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ABSTRACT 

Multiple events can be mistaken for primary reflections, and may distort primary 
events and obscure the task of interpretation (Hernandez, and Innanen, 2011). So, to 
eliminate these effects, internal multiple prediction becomes a necessity in the industry. 
In this paper, we determine the definitions of primaries, multiples, and the most important 
concept in this research, internal multiples. Inverse scattering series will be introduced 
here. Then we review the basic principles of 1D and 2D internal multiple prediction 
algorithm, which were introduced to geophysics literature in the 1990s (Araújo et al., 
1994; Weglein et al., 1997, 2003), and demonstrate 1D algorithm’s use to 1D synthetic 
data using a MATLAB implementation. Also the basic idea of a lower-higher-lower 
relationship will be discussed. Then the role and importance of the parameter ϵ are 
emphasized and the effects of badly chosen epsilon values are shown. The 1D internal 
multiple algorithm has been tested with good results on band-limited synthetic data. 
Analytical and numerical examples will be used to exemplify the usefulness of 1D 
internal multiple prediction algorithm.  

INTRODUCTION 

For the exploration of oil and gas reservoirs, multiples can be one of the main issues in 
applying the seismic method. The key characteristic of the inverse scattering series based 
method is that they do not require any a priori information from the subsurface as they 
are fully data-driven. Furthermore, the primary reflections remain untouched. They will 
compute internal multiples from all possible generators. The output of the algorithm is a 
data set that contains the predicted internal multiples (Hernandez, and Innanen, 2012). 

Every event in the seismic record can be thought of as a group of subevents. This 
algorithm predicts an internal multiple from interpreted subevents by performing a 
convolution and a cross-correlation of the data. One of the most important characteristic 
of this algorithm is that it selects all the subevents that suit the lower-higher-lower ideal 
(Weglein et. al., 1998). The parameter ϵ limits the selection or searching of the subevents 
and is related to the source wavelet. The inverse scattering attenuation method has three 
basics assumptions in order to work properly: knowledge of the source wavelet within the 
seismic frequency band, the input data must be rid of free-surface multiples, and 
accomplish the lower-higher-lower relationship in pseudo-depth (Hernandez, and Innanen, 
2012).   

METHODOLOGY 

Definitions 

First of all, we will discuss primaries, free-surface multiples and internal multiples 
which can help us to better understand how the algorithm works. Primaries are events 
which have experienced one upward reflection and no downward reflections during their 
history. Any events that are reflected from the free surface is a free-surface multiple. 
Free-surface multiples (FSMs) are themselves classified by their order. Events which 
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experience at least one downward reflection in the subsurface, and never interact with the 
free-surface, are called interbed or internal multiples (IMs). Internal multiples are also 
classified by their order (see Figure 1). 

 

FIG. 1. Examples of primary and multiples (after Weglein and Dragoset, 2005). The blue-green 
area represents the water layer. The red and yellow stars indicate the positions of seismic source 
and receiver, respectively. The white lines are raypaths of the events being defined. (a) A primary 
event; (b) A first-order free-surface multiple; (c) A second-order free-surface multiple; (d) A first-
order internal multiple; (e) A second-order internal multiple; (f) A free-surface multiple. 

Inverse scattering series 

The inverse scattering series is a multidimensional inversion method that can 
determine subsurface physical properties using measured data, ܦ , and a reference 
medium Green’s function, ܩ. The methodology in this paper was introduced by Araújo 
et al. (1994); Weglein et al. (1997, 2003). Let us define a perturbation operator ܸ, which 
is the difference between the actual medium, ܩ  and reference medium, ܩ . An 
relationship among ܸ, ܩ and ܩ is called the scattering equation, ܩ = ܩ +  (1)                                                            ,ܩܸܩ

which is an operator identity that relates the reference and actual wavefield propagation 
to the difference between the reference and actual medium, ܸ. The scattered field  ߰௦ can 
be defined as  ߰௦ = ܩ −  .                                                               (2)ܩ

Taking equation 1 into 2 we can get an iterative solution for ߰௦ in terms of ܸ and ܩ, ߰௦ = ܩܸܩ + ܩܸܩܸܩ + ⋯ = (߰௦)ଵ + (߰௦)ଶ + ⋯,                          (3) 
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where (߰௦) is an nth-order function of ܸ. The goal of inversion is to solve ܸ, which can 
be expressed as: 

 ܸ = ଵܸ + ଶܸ + ଷܸ + ⋯,                                                    (4)  

where ܸ is an nth-order function of the measured data, ܦ. Substituting equation 4 into 
equation 3 and expanding ܸ  in terms of the measured data, we can get the inverse 
scattering series: ܦ = ܩ ଵܸܩ                                                                    (5) ܩ ଶܸܩ = ܩ− ଵܸܩ ଵܸܩ                                                         (6) 

ܩ                                           ଷܸܩ = ܩ− ଵܸܩ ଵܸܩ ଵܸܩ   −ܩ ଵܸܩ ଶܸܩ − ܩ ଶܸܩ ଵܸܩ                                (7) 

                                                    ⋮  
Note that the procedure for solving ܸ  does not require any a priori subsurface 

information. So the inverse scattering series allows removal of internal multiples when a 
priori information is unavailable. 

2D internal multiple prediction algorithm                                                                                                      

Now we will focus on the algorithm of internal multiple prediction. A portion of the 
third term in equation 7, ܩ ଵܸܩ ଵܸܩ ଵܸܩ, contains the leading order contribution to the 
generation of the first order internal multiples (Weglein et al., 1997). This portion of the 
third term is then 

                            ܾଷூெ൫݇, ݇௦, ݍ + ௦൯ݍ = ቀ ଵଶగቁଶ   ݀݇ଵ݀݇ଶஶିஶஶିஶ   

                                           ×  ,൫ାభ൯௭ܾଵ(݇݁ݖ݀ ݇ଵ, ஶିஶݖ ) 
                                           ×  ,(భାమ)௭ᇲܾଵ(݇ଵି݁′ݖ݀ ݇ଶ, ᇱ௭ିఢିஶݖ ) 

                                                ×  ,(మାೞ)௭"ܾଵ(݇ଶ݁′′ݖ݀ ݇௦, ᇱᇱ)ஶ௭ᇲାఢݖ ,                                 (8) 

and the  

௫ݍ = ఠబ ට1 − మೣబమఠమ  ,                                                         (9) 

are vertical wave numbers in terms of the various lateral wave numbers and the reference 
velocity ܿ. ܾଵ is the input to the prediction algorithm, which is defined in terms of the 
original pre-stack data with surface multiples eliminated. The procedure for getting the 
input was given in Innanen (2012) as we begin with a data set measured over intervals in 
lateral source location ݔ௦, lateral receiver location ݔ, and time ݐ. The data can be Fourier 
transformed to the frequency domain: ݀(ݔ, ,௦ݔ (ݐ → ,݇)ܦ ݇௦, ߱),                                               (10) 

and then change from ߱ to ݇௭: 
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,݇)ܦ                                                 ݇௦, ߱) → ,݇)ܦ ݇௦, ݇௭),                                    (11) 

where ݇௭ = ݍ + ,௦, we can get ܾଵ൫݇ݍ௦. The data are scaled by−݅2ݍ ݇௦, ݇௭൯ = ,݇)ܦ(௦ݍ2݅−) ݇௦, ݇௭).                                 (12) 

Note that the obliquity factor, −݅2ݍ௦, is used to transform an incidence wave into a plane 
wave in the Fourier domain (Weglein et al., 2003). Finally let’s inverse Fourier transform ܾଵ over ݇௭, appearing in the pseudo-depth domain as ܾଵ൫݇, ݇௦, ݇௭൯ → ܾଵ(݇, ݇௦,  (13)                                          .(ݖ

The quantity ܾଵ(݇, ݇௦,   .is the input to the prediction algorithm (ݖ

1D internal multiple prediction algorithm  

Now we will reduce this multidimensional prediction algorithm to 1D, using the 
replacement used by Hernandez and Innanen (2012) ݇ = ݇௦ = 0,                                                              (14) 

then we can obtain the prediction algorithm in 1D normal incidence case, ܾଷூெ(݇௭) =  ௭ܾଵஶିஶ݁ݖ݀ (ݖ)  ᇱ݁ି௭ᇲܾଵ௭ିఢିஶݖ݀ (′ݖ)  ௭ᇲᇲܾଵஶ௭ᇲାఢ݁′′ݖ݀  (15)     ,(′′ݖ)

where ݇௭ = 2߱ ܿ⁄  is the vertical wavenumber, which is the conjugate of the pseudo-
depth (ݖ = ܿݐ 2)⁄ .  

Lower-higher-lower relationship 

Figure 2 is a construction of the travel times of an internal multiple. The red primary 
has travel time	ݐଵ, the green primary has travel time	ݐଶ, and the dashed line primary has 
travel time ݐଷ. The travel time of the internal multiple equals ݐଵ + ଶݐ −   .ଷݐ

In Figure 2, sums and differences of travel times produce internal multiple travel time, 
but not every combination of sums and differences do. In fact, most of the combination of 
sums and differences of travel time triplets correspond to no event at all. We have two 
combinations of sums and differences as seen in Figure 3. For internal multiples, we 
desire the first kind of combination, while the second case corresponds to spurious events, 
artifacts.  

A notion emerges from the above graphs, is it possible for us to restrict the sums and 
differences such the artifacts are suppressed? It can be seen that, in Figure 3a, the travel 
time being subtracted is smaller than the travel times being added. Artifacts come from 
subtraction of travel times which are larger than those being summed. We expressed 
equation 15 in pseudo-depth, rather than time, disallowing subtraction of larger travel 
times will take the form of disallowing subtraction of lower events. As this event is 
incorporated through correlation, the trace whose events are to be subtracted is the middle 
one, ܾଵ(ݖᇱ) . What we need to do now is to disallow contributions from the middle 
integral coming from events in that trace which are lower than those of two traces ܾଵ(ݖ), 
and ܾଵ(ݖᇱᇱ). Because we use explicit integration over pseudo-depth, so it is convenient to 
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restrict the combinations of events to reflect this lower-higher-lower relationship. We 
need to ensure three events that satisfy ݖ′′ > ݖ and ′ݖ >  ′′ݖ Therefore we restrict the .′ݖ
integration so that it begins at ݖ′. By the same principle, we restrict the ݖᇱ integration 
such that it ends at ݖ, disallowing contributions from any ݖ′ value greater than ݖ (Innanen, 
2011). The parameter ߳ is included in equation 15 to ensure that ݖ′′ > ݖ and ′ݖ >  Note .′ݖ
that for band-limited data, this parameter is different for every data set and is related to 
the width of the wavelet. 

 

FIG. 2. Construction of the travel times of an internal multiple. 

 

FIG. 3. Two combinations of sums and differences. 
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ANALYTIC EXAMPLE 

In this section, we will show how the 1D internal multiple attenuation algorithm works 
using the concept of subevents. This technique does not require subsurface information to 
achieve the suppression of the internal multiples. We will use the model in Figure 4, in 
which a multiple is generated and it can be seen as a convolution and a correlation of the 
three subevents. 

  

FIG. 4. Construction of an internal multiple using subevent interpretation. The first subevent is a 
primary reflection that travels from point ‘a’, reflected from the second reflector, and is received at 
point ‘c’. The second subevent is a primary that propagates from point ‘b’, reflected from the first 
interface ‘e’, and received at point ‘c’. The third one is a primary from point ‘b’ to ‘d’, reflected from 
the second interface.  

The first subevent in Figure 4 is  

(߱)ଵܧ   = ܶଵܴଶ ଵܶ݁ఠ௧మ ,                                                (16) 

which is a primary reflection that propagates from a source at ‘a’, reflected from the 
second reflector, and is measured at ‘c’. While the second subevent is a primary that 
propagates from ‘b’ to ‘c’, reflected from the first reflector which is ‘e’, 

(߱)ଶܧ     = ܴଵ݁ఠ௧భ .                                                      (17) 

The third one propagates from ‘b’, reflected from the second interface, and is measured at 
‘d’, ܧଷ(߱) = ܶଵܴଶ ଵܶ݁ఠ௧మ .                                                (18) 

The internal multiple attenuation algorithm predicts an internal multiple from these 
subevents by performing a convolution and a correlation. Now let us substitute them into 
equation 15, then we can get  

௦௧(݇௭)ܯܫ     =  ଵஶିஶܧ௭݁ݖ݀ (ݖ)  ଶ௭ିఢିஶܧᇱ݁ି௭ᇲݖ݀ (′ݖ)  ଷஶ௭ᇲାఢܧᇱᇱ݁௭ᇲᇲݖ݀  (19)   , (′′ݖ)

1R

2R

3E2E1E
   a                      b                   c                 d 

e 
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where ܯܫ௦௧  is the estimated internal multiple. Since the three subevents are discrete 
localized events and satisfy the condition ݖ′′ > ݖ and ′ݖ >  so the integration limits can ,′ݖ
be extended to ±∞. Hence we can write down 

௦௧(݇௭)ܯܫ         =  ଵஶିஶܧ௭݁ݖ݀ (ݖ)  ଶஶିஶܧ௭ᇲି݁′ݖ݀ (′ݖ)  ᇱᇱஶିஶݖ݀ ݁௭ᇲᇲ(ݖ′′)  
    =  ଷ(݇௭).                                                 (20)ܧଶ(−݇௭)ܧଵ(݇௭)ܧ

Applying a Fourier transform to equation 20, this can be written in the frequency domain 
as, ܯܫ௦௧(߱) =  ଷ(߱) .                                       (21)ܧ(߱−)ଶܧ(߱)ଵܧ

From which we can see that this equation describe the cross-correlation of subevent 1 
with subevent 2 followed by a convolution with subevent 3. Substituting the above three 
subevents into equation 21 gives us 

(߱)௦௧ܯܫ   = ܴଵܴଶଶ ଵܶଶ ܶଵଶ ݁ఠ(ଶ௧మି௧భ) .                                     (22) 

While the actual internal multiple in the frequency domain should be  

(߱)௧ܯܫ      = ܶଵܴଶ(−ܴଵ)ܴଶ ଵܶ݁ఠ(ଶ௧మି௧భ) .                              (23) 

Comparing equation 22 and 23, we can tell that the predicted amplitude is always less 
than the true internal multiple. The difference between the actual and the predicted 
multiple is that the actual multiple does not experience a transmission at the downward 
reflection point ‘e’, whereas the internal multiple algorithm models the multiple from 
subevents that have experienced a transmission loss at point ‘e’. The error is a factor 
known as the attenuation factor of the predicted internal multiple, which is ܶଵ ଵܶ. In a 
previous work (Weglein and Matson, 1998) pointed out that this error could be due to the 
leading order term in the internal multiple attenuation series does not properly take 
transmission effects into account. Though there is error in the prediction algorithm, for 
typical earth velocities this error is very small and the predicted multiples give a 
satisfactory result (Hernandez and Innanen, 2012). 

Also, we should notice that for time prediction it takes the time of the first event, plus 
the time of the third event minus the time of the second. This subtraction can be seen in 
the negative phase of the second depth integral in equation 19. This process gives the 
correct arrival time and phase (Ramirez and Weglein, 2005). 

NUMERICAL EXAMPLES 

For numerical examples, we need to generate a synthetic model. From this model three 
primaries and associated two first-order internal multiples are generated and plotted in 
Figure 5. The IM prediction algorithm is implemented and run on the input data, the 
results are plotted in Figure 6. Table 1 illustrates the detail information of this synthetic 
model. 

Notable here is the parameter ϵ value, several values of epsilon are tested with the 
optimal value shown to be 7. For smaller epsilon values, artifacts will be seen at the 
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arrival times of primaries in the output data. While larger epsilon values could damage 
important information present in the output data. If the overestimation of the value is 
large enough, the output data will not show any events at all. 

 

FIG. 5. A numerical example of internal multiple prediction. A zero offset trace with three 
primaries and two first-order internal multiples. The arrival times for the two internal multiples are tଵ = 0.98s and tଶ = 1.07s. 

 

FIG. 6. Applying the 1D internal multiple attenuation algorithm to the synthetic model. (a) Input 
data; (b) Input data with focus on internal multiples; (c) Prediction output; (d) Prediction output 
with focus on internal multiples. 
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Interval sample time 3ms 

Velocity and depth of the first interface 2000m/s at 200m 

Velocity and depth of the second interface 2500m/s at 600m 

Velocity and depth of the third interface 3000m/s at 800m 

Wave speed of the source/receiver medium 1500m/s 

Type of wavelet Ricker 

Epsilon 7 

Wavelet central frequency 80Hz 

Table 1. Parameters for synthetic model 

CONLUSTIONS 

We have employed the 1D algorithm from the inverse scattering series theory for the 
prediction of internal multiples. Analytical examples were used to exemplify that no 
velocity information from the subsurface is required using the inverse scattering series 
theory. Its performance was demonstrated with a band-limited synthetic data. Based on 
the results, we can conclude that output prediction depends strongly on the epsilon value. 
For smaller epsilon values, artifacts will be seen at the arrival times of primaries in the 
output data. While larger epsilon values could damage important information present in 
the output data. If the overestimation of the value is large enough, the output data will not 
show any events at all.  
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