and the elastic FD algorithm(b)

The poroelastic algorithm was then compared with the elastic one by generating shot
gathers from both algorithms. The elastic shot gathers were generated by mFD2D program
from the CREWES Matlab toolbox. The parameters and the grid size were the same as
before and the receiver line was at the depth of z = 600 m. The generated shot gathers
for both algorithms are shown in Figure 5. As observed from the snapshots, the slow P-
wave is apparent in the poroelastic shot gather. The comparison between these two shot
gathers shows that our algorithm is consistent with the elastic one, except in the poroelastic
algorithm there is a slow P-wave that elastic algorithm does not generate.

Another example used in this study was a 2-layer model which was also based on the
Quest project. In this 2-layer model, the top layer was, a sandstone with the properties
of BCS before injecting CO2 with the pore fluid being brine, and the lower layer was
the same layer used in the previous example as a single layer. This model represents a
sandstone with different pore fluid at the top and the bottom of the rock. The properties of
this model are listed in Table 1. The size of the model, the grid spacing and the time step
were the same as those in the previous example. In this example the source was located at
(x, z) = (750, 650)m, and the receiver line was at the depth of 600 m. Figure 6a shows
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this model with a boundary at the depth of 750 m. The vertical particle velocity snapshot
calculated for this model is shown in Figure 6b.
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FIG. 6. The 2-layer model used as a numerical example(a), The solid vertical particle velocity
snapshot calculated for this model at the time 0.16 s (b), and the corresponding shot gather.

This figure shows several wave modes including the converted waves. Pf and PS denote
the fast and the slow P-waves, respectively. PfPf is the reflected fast P-wave, PSPS is the
reflected slow P-wave, and PfS is the reflected S-wave that is converted from a fast P-
wave. A reflected fast P-wave which is converted from the slow P-wave is also evident
in this figure. This wave which is marked as PSPf , travels faster than the slow P-wave.
The arrivals are shown in the corresponding shot gather, in Figure 6c. As discussed earlier,
an elastic algorithm does not generate the slow P-wave or any converted waves from this
wave mode, for instance PSPf and PSPS . However, poroelastic modeling could give us
information about the fluid content of the rock which is of interest in CO2 injection, and
oil and gas exploration.
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CONCLUSION

Biot’s equations of motion were programmed in Matlab using a velocity-stress stag-
gered grid finite-difference algorithm to simulate wave propagation in poroelastic media.
As a numerical example we used a single layer model of a sandstone saturated with a
mixture of brine and CO2 to generate the snapshots of the particle velocities and the fluid
pressure. As predicted by Biot’s theory, two compressional waves appeared in the snap-
shots of the particle velocities. A 2-layered model was also examined to see the wave
behaviour at a boundary. This model had two layers with the same matrix properties but
with different pore fluids. The calculated vertical particle velocity showed different wave
modes generated at the boundary including a fast P-wave which is converted from the slow
P-wave. This poroelastic FD algorithm could be used in the future for inversion to obtain
porous media properties that are ignored in elastic algorithms.
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