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ABSTRACT

Full Waveform Inversion (FWI) has been widely studied in recent years but still cannot
be practiced in industry effectively. Generally, its failure can be attributed to expensively
computational cost, slow convergence rate, cycle skipping problem and so on. For tra-
ditional FWI, the gradient is calculated shot by shot based on the adjoint state method.
The computational burden rises significantly when considering large 2D velocity model
or 3D experiments. A linear phase encoding strategy is employed to construct the gradi-
ent in the time-ray parameter domain. The phase encoding approach forms supergathers
by summing densely distributed individual shots and can reduce the computational burden
considerably. Furthermore, we propose the gradient be calculated using one single ray pa-
rameter per FWI iteration, with the ray parameter value varied for different iterations. The
computational cost is reduced further within this strategy. The gradient is a poorly scaled
image which can be considerably enhanced by multiplying the inverse Hessian. The Hes-
sian matrix serves as a nonstationary deconvolution operator to compensate the geometrical
spreading effects and suppress the multiple scattering effects. While explicit calculation of
the gradient is also considered to be unfeasible. Under the assumption of high frequency
limitation, the diagonal Hessian can work as a good approximation and it can also be con-
structed by the phase encoding method. In this research, preconditioning the gradient using
the diagonal part of the phase encoded Hessian forms one pseudo Gauss-Newton step. Sev-
eral numerical examples are presented to analyze the gradient contributions and compare
different Hessian approximations. Finally, a modified Marmousi model is illustrated for
full waveform inversion. we compared the effects for fixed ray parameter and varied ray
parameter and analyzed the sensitivity to the ray parameter range, sensitivity to the Gaus-
sian noise and sensitivity to the number of encoded sources. And the inversion results with
different scaling methods are also provided for comparison.

INTRODUCTION

Full Waveform Inversion (FWI), formulated as a least-squares inverse problem, seeks to
minimize the difference between the observed data and synthetic data (Lailly, 1983; Taran-
tola, 1984; Pratt et al., 1998; Virieux and Operto, 2009; Margrave et al., 2011). It has drawn
people’s attention in the past several decades for its great powerfulness in estimating the
subsurface parameters with high resolution. While FWI suffers from prohibitively compu-
tational burden, slow convergence rate, cycle skipping problem and some other problems
which make it unfeasible in industry practice. Aiming at the problems existed in FWI,
we proposed a pseudo Gauss-Newton (PGN) method in time-ray parameter domain which
employs phase encoding technique to construct the gradient and the Hessian matrix.

For conventional FWI, simulations from each source and receiver should be performed
to construct the gradient which is extensively expensive. And an efficient gradient calcu-
lation strategy proposed by Lailly (1983) and Tarantola (1984) is the adjoint state method,
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which allows us to construct the gradient by applying a zero-lag cross-correlation between
the forward modeling wavefields from each source and back-propagated wavefields from
all receivers simultaneously. Thus, we only need 2Ns simulations to calculate the gradi-
ent, where Ns indicates the number of sources. However, for large 2D velocity model,
especially for 3D inverse problem, the computational cost arises considerably.

In this research, the phase encoding strategy, which was firstly introduced in prestack
migration (Morton and Ober, 1998; Romero et al., 2000; Zhang et al., 2005; Liu et al.,
2006; Dai and Schuster, 2013), is employed to construct the gradient. The phase encod-
ing technique forms supergathers by summing densely distributed individual shots and can
reduce the computational burden considerably for FWI problem (Vigh and Starr, 2008;
Krebs et al., 2009; Ben-Hadj-Ali et al., 2011; Gao et al., 2010; Tao and Sen, 2013) but
unfortunately introduces coherent crosstalk artifacts resulting from the undesired interac-
tions between unrelated source and receiver wavefields. The crosstalk artifacts introduced
can be suppressed reasonably well with a sufficient number of ray parameters (Liu et al.,
2006), which are controlled by the take-off angle at the surface location and the top surface
velocity (Tao and Sen, 2013; Dai and Schuster, 2013). Thus, the number of simulations for
the gradient calculation in one FWI iteration becomes 2Np, where Np means the number
of ray parameters. Generally, the ray parameter range can be determined by the geological
structures of the target area and different ray parameters account for the subsurface lay-
ers with different dip angles. Zhang et al. (2005) and Stork and Kapoor (2004) used ray
parameter component sampling theory to determine the number of ray parameters Np and
ray parameter interval 4p. In this research, we propose the gradient be calculated using
one single ray parameter per FWI iteration, with the ray parameter value varied for differ-
ent iterations (Pan et al., 2014). This means that we only need 2 simulations to calculate
the gradient for one FWI iteration. The computational cost is reduced further within this
strategy. And comparing with conditions using fixed ray parameter, varying the ray param-
eters can correct the biased gradient direction and improve the convergence rate. While this
strategy is sensitive to the assembled sources. When the encoded sources distribution are
not dense enough, the footprints or crosstalk artifacts will become obvious especially for
the shallow layers and the convergence rate will also be decreased.

Another big problem for FWI is its slow convergence rate. It is known that the gra-
dient is equivalent to a reverse time migration image based on cross-correlation imaging
condition. And the image is a poorly scaled for the energy loss during forward modeling
and backward propagating the data residual (Shin et al., 2001a,b). So, the steepest decent
method is considered to be a crude scaling method for simplifying the Hessian matrix to an
identity matrix. The poorly scaled image can be enhanced considerably by multiplying the
inverse Hessian (Pratt et al., 1998). Hessian matrix works as a nonstationary deconvolution
operator to compensate the geometrical spreading effects saptially at each image point and
recover the amplitude at deep reflectors. Hessian matrix also predicts the multiple scattered
wavefields (Pratt et al., 1998) and can suppress the spurious part of the gradient caused by
the multiple scattering effects. Then the resolution of the gradient can be enhanced. Un-
der the assumption of high frequency limit, the Hessian matrix is diagonally dominant and
the diagonal part of the Hessian can serve as a good approximation to recover and balance
the amplitudes. However, even explicit calculation of the diagonal Hessian matrix is pro-
hibitively expensive in practical application (Pratt et al., 1998; Tang, 2009; Tao and Sen,
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2013).

The nonlinear term in full Hessian matrix accounting for the multiple scattering is al-
ways neglected and the linear part forms the approximate Hessian used in Gauss-Newton
method. Under the assumption of infinite receiver coverage, Shin et al. (2001a) proposed
the pseudo-Hessian, which can be constructed by the forward modeling wavefields, used as
the virtual sources in reverse time migration. It assumes the receiver-side Green’s functions
in the approximate Hessian as an constant (Plessix and Mulder, 2006) and preconditioning
the gradient using the diagonal part of the pseudo-Hessian is equivalent to a deconvolu-
tion imaging condition in reverse time migration (Pan et al., 2013a,b). And the diagonal
part of the pseudo-Hessian overestimates the illumination energy and is limited to com-
pensate the geometrical spreading effects. Tang (2009) introduced a receiver-side phase
encoded Hessian by construct the receiver-side Green’s functions using a random phase
encoding strategy. Tao and Sen (2013) calculated the diagonal part of the approximate
Hessian using a linear phase encoding strategy with plane wave data. In this research, we
introduced a chirp phase encoding method to calculate the diagonal part of the approximate
Hessian. This encoding strategy can be regarded as a combination of linear and random
phase encoding strategies. Compared to the linear phase encoding method, it can disperse
the crosstalk noise better and get a more close approximation to the exact diagonal Hessian
with the same computational cost. And preconditioning the gradient using the diagonal
phase encoded Hessian forms one pseudo Gauss-Newton step in this research.

FWI also suffers from cycle skipping problem. The poor starting velocity model in-
creases the nonlinearity of the least-squares inverse problem. The lack of low frequency
information results in the miss of global minimum. Low frequency is essential to catch
the long wavenumber component of the velocity model. And the high frequency is respon-
sible to add detailed information. A multiscale approach, performed with increasing low
frequency to high frequency groups, can improve the chances that the global minimum is
reached and overcome the cycle skipping difficulty (Vigh and Starr, 2008). Furthermore,
a multiscale method is computationally efficient and converges faster than a conventional,
single-scale method (Boonyasiriwat et al., 2009). In frequency domain, the multiscale ap-
proach can be implemented by selecting a few frequencies. In this research, a time domain
multiscale approach is implemented by applying a low-pass filtering to the data residual.
And the frequency bands are broaden with increasing the number of iterations.

This paper is organized as follows. Firstly, the basic theory for least squares inverse
problem is reviewed and the similarity of gradient calculation in FWI and reverse time
migration is explained. Then we discussed different Hessian approximations and explained
phase encoded Hessian combining with several numerical examples. Finally, we presented
a numerical example for full waveform inversion based on a modified Marmousi model.
And we discussed the effects for fixed ray parameter and varied ray parameter and analyzed
the sensitivities to ray parameter range, the number of encoded sources and Gaussian noise.
We compared the inversion results for different scaling methods and the imaging results
using initial velocity model, true velocity model and inverted velocity model are provided
for comparison.
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THEORY AND METHODS

In this section, firstly we reviewed the basic principle for least-squares inverse problem
and illustrated the equivalence between the gradient in FWI and reverse time migration.
And then we compared the full Hessian, approximate Hessian and pseudo-Hessian and
presented how to construct the approximate Hessian using phase encoding method.

Gradient Calculation in FWI and Reverse Time Migration

As a least-squares local optimization, full waveform inversion seeks to minimize the
difference between the synthetic data and observed data (Lailly, 1983; Tarantola, 1984)
and update the model iteratively. The misfit function φ is given in a least-squares norm:
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The minimum value of the misfit function is sought in the vicinity of the starting model
s0(r) and the updated model can be written as the sum of the starting model and a model
perturbation δs(n)

0 (r) (Virieux and Operto, 2009).

s(n)(r) = s
(n)
0 (r) + µ(n)δs

(n)
0 (r), (2)

where µ(n) is the step length in nth iteration, which is a scalar constant used to scale the
model perturbation and can be obtained through a line search method (Gauthier et al., 1986;
Pica et al., 1990).

Applying a second order Taylor-Lagrange development of the misfit function and then
taking partial derivative to the model parameter give equation (3) and (4):

φ
(
s

(n)
0 + δs

(n)
0

)
' φ

(
s

(n)
0

)
+

∫
dr′

∂φ

∂s
(n)
0 (r′)

δs
(n)
0 (r′), (3)

∂φ
(
s
(n)
0 +δs

(n)
0

)
∂s

(n)
0 (r′)

'
∂φ
(
s
(n)
0

)
∂s

(n)
0 (r′)

+ ∂

∂s
(n)
0 (r′)

∫
dr

∂φ
(
s
(n)
0

)
∂s

(n)
0 (r)

δs
(n)
0 (r),

= g(n)(r′) +
∫
drH(n)(r′, r)δs

(n)
0 (r).

(4)

where g(n)(r′) is the gradient and H(n)(r′, r) is the Hessian matrix, When equation (4)
equals to zero, the misfit function towards to the minimum and the model perturbation can
be expressed as:

δs
(n)
0 = −

∫
dr′H(n)−(r, r′)g(n)(r), (5)
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Then inserting equation (5) into equation (2), the model can be updated iteratively using
the following equation:

s(n)(r) = s
(n)
0 (r)− µ(n)

(
−
∫
dr′H(n)−(r, r′)g(n)(r)

)
, (6)

For gradient, the first order derivative of the misfit function φ with respect to the model
parameters, can be obtained by a zero-lag correlation between the complex conjugate of
data residuals and the first order partial derivative wavefields:
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is the sensitive matrix (it is also called Fréchet derivative matrix or

Jacobian matrix). Then apply a perturbative derivation and truncate the Born series based
on the assumption of small model perturbation (as shown by APPENDIX A), the sensitive
matrix can be written as:

δG
(

rg, rs, ω|s(n)
0

)
δs

(n)
0 (r)

= −ω2G
(

rg, r, ω|s(n)
0

)
G
(

r, rs, ω|s(n)
0

)
, (8)

Then insert equation (8) into equation (7), the gradient becomes:

g(n)(r) =
∑

rs

∑
rg

∫
dω<

(
ω2Fs(ω)G(r, rs, ω)G(rg, r, ω)δP ∗

(
rg, rs, ω|s(n)

0

))
, (9)

where G(r, rs, ω) and G(rg, r, ω) are the source-side and receiver-side Green’s functions,
respectively. Then the gradient can be calculated using the adjoint state method by applying
a zero-lag convolution between the forward modeling wavefields and back-propagated data
residuals, which avoids the direct computation of the partial derivative wavefields.

Recall reverse time migration, we can recognize the similarity between the gradient cal-
culation in FWI and reverse time migration image. Both of them employ the adjoint state
technique to avoid the direct calculation of the partial derivative wavefields. The only dif-
ference is that FWI backpropagates data residuals while RTM backpropagates the observed
data. So, if the initial model in FWI is considered as a smooth background velocity model,
the data residuals in FWI become measured data (Lailly, 1983; Shin et al., 2001a). Thus,
the gradient calculation in the first iteration of FWI is formally identical to the prestack
reverse time migration with a crosscorrelation imaging condition.

Full Hessian Matrix and Hessian Approximations

The image or gradient formed by crosscorrelation imaging condition suffers from ge-
ometrical spreading effects, wave attenuation and transmission loss, which result in poor
amplitudes for deep reflectors. Multiplying the inverse Hessian matrix can remove the
geometrical amplitude decay of the Green’s functions (Tao and Sen, 2013). While it is
considered as unfeasible to calculate the Hessian matrix directly for its great computational
requirements.
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Full Hessian

The full Hessian matrix is the second order partial derivative of the misfit function with
respect to the model parameters. And it can be written as:

H(n)(r′, r) =
∂2φ
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0
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, (10)

After a series of derivations, the Hessian matrix can be written as the summation of two
terms:
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The first term of full Hessian matrix H(n)
1 can be computed by multiplying the data residu-

als using the second order partial derivative wavefields, which is defined as the variation of
the first order partial derivative wavefields corresponding to perturbation in the model pa-
rameters. If we apply a further derivation to the second order partial derivative wavefields,
we can get:

∂
[
G
(

r′,rs,ω|s(n)
0

)
G
(

rg,r,ω|s(n)
0

)]
∂s

(n)
0

= −
{
G
(

r′, rs, ω|s(n)0

)
G
(

r, r′, ω|s(n)0

)
G
(

rg, r, ω|s(n)0

)}
−
{
G
(

r, rs, ω|s(n)0

)
G
(

r′, r, ω|s(n)0

)
G
(

rg, r′, ω|s(n)0

)} , (13)

So, the second order partial derivative wavefields actually is the summation of the sec-
ond order multiple scatterings at positions of r′ and r excited by the first order multiple
scatterings at the positions of r and r′, respectively. It indicates the nonlinearity of the
least-squares inverse problem. The crosscorrelation method produces false anomalies (low
frequency artifacts in reverse time migration) caused by correlating the multiple scattering
in data residuals with the partial derivative wavefields (Pratt et al., 1998). These anomalies
are spurious or false parts in the gradient. The first term H

(n)
1 predicts these high-order

multiple scatterings and works as a de-multiple operator to suppress these artifacts in the
gradient.

It is always expensive to compute the first term of the Hessian matrix directly. Pratt et al.
(1998) proposed to multiply the second order virtual sources (calculated from the first order
scattering wavefields) by the back-propagated wavefields, which also needs m forward
modeling simulations, where m is the number of the model parameters. Even though,
the computation cost can be reduced considerably, it is still unfeasible to be practiced in
industrial application.
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Approximate Hessian

When the initial model is close to the real model, the misfit function is near to the
global minimum and the data residual becomes very small, just as what we have assumed
in truncating the Born series. So, the first term H

(n)
1 in the full Hessian matrix is always

neglected for computation convenience, which makes the inverse problem approximately
linear. Thus the full Hessian matrix can be substituted by the approximate Hessian (the
second term in equation (11), which is used as a preconditioner for the gradient in the
Gauss-Newton method:

H(n)
a = H

(n)
2 '

∑
rs,rg

∫
dω<

{
ω4G

(
rg, r′, ω|s(n)0

)
G
(

r′, rs, ω|s(n)0

)
G∗
(

rg, r′′, ω|s(n)0

)
G∗
(

r′′, rs, ω|s(n)0

)}
,

(14)
Comparing equation (14) with equation (8), each element in the approximate Hessian H(n)

a

can be interpreted as the scalar product of two partial derivative wavefields (Pratt et al.,
1998), which is equivalent to the zero-lag convolution computation in time domain. Pratt
et al. (1998) used the virtual sources to multiply the back-propagated wavefields for con-
structing the partial derivative wavefields. The gradient can be preconditioned considerably
by multiplying the inverse approximate Hessian H(n)−

a .

The diagonal elements and off-diagonal elements of the approximate Hessian can be
interpreted as the zero-lag auto-correlation and cross-correlation of the partial derivative
wavefields respectively (Shin et al., 2001a), as indicated by the first term H̄

(n)
a and second

term H̃
(n)
a in equation (15).

H(n)
a = H̄(n)

a + H̃(n)
a , (15)

where H̄
(n)
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∑
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∫
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}
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(n)
a =
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rs,rg

∫
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ω4G (rg, r′, ω)G (r′, rs, ω)G∗ (rg, r′′, ω)G∗ (r′′, rs, ω)

}
, r′′ 6= r′

,

In the high-frequency asymptotics and for the reference model with relatively smooth
impedance variations, the two partial derivative wavefields are largely uncorrelated with
each other but perfectly self-correlated (Pratt et al., 1998; Shin et al., 2001b; Tang, 2009),
which means that the approximate Hessian is diagonally dominated. In this case, the off-
diagonal elements of the approximate Hessian, the second term H̃

(n)
a in equation (15), can

be neglected. And the diagonal elements of the approximate Hessian, the auto-correlation
between the source-side Green’s functions and receiver-side Green’s functions, can serve
as a good preconditioner for the gradient to deblur the image. Furthermore, the inverse
approximate Hessian can be approximated by the reciprocals of the approximate Hessian

1

H̄
(n)
a

(Ben-Hadj-Ali et al., 1989), which is called as the pseudo-inverse of the approximate
Hessian. Thus, the approximate Hessian works like a deconvolution operator to compen-
sate the geometrical spreading effects (Margrave et al., 2011). And equation (5) can be
expressible as:

δs
(n)
0 = −µ(n)H(n)−g(n) ' −µ(n) g

(n)

H̄
(n)
a

, (16)
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And preconditioning the image using the Hessian matrix is also considered to be equiv-
alent to applying a poststack deconvolution to the image and the resolution of the image can
be improved after a number of iterations (Hu et al., 2001; Dai et al., 2012). If we examine
the diagonal elements of the approximate Hessian further, as shown in Fig.5 of Pratt et al.
(1998), we can find that the values of elements along the diagonal line of the Hessian ma-
trix vanish from top left corner to bottom right corner, which indicates the nonstationarity
of the deconvolution operator.

For a finite range frequency, the structure of the approximate Hessian matrix is banded,
for that the partial derivative wavefields from adjacent nodes are correlated to some extent.
The off-diagonal elements account for the limited-bandwidth effects and can improve the
resolution of the image. In this condition, the diagonal elements of the approximate Hes-
sian have limited effects in preconditioning the gradient, especially for the areas with poor
illumination (Tang, 2009). So, some researchers (Albertin et al., 2004; Valenciano, 2008)
computed a limited number of off-diagonal elements of the approximate Hessian for better
migration or inversion results.

Pseudo-Hessian

Under the assumption of the infinite receiver coverage, the receiver-side Green’s func-
tions can be approximated as d2(rg, r′), where d(rg, r′) means the distance from position
r′ to the receiver position rg. When the depth in vertical is quite smaller than the distance
in horizontal, d2(rg, r′) can be approximated as a constant scalar L. This approximation to
Hessian matrix is equivalent to the pseudo-Hessian proposed by Shin et al. (2001b). The
pseudo-Hessian is constructed using the forward modeling wavefields, used as the virtual
sources in reverse rime migration.

H(n)
p_a = L

∑
rs

∫
dωω4<{G (r′′, rs, ω)G∗ (r′, rs, ω)} , (17)

The faint image can be enhanced effectively by the multiplying the inverse diagonal pseudo-
Hessian (when r′ = r′′), which can be written as:

H̄(n)
p_a = L

∑
rs

∫
dωω4<{G (r′, rs, ω)G∗ (r′, rs, ω)} , (18)

If a source function is added into the diagonal pseudo-Hessian, we can recognize that the
diagonal pseudo-Hessian is actually equivalent to the source illumination (as shown in AP-
PENDIX B) and the gradient divided by the source illumination is equivalent to a standard
deconvolution imaging condition in prestack reverse time migration. Thus, the model per-
turbation in equation (5) becomes (Jang et al., 2009):

δs
(n)
0 ' −µ(n)

(
H̄

(n)
p_a + λI

)−1

g(n)

' −µ(n)

∑
rs
∑

rg

∫
dω<{ω2Fs(ω)G(r,rs,ω)G(rg ,r,ω)δP ∗(rg ,rs,ω)}

L
∑

rs

∫
dωω4<{|Fs(ω)|2G(r′,rs,ω)G∗(r′,rs,ω)}+λI

, (19)

where λI in the denominator is the stable term which makes the deconvolution imaging
condition stable, I is an identity matrix. And a source wavelet function Fs(ω) is added
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Reflector
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ReceiversSource

Reflector

D R

(b)

FIG. 1. Schematic diagrams for Reciprocity theory. D indicate the downgoing wavefields from the
source. U indicate the upgoing wavefields, which can be interpreted as first order partial derivative
wavefields (or first order scattered wavefields) caused by the virtual source. And R is the reciprocal
wavefields from the receivers. Based on reciprocal theory, R is considered to be identical to U .

into equation (19) to make sure that it is the bandwidth limited. Equation (19) becomes the
standard deconvolution imaging condition in reverse time migration.

For finite receiver coverage, this approximation is limited to compensate the geomet-
rical spreading effects and balance the amplitudes, for missing the receiver-side Green’s
functions. By introducing the reciprocity theory, we can get a better approximation (Shin
et al., 2001b). The reciprocity principle proved by Aki and Richards (2002) in an elastic
media, states that the recorded wavefields are identical when interchanging the locations of
sources and receivers, as shown in Fig. 2.

In this condition, the computation of the partial derivative wavefields doesn’t depend
on the number of model parameters but depends on the number of sources and receivers
(Sheen et al., 2006). Then we can get an improved pseudo-Hessian matrix:

Him_pseudo_a =
∑
rs

∫
dω<

{
ω4G(r′, rs, ω)G∗(r′′, rs, ω)

}∑
rg

∫
dω<

{
G̃(r′, rg, ω)G̃∗(r′′, rs, ω)

}
,

(20)
where G̃ mean the reciprocal wavefields from the receivers.We can get the diagonal part of
the improved pseudo-Hessian, when r′ = r′′:

H̄im_pseudo_a =
∑
rs

∫
dω<

{
ω4G(r′, rs, ω)G∗(r′, rs, ω)

}∑
rg

∫
dω<

{
G̃(r′, rg, ω)G̃∗(r′, rg, ω)

}
, (21)

In equation (21) the Green’s function G(r′, rs, ω)G∗(r′, rs, ω) serve as the source-side il-
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lumination to compensate the geometrical spreading effects on the source side and the
reciprocal wavefields and the reciprocal wavefields G̃(r′, rg, ω)G̃∗(r′, rg, ω) server as the
receiver-side illumination to compensate the geometrical spreading effects on the receiver
side. Comparing with the pseudo-Hessian matrix, this deconvolution operator takes the
receiver-side illumination into consideration and can balance the amplitude better for that
its nonstationarity becomes stronger. The source illumination can be obtained in the step of
gradient calculation. While we still need n (the number of the receivers) forward simula-
tions to calculate the reciprocal wavefields using an impulse response source in frequency
domain (or a band limited source function in time domain) (Sheen et al., 2006), which is
also a computationally demanding task.

In this research, we assume that if the lateral velocity variation is small, we can select
some of the receivers regularly in the whole acquisition geometry to calculate the recip-
rocal wavefields, which can reduce the computation cost greatly. A further assumption is
that the selected receivers and the sources are collocated. In this condition, the recipro-
cal wavefields can be substituted by the forward modeling wavefields and we don’t need
any additional forward simulations to calculate the Hessian matrix. The improved pseudo-
Hessian and its diagonal elements are shown as equation (22) and (23) respectively:

Him_pseudo_a =
∑

rs

∫
dω<{ω4G(r′, rs, ω)G∗(r′, rs, ω)G(r′′, r̈g, ω)G∗(r′′, r̈g, ω)}

'
∑

rs

∫
dω<{ω4G(r′, rs, ω)G∗(r′, rs, ω)G(r′′, rs, ω)G∗(r′′, rs, ω)} ,

(22)

H̄im_pseudo_a =
∑

rs

∫
dω<

{
ω4G(r, rs, ω)G∗(r, rs, ω)G(r, rs, ω)G∗(r, rs, ω)

}
, (23)

where r̈g in equation (22) are the selected receiver locations. So, using equation (22) to sub-
stitute the deconvolution operator term in the denominator of equation (19) forms improved
deconvolutional gradient:

g(r) =

∑
rs

∫
dω<{ω2Fs(ω)G(r, rs, ω)G(rg, r, ω)δP ∗(ω)}

H̄im_pseudo_a + λI
, (24)

Because the deconvolution operator H̄im_pseudo_a in the denominator is actually equivalent
to double source illumination (Pan et al., 2013c), this strategy for improving the pseudo-
Hessian is defined as double source illumination method.

Phase Encoded Hessian

Another strategy to improve the pseudo-Hessian is to construct the receiver-side Green’s
functions using phase encoding technique, which can reduce the computational cost con-
siderably but unfortunately involve strong crosstalk artifacts. Tang (2009) calculated the
phase encoded Hessian and compared effects of linear phase encoding and random phase
encoding approaches in attenuating the crosstalk artifacts. Furthermore, the phase encod-
ing technique can be used for imaging (Liu et al., 2006; Perrone and Sava, 2012) and
constructing the gradient in FWI (Krebs et al., 2009; Vigh and Starr, 2008; Ben-Hadj-Ali
et al., 2011). Tao and Sen (2013) used the plane wave linear phase encoding approach
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FIG. 2. Linear phase encoding strategy. The phase shift eiωp(x−x0) is controlled by ray parameter
p and source position x. And the ray parameter p is a function of take-off angle θ and top surface
velocity c. This diagram is after Zhang et al. (2005) and Dai and Schuster (2013)

FIG. 3. Chirp phase encoding strategy. Comparing with linear phase encoding strategy, there is one
random term ε4p added into the phase shift. And ε is random scalar to control the ray parameter
perturbation 4p.

to calculate the gradient for efficient full waveform inversion in frequency-ray parameter
domain. The crosstalk artifacts can be reduced effectively with sufficient source and re-
ceiver ray parameters. In this research, we used a chirp phase encoding strategy (Perrone
and Sava, 2012), which is a combination of the linear phase encoding and random phase
encoding methods, to calculate the receiver-side Green’s functions. Because, the linear
time shift in time domain corresponds to linear phase delay in frequency domain, the linear
phase encoded Hessian can be written as:

Hlinear_encoded =
∑

rs

∫
dω<

{
ω4G(r′, rs, ω)G∗(r′′, rs, ω

}
×
∑

pg

∫
dω<

{
G(r′′, r′g, ω)eiωpg(x

′
g−xinitial)G∗(r′′, rg, ω)e−iωpg(xg−xinitial)

}
,

(25)
where pg are the receiver-side ray parameters vector, and:

xinitial =

{
x0, p

i
g ≥ 0

xmax, p
i
g < 0

, (26)

where x0 and xmax are the positions of the start and the end receivers, i indicates ray
parameter index.

In the second term of equation (25), when x′g = xg , the phase encoded Hessian be-
comes Hexact which is the exact approximate without crosstalk noise. And when x′g 6= xg,
only crosstalk artifacts term Hcrosstalk left. So, equation (25) can be written as the summa-
tion of the exact Hessian and crosstalk artifacts (Liu et al., 2006; Tang, 2009; Tao and Sen,
2013):

Hlinear_encoded = Hexact +Hcrosstalk, (27)

And if we apply integration over ray parameter from −∞ to +∞, the crosstalk noise in
equation (27) can be dispersed completely (Liu et al., 2006; Tao and Sen, 2013).
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The chirp phase encoding strategy used in this research is a combination of linear phase
encoding and random phase encoding methods. And it is similar to Perrone and Sava’s
dithered phasing encoding strategy by Perrone and Sava (2012). A random factor is added
into the phase delay term of equation (25), which gives:

Hchirp_encoded =
∑

rs

∫
dω<

{
ω4G(r′, rs, ω)G∗(r′, rs, ω

}
×
∑

pg

∫
dω<

{
G(r′′, r′g, ω)G∗(r′′, rg, ω)eiω(pg+ε4p)(x′

g−xg)
} , (28)

where4p = rand ∗ pig, rand ∈ (0, 1) is the random coefficient and i means the number of
the ray parameter, ε is the coefficient used to control the amount of dithering. Chirp phase
encoding strategy is expected to reduce the crosstalk noise better than the linear phase
encoding strategy with the same number of simulations.

Multiscale approach

FWI suffers from cycle skipping problem because of the poor starting model and the
lack of low frequency data in piratical application. The cycle skipping problem resulted
from the high nonlinearity of the least-squares inverse problem may results in the miss
of the global minimum, as indicated by Fig.4. Inversion proceeds in a multiscale ap-

FIG. 4. Diagram indicating local minimum and global minimum.

proach from lower to higher frequencies to improve the chances that the global minimum
is reached and avoid the local minimum (Vigh and Starr, 2008). Multiscale approach can
be implemented in frequency domain by selecting a few frequencies. A time domain mul-
tiscale approach by applying a low-pass filtering to the data residual is employed in this
research.It has been demonstrated that a multiscale method is computationally efficient
and converges faster than a conventional, single-scale method (Boonyasiriwat et al., 2009).
The low frequency is responsible to catch s (r)low the low wavenumber component of the
velocity model. And the high frequency is used to add s (r)high the detailed information to
the velocity model.

s (r) = s (r)low + s (r)high (29)

Pseudo Gauss-Newton Step

To reduce the computational cost further, we proposed to use one ray parameter in
one FWI iteration but change the ray parameter regularly for different iterations. And
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Table1. Pseudo code for PGN method

BEGIN← s0, initial model;
WHILE ε ≤ εmin or n ≤ nmax

Identify the ray parameter p(n)
s

Identify the frequency band f (n) = f0 → fmax, finterval, every k iterations
Generate the data residual δP and apply low-pass filtering δP̃ = low_pass

(
δP, f (n)

)
Generate the linear phase encoded gradient g(n)

(
p

(n)
s

)
FOR i = 1 to pHs ,pHr , every 1 or m iterations

Construct the diagonal part of the hybrid phase encoded Hessian diag
(
H

(n)
chirp_encoded

)
END FOR
Calculate the step length µ(n) using the line search method
update the velocity model:

s(n+1)(r) = s(n)(r)− µ(n)
{
diag

(
H

(n)
chirp_encoded

)
+ λI

}−1

g(n)
(
p

(n)
s

)
Calculate the relative least-squares error:

ε = ‖s(n)(r)−strue(r)‖2
‖strue(r)‖2

END WHILE

preconditioning the gradient using the diagonal part of the chirp phase encoded Hessian
forms one pseudo Gauss-Newton step in PGN method, as indicated by equation (30):

δs (r) =

∫
dω<

{
ω2Fs(ω)G̃(r, rs, ω)G(rg, r, ω)δP ∗

}
diag (Hchirp_encoded) + λI

(30)

The pseudo code for the PGN method is presented in the Table. 1. For each PGN step, we
need to identify the ray parameter and frequency band. And then construct the linear phase
encoded gradient and diagonal part of the chirp phase encoded Hessian. And then calculate
the step length and update the velocity model. And we use the relative least-squares error ε
to evaluate the quality of the inverted model:

ε =
‖ s(n)(r)− strue(r) ‖2

‖ strue(r) ‖2

, (31)

where s(n)(r) and strue(r) indicate the inverted slowness and true slowness respectively.

Computational cost comparison for different strategies

We compared the computation costs for traditional Gauss-Newton(TGN) method, source
encoding Gauss-Newton method(SEGN) and pseudo Gauss-Newton(PGN) method, as pre-
sented in Table. 2. We can notice that the PGN method is more efficient than TGN and
SEGN methods. PGN method only needs 2 simulations to calculate the gradient in one
iteration. While the number of simulations needed to construct the gradient in TGN and
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Table2. Computational cost comparison for different strategies

Methods Gradient Ha diag (Hencoded) Step length Cost for one iteration
TGN Method 2Ns Ns ×Nr \ 1 2Ns +Ns ×Nr + 1

SEGN Method 2N g
p \ NH

ps +NH
pr 1 2N g

p +NH
ps +NH

pr + 1
PGN Method 2 \ NH

ps +NH
pr 1 NH

ps +NH
pr + 3

SEGN methods are 2Ns and 2N g
p respectively, where Ns and N g

p are the number of sources
and ray parameters. And in TGN method, we need Ns × Ng simulations to calculate the
approximate Hessian. While in SEGN and PGN method,we only need NH

ps + NH
pr simula-

tions to calculate the diagonal part of the phase encoded Hessian. NH
ps and NH

pr mean the
numbers of the source-side ray parameters and receiver-side ray parameters respectively.

NUMERICAL EXPERIMENTS

In this section, several numerical examples are illustrated for analysis and discussion.
The first numerical example is a single interface model with one source-receiver pair. An
analysis of the contributions to the gradient or RTM image is performed based on this
simple model. The second numerical example is a homogeneous model with a constant
background velocity. The exact Hessian, Hessian contaminated by the crosstalk artifacts,
pseudo-Hessian and phase encoded Hessian are presented for comparison. The final nu-
merical example for FWI is performed based on the modified Marmousi model. The effects
for fixed ray parameter and varied ray parameters are analyzed. We also analyzed the sen-
sitivities to the ray parameter range, the number of encoded sources, and Gaussian noise.
Finally, we compared the FWI results for different scaling methods.

FIG. 5. Single interface model. (a) is the exact velocity model with one source and receiver pair
located at (700m, 0m) and (2200m, 0m) respectively. The velocities of the first layer and second
layer are 3500m/s and 4500m/s respectively and the interface is located at 700m in depth. (b) is
the reference velocity model smoothed by a Gaussian function.
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Gradient Contribution Analysis

Fig. 5a and Fig. 5b show the true single interface model and slightly smoothed velocity
model using Gaussian function. The source and receiver are located at 700m and 2200m on
the top surface. A Ricker wavelet with dominant frequency of 15Hz is used as the source
function.

Fig. 6a is the RTM image by migrating the measured data using the exact velocity
model. It can be seen that besides the exact image part what we want, the image is contam-
inated by the artifacts caused by directive wave and scattered wave. Fig. 6b is the gradient
formed by migrating the data residuals using the smoothed velocity model, which is equiv-
alent to the first iteration in FWI. The main difference between Fig. 6a and Fig. 6b is the
direct wave contribution, as shown by Fig. 6c. The low frequency artifacts in Fig. 6a are
equivalent to the spurious parts of the gradient in Fig. 6b.

Fig. 6d shows the contribution of the unperturbed wavefields. It is also the gradient
when the reference velocity model is simplified to a homogeneous background model (Xu
et al., 2012). Fig. 6e and f are the scattered wavefields contributions to the gradient and
they formed by convolving the backpropagated data residuals and the scattered wavefields
caused by the reflector. The gradients in Fig. 6b preconditioned by the source-side Green’s
functions and receiver-side Green’s functions are shown in Fig. 6g and Fig. 6h respectively.
Fig. 6i shows the valuable part of the gradient in Fig. 5b. The pseudo-Hessian only contains
the source-side Green’s functions, which is not enough to precondition the gradient. Hence,
the receiver-side Green’s functions should also be taken into consideration, as we discussed
above. Fig 6j shows the gradient preconditioned by the diagonal part of the approximate
Hessian. We can see that the spurious part of the gradient is suppressed. And we can
extract vertical lines from Fig. 6b and j for comparison as indicated by the blue and red
lines in Fig 7. It can be seen that the gradient preconditioned by the diagonal Hessian is
more sharp. This means that the Hessian matrix can suppress the multiple scattering effects
and improve the resolution of the gradient in least-squares inverse problem.

Comparison of Hessian Approximations

Fig.8 shows the homogeneous model with a constant velocity of 2500m/s used to cal-
culate the Hessian matrix. The model consists of 50× 50 grid cells with 5m horizontal and
vertical grid intervals, which means that the total number of the parameters is 2500. The
sources and receivers are co-located at the top surface of the model and several acquisition
geometries are designed to construct the Hessian. The source function is a Ricker wavelet
with a 25Hz dominant frequency banlimited between 0 and 30Hz. The first acquisition
geometry is designed with one source located at (125m, 0m) and two receivers located at
(75m, 0m) and (175m, 0m) respectively. Fig. 9a shows the exact approximate Hessian
with the parameters from 1000 to 2500. A detailed view of the area delineated by the black
square is given in the right corner. We can see that the approximate Hessian is dominated
by the band along the diagonal line. Furthermore, the energy of the band vanishes from the
top-left corner to the bottom-right corner, which indicates the nonstationarity of the diago-
nal Hessian. So, multiplying the gradient with the inverse Hessian is equivalent to applying
an inverse Q filtering to the gradient and the amplitude of the deep parts of the gradient can
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FIG. 6. Gradient contribution analysis.(a) and (b) are the RTM image and gradient respectively. (c)
is the directive wave contribution. (d) is the unperturbed wavefield contribution. (e) and (f) are the
scattered wavefield contribution. (g) and (h) are the gradients preconditioned by the source-side
and receiver-side Green’s functions respectively. (i) shows the valuable part of the gradient. (j) is
the gradient preconditioned by the diagonal approximate Hessian.

FIG. 7. Comparison of the gradients with and without precondition. The red line and blue line
indicate the gradient with and without precondition respectively.

be enhanced.

The approximate Hessian in Fig. 9b is formed by constructing the receiver-side Green’s
function with the ray parameter p = 0. This approximate Hessian is contaminated by
the crosstalk artifacts. Fig. 9c shows the approximate Hessian formed using the linear
phase encoding method and the ray parameter range is [−0.3s/km, 0.3s/km] with a step
of 0.1s/km. It can be seen that the linear phase encoding method can effectively eliminate
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FIG. 8. The homogeneous model used to calculate the Hessian matrix. This model consists of
50 ∗ 50 = 2500 grid cells with a grid interval of 5m. The sources and receivers are located at the top
surface.

FIG. 9. A Comparison of the approximate Hessian. (a) The exact approximate Hessian; (b) The
Hessian contaminated by crosstalk artifacts; (c) The Hessian constructed using the linear phase
encoding method and the ray parameter range is [−0.3s/km, 0.3s/km] with a step of 0.1s/km.

the crosstalk artifacts and the phase encoded Hessian is very close to the exact approximate
Hessian, as shown by Fig. 9a.

Then the acquisition geometries are designed with multi-sources and receivers. Fig. 10a
shows the exact approximate Hessian. The single source location is (125m, 0m). While we
have 50 receivers arranged from 0 to 2500m with a 25m spacing. Fig. 10b shows the exact
approximate Hessian with the same receiver arrangement but 9 sources arranged from 25m
to 225m with a 25m spacing.

Even though the exact approximate Hessian with one source looks similar to the ex-
act approximate Hessian with multi-sources, we can still recognize the slight difference
through the detailed view. It is noted that the energy of the diagonal part of the Hessian
with multi-sources is more concentrated than that of the Hessian with single source.

Fig. 11a and Fig. 11b show the pseudo-Hessian matrices of single source and multi-
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FIG. 10. The exact approximate Hessian with different sources arrangements. (a) is exact approxi-
mate Hessian formed by one source and 50 receivers. (b) is exact approximate Hessian formed by
9 sources and 50 receivers.

sources respectively. Comparing them with Fig. 10a and Fig. 10b, it can be recognized
that the energy of the pseudo-Hessian is less concentrated on the band parts and the energy
decrease slower along diagonal line. The pseudo-Hessian is a crude approximation to the
exact diagonal of the Hessian because it assumes receiver-side Green’s functions as an
constant and ignores the effects of the limited receiver aperture (Tang, 2009).

FIG. 11. The pseudo-Hessian with different sources arrangements. (a) is the pseudo-Hessian
formed by 1 source and 50 receivers. (b) is the pseudo-Hessian formed by 9 sources and 50
receivers.

We constructed the Hessian approximations using the double-illumination method by
Plessix and Mulder (2006) (Fig. 12a and e), linear phase encoding method (Fig. 12b,
c, f and g) and chirp phase encoding method (Fig. 12d and h). For Fig. 10b and f, the
approximate Hessian matrices were constructed using the linear phase encoding technique
with the ray parameter p = 0. The crosstalk artifacts contaminate the approximate Hessian
obviously. Fig. 12c and g are the improved pseudo-Hessian matrices using the linear phase
encoding strategy and the ray parameters range from −0.3s/km to 0.3s/km with a step of
0.1s/km. Fig. 12d and h are calculated by stacking the same range of ray parameters but
using the chirp phase encoding strategy. Both of these two phase encoding methods can
disperse the crosstalk noise effectively and reduce the computation burden.

We also calculate the error matrices of the Hessian contaminated by crosstalk artifacts,
linear phase encoded Hessian and chirp phase encoded Hessian, as indicated by Fig. 13a,
b and c respectively. And we extracted the diagonal lines of these error matrices, as shown
in Fig. 14. We can notice that the red line is more close to 0, compared to the blue line.
So, the chirp phase encoding strategy can reduce the crosstalk noise better than the linear
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FIG. 12. The Hessian matrices with different strategies and sources arrangements. (a), (b), (c)
and (d) are the Hessian matrices for one source and 50 receivers. (e), (f), (g) and (h) are the
Hessian matrices for 9 source and 50 receivers. (a) and (e) are the Hessian matrices based on
the double source illumination method. (b) and (f) are the Hessian matrices using linear phase
encoding strategy with ray parameter p = 0. (c) and (g) are the Hessian matrices using the linear
phase encoding strategy and the ray parameters range from −0.3s/km to 0.3s/km with a step of
0.1s/km. (d) and (h) are the Hessian matrices using the chirp phase encoding strategy and the ray
parameters range from −0.3s/km to 0.3s/km with a step of 0.1s/km.

FIG. 13. Error matrices for different Hessian approximations. (a) shows the error matrix of the Hes-
sian contaminated by crosstalk noise. (b) is the error matrix of the linear phase encoded Hessian.
(c) is the error matrix of the chirp phase encoded Hessian.

FIG. 14. Diagonal part of the error matrices. The black line is diagonal error matrix of the Hessian
contaminated by crosstalk noise. The blue line is diagonal error matrix of the linear phase encoded
Hessian. The red line is diagonal error matrix of the linear phase encoded Hessian.
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phase encoding method with the same number of simulations.

Here, we present another numerical example to show how the phase encoding method
can disperse the crosstalk artifacts. The velocity model is homogeneous with a velocity
of 2500m/s. One source is arranged at (1km, 0km) and four receivers are arranged on
both sides of the source. Fig. 15a is the exact diagonal Hessian. Fig. 15b is the diagonal
part of phase encoded Hessian when ray parameter p = 0. The crosstalk artifacts are very
obvious. Fig. 15c shows the diagonal part of the phase encoded Hessian with 7 simulations
when integrating the ray parameter from −0.3s/km to 0.3s/km with a step of 0.1s/km.
Fig. 15d shows the diagonal part of the phase encoded Hessian with 14 simulations when
integrating the ray parameter from −0.3s/km to 0.3s/km with a step of 0.05s/km. It can
be seen that with increasing the number of simulations, the crosstalk artifacts are dispersed
effectively.

FIG. 15. (a) is the exact diagonal Hessian. (b) shows the diagonal Hessian contaminated by the
crosstalk noise. (c) is the diagonal phase encoded Hessian with 7 simulations. (d) is the diagonal
phase encoded Hessian with 14 simulations.

Numerical Example for Full Waveform Inversion

The strategies proposed above are practiced and applied on a modified Marmousi Model.
The Marmousi model is modified by introducing one water layer with a thickness of 70m
and a velocity of 1500m/s. And the model has 180× 767 grid cells with the same grid in-
terval of 5m in horizontal and vertical. 380 point sources are distributed on the surface with
a source interval of 10m from 0 to 3800m and 767 receivers are deployed on the surface
with a receiver interval of 5m from 5m to 5750m. The source function is a Ricker wavelet
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with a dominant frequency of 30Hz. The ray parameter range used for linear phase en-
coding method is [−0.3s/km, 0.3s/km] with a step of 0.1s/km are tested for comparison.
The lowest frequency band used is [0Hz, 5Hz] and the frequency band increases by 5Hz
for every 10 iterations. Fig.16a shows the exact P-wave velocity model and Fig.16b shows
the smoothed P-wave velocity model used as the reference model in this research.

FIG. 16. (a) is true velocity model; (b) is the initial velocity model.

Fixed and varied ray parameter effects

Fig.17 shows the FWI results after 50 iterations by preconditioned method with fixed
ray-parameter and varied ray parameter in each iteration. Fig.16a shows the result when
ray parameter was fixed at p = 0s/km. Fig.16b shows the result when ray parameter
was fixed at p = −0.2s/km. Fig.16c shows the result when ray parameter was fixed at
p = 0.2s/km. It can be seen that the updated model is not balanced with just one fixed
ray-parameter during iterations. Some noise or anomalies are obvious. Fig.16d shows the
result when we changed the ray parameters from −0.3s/km to 0.3s/km with a step of
0.1s/km during the iterations. We can see that the update is balanced and the updated
model is much more better. Fig. 18 shows the relative least-squares errors for different
ray parameter arrangements. It can seen that varying ray parameter during iterations can
provide a higher quality inversion result after 50 iterations, as indicated by the black cycle
line.

Sensitivity to the ray parameter range

Because the ray parameter is the function of the take-off angle and top surface velocity,
different ray parameters are responsible to update the subsurface layers with different dip
angles. We compared the inversion results after 50 iterations with different ray parameter
ranges as shown in Fig. 19. Fig. 19a shows the inversion result when the ray parameter
ranges from −0.1s/km to 0.1s/km with a step of 0.05s/km. We can see that because
the ray parameter range is too small, the subsurface layers with dip angles cannot be up-
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FIG. 17. FWI results after 50 iterations with single ray parameter in each FWI iteration. (a) ray
parameter is fixed at p = 0s/km; (b) ray parameter is fixed at p = −0.2s/km; (c) ray parameter is
fixed at p = 0.2s/km; (d) ray parameter varies from −0.3s/km to 0.3s/km with a step of 0.1s/km.

dated in balance. Fig. 19b and c show the inverted results when the ray parameter ranges
are [−0.4s/km, 0.4s/km] with a step of 0.1s/km and [−0.6s/km, 0.6s/km] with a step
of 0.2s/km respectively. It can be seen that if the ray parameter range is too large, the
convergence rate can be decreased.

Sensitivity to the number of encoded sources

The phase encoding technique can reduce the computational cost effectively but un-
fortunately introduce unwanted crossterms between unrelated shot and receiver wavefields.
Generally, slant stacking over sufficient ray parameters can disperse or shift these crossterms
reasonably. In theory, when the shot coordinates are sparsely distributed, the crosstalk noise
becomes more serious with increasing the number of the encoded sources (Romero et al.,
2000). While when the shot locations densely cover the imaging area, each plane-wave
encoded gradient exhibits a limited amount of noise (Liu et al., 2006).

We also analyzed the sensitivity to the number of encoded sources. Fig. 20 shows the
inversion results when the source number Ns is 38, 76 and 350, as indicated by Fig. 20a, c
and d respectively. Fig. 20b is the inversion result when the source number is also 38. But
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FIG. 18. Relative least-squares errors comparison for different ray parameter settings. The red
cycle line, blue cycle line and green cycle line indicate the least squares errors when the ray pa-
rameter p is fixed at −0.2s/km, 0s/km and 0.2s/km respectively. And the black cycle line is the
least squares errors when varying the ray parameter from −0.3s/km to 0.3s/km with a spacing of
0.1s/km.

we applied an integration over ray parameter from −0.2s/km to 0.2s/km with a step of
0.1s/km. For Fig. 20a, we can note that the crosstalk artifacts are very obvious especially
for the shallow layers. This is because the interferences between unrelated source and
receiver wavefields. And if we apply integration over ray parameter in each FWI iteration,
the crosstalk artifacts can be reduced effectively but more expensive. With increasing the
number of sources, as shown in Fig.20c and d, the crosstalk noise becomes weaker and the
convergence rate can also be increased. Fig. 21 shows the vertical lines extracted from
Fig. 20a, c and d at 0.5km and 3km for comparison. It is easy for us to observe that the
inversion results with 350 sources (the green lines) approach the true velocity model better
(the bold black lines).

Sensitivity to Gaussian noise

We also considered the influence of the Gaussian noise to the inversion results. Fig.
22a, b, c and d show the data residuals with Gaussian noise. The signal to noise ratios
(SNR) are 5, 4, 3, and 2 respectively. Fig. 23a, b, c and d show the corresponding inverted
results. It can be seen that with increasing the strength of the random noise, the inverted
results become worse and the convergence rate can also be decrease. Some small layers in
the shallow parts of the velocity model cannot be inverted. But we can still recognize the
bigger structures in the deep parts of the velocity model.

Comparison of different scaling methods

We compared the inversion results of the gradient based method, preconditioned by the
diagonal pseudo-Hessian, preconditioned by the diagonal chirp phase encoded Hessian.
Fig. 24a shows the exact diagonal Hessian using the true velocity model. Fig. 24b shows
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FIG. 19. Sensitivity to the ray parameter range. (a) ray parameter range is [−0.1s/km, 0.1s/km]
with s step of 0.05s/km; (b) ray parameter range is [−0.4s/km, 0.4s/km] with a step of 0.1s/km;
(c) ray parameter range is [−0.6s/km, 0.6s/km] with a step of 0.2s/km; (d) ray parameter range is
[−0.3s/km, 0.3s/km] with a step of 0.1s/km.

the diagonal part of the pseudo-Hessian. We can notice that the pseudo-Hessian overesti-
mates the energy. Fig. 24c and d show the diagonal parts of linear phase encoded Hessian
and chirp phase encoded Hessian. We can see that the linear phase encoded Hessian and
chirp phase encoded Hessian can approach the exact Hessian very well but introduce slight
noise. Fig. 25 shows the diagonal parts of the Hessian using the initial velocity model. Fig.
25a is the exact diagonal Hessian. Fig. 25b shows the diagonal part of pseudo-Hessian.
Fig. 25c and d are the diagonal parts of linear phase encoded Hessian constructed by 14
and 28 simulations respectively. Fig. 25e and f are the diagonal parts of chirp phase en-
coded Hessian constructed by 14 and 28 simulations respectively. We can see that from Fig.
25c to Fig. 25d, the crosstalk noise are reduced with increasing the number of simulations.
While the crosstalk artifacts are still very obvious. While for the diagonal parts of the chirp
phase encoded Hessian, the crosstalk artifacts are reduced more effectively in Fig. 25e and
f.
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FIG. 20. Sensitivity to the number of encoded sources. (a) source numberNs = 38; (b) source num-
ber Ns = 38 with integration over ray parameter from −0.2s/km to 0.2s/km in each FWI iteration;
(c) source number Ns = 76; (d) source number Ns = 350.

And then we performed full waveform inversion for 200 iterations using gradient based
method, with diagonal pseudo-Hessian precondition and with diagonal chirp phase encoded
Hessian respectively. Fig. 26 shows the inversion results for different scaling strategies.
Fig. 26a is the true velocity model. Fig. 26b shows the inversion result of the gradient
based method. Fig. 26c shows the inversion result with the diagonal pseudo Hessian pre-
condition. And Fig. 26d is the inversion result with diagonal chirp phase encoded Hessian
precondition. We can see that the gradient based method can not invert the velocity model
very well especially for the deep reflectors. The inversion results with diagonal pseudo-
Hessian precondition and diagonal phase encoded Hessian precondition are much better.
We extract the vertical lines from Fig. 26b, c and d at 0.5km and 3.25km respectively, as
indicated by the Fig. 27.
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FIG. 21. Inversion results comparison for different number of encoded sources at 0.5km (a) and
3km (b) respectively. The bold black lines are the true velocity model. The thin black lines are
the initial velocity model. The blue, red and green lines are the inversion results when the source
number is 38, 76 and 350 respectively.

Imaging Results Comparison

We produced the reverse time images using the initial velocity model, true velocity
model and inverted velocity model respectively for comparison. Fig. 28a shows the mi-
grated image using the initial velocity model. Fig. 28b shows the migrated image using
the true velocity model. We can see that the image using the initial velocity model is se-
riously distorted and the positions of the subsurface reflectors are shifted. Fig. 29a shows
the image by the inverted velocity model in Fig. 26d. We can see that the image using the
inverted velocity model is very close the image using the true velocity model.

CONCLUSION

From what we have discussed above, several conclusions can be achieved: (1) Hessian
matrix server as a nonstationary deconvolution operator to improve the convergence rate of
least-squares inverse problem; (2) Varying ray-parameter during iterations can reduce the
computational cost further and balance the model update; (3) If the ray-parameter range
is too small, the layers with dip angles cannot be inverted in balance, if the ray-parameter
range is too large, the convergence rate will be decreased; (4) If the assembled sources
are not dense enough, the crosstalk noise will be very obvious, especially for shallow lay-
ers; (5) Chirp phase encoding strategy can reduce the crosstalk noise better than linear
phase encoding strategy with the same number of simulations; (6) Diagonal part of the
phase encoded Hessian can server as a good approximation of the Hessian to precondition
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FIG. 22. The data residuals with Gaussian noise when SNRs are 5(a),4(b),3(c),2(d) respectively.

the gradient and increase the convergence rate; (7) Full waveform inversion with source
encoding is efficient for numerical modeling but will increase difficulties in seismic data
acquisition and preprocessing.

ACKNOWLEDGMENTS

This research was supported by the Consortium for Research in Elastic Wave Explo-
ration Seismology (CREWES). And I wish to thank Danping Cao,Joe Wang, Vladimir
Zubov, Raul Cova, Babatunde Arenrin’s discussions with me.

CREWES Research Report — Volume 25 (2013) 27



Pan et. al

FIG. 23. The inverted results when SNR = 5 (a), SNR = 4 (b), SNR = 3 (c) and SNR = 2 (d)
respectively.

28 CREWES Research Report — Volume 25 (2013)



Efficient pseudo Gauss-Newton FWI

FIG. 24. Diagonal Hessian comparison by the true velocity model. (a) the exact diagonal Hessian;
(b) the diagonal part of the pseudo-Hessian; (c) the diagonal part of the linear phase encoded
Hessian with 35 simulations; (d) the diagonal part of the chirp phase encoded Hessian with 35
simulations.

FIG. 25. Diagonal Hessian comparison by the initial velocity model. (a) the exact diagonal Hessian;
(b) the diagonal part of the pseudo-Hessian; (c) and (d) are the diagonal parts of the linear phase
encoded Hessian with 14 and 28 simulations respectively. (e) and (f) are the diagonal parts of the
chirp phase encoded Hessian with 14 and 28 simulations respectively.
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FIG. 26. FWI results after 200 iterations for different scaling methods. (a)True velocity model;(b)
Inversion result gradient based method; (c) Inversion result with diagonal pseudo-Hessian precon-
dition; (d) Inversion result with diagonal chirp phase encoded Hessian precondition.
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FIG. 27. Inversion results comparison for different scaling methods at 0.5km (a) and 3.25km (b)
respectively. The bold black lines are the true velocity model. The thin black lines are the initial ve-
locity model. The green, blue and red lines indicate the inversion results by gradient based method,
with diagonal pseudo Hessian precondition and with diagonal chirp phase encoded Hessian pre-
condition respectively.
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FIG. 28. Reverse time migration images comparison.(a) is the reverse time migration image using
the initial velocity model; (b) is the reverse time migration image by the true velocity model. (c) is
the reverse time migration image by the inverted velocity model.
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APPENDIX A - THE DERIVATION OF PARTIAL DERIVATIVE WAVEFIELDS
BASED ON BORN SERIES TRUNCATION

For the partial derivative wavefields with respect to the model parameters:

δG
(

rg, rs, ω|s(n)
0

)
δs

(n)
0 (r)

=
G1

(
rg, rs, ω|s(n)

0

)
−G0

(
rg, rs, ω|s(n)

0

)
δs

(n)
0 (r)

, (32)

where G1

(
rg, rs, ω|s(n)

0

)
and G0

(
rg, rs, ω|s(n)

0

)
are the perturbed and unperturbed wave-

fields respectively. And G1 and G0 satisfy the following wave equations (Innanen, 2009):[
∇2 + ω2s

(n)
0 (r)

]
G0

(
rg, rs, ω|s(n)

0

)
= δ(rg − rs), (33)[

∇2 + ω2s
(n)
0 (r) + ω2δs

(n)
0 (r)

]
G1

(
rg, rs, ω|s(n)

0

)
= δ(rg − rs), (34)

Combing equations (A-2) and (A-3), we can isolate G1

(
rg, rs, ω|s(n)

0

)
on the right hand

side and get the Lippmann-Schwinger equation (Newton, 1966; Taylor, 1972; Stolt and
Weglein, 2012):

G1

(
r, rs, ω|s(n)

0

)
= G0

(
r, rs, ω|s(n)

0

)
−
∫
dr′G0

(
r′, rs, ω|s(n)

0

)
V G1

(
r′, rs, ω|s(n)

0

)
,

(35)
where V = ω2δs

(n)
0 (r′) is the scattering potential (Innanen and Weglein, 2007), the differ-

ence between the exact and approximate wave modeling operators. Equation (A-4) can be
expanded as a power series in the quantity of G0V :

G1 = (G0V )0G0 − (G0V )1G0 + (G0V )2G0 − (G0V )3G0 + . . . , (36)

If the scattering potential is small or more precisely, the norm of operator G0V is
smaller than 1, the Born series can be truncated by neglecting the high order terms, which
gives the Born approximation to the Lippmann-Schwinger equation (Stolt and Weglein,
2012):

G1 ' G0 −G0V G0, (37)

This Born approximation can be viewed as a linear term in Lippmann-Schwinger equation
and the error is acceptable when model perturbation δs(n)

0 (r′) or G0V is small (Stolt and
Weglein, 2012). If we move G0 in the right hand side of equation (A-6) to the left hand
side, the wavefields perturbation can be written as:

δG = G1 −G0 = −G0V G0 = −ω2G0δs0G0, (38)

Then the partial derivative wavefields in equation (A-1) becomes:

δG
(

rg, rs, ω|s(n)
0

)
δs

(n)
0 (r)

= −ω2G0

(
rg, r, ω|s(n)

0

)
G0

(
r, rs, ω|s(n)

0

)
, (39)
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APPENDIX B - PROOF OF THE EQUIVALENCE BETWEEN SOURCE
ILLUMINATION AND DIAGONAL PART OF THE PSEUDO-HESSIAN

Firstly, we can re-examine the acoustic wave equation:

L
(n)
0

(
rg, r, ω|s(n)

0

)
G
(

rg, rs, ω|s(n)
0

)
= Fs(ω)δ(rg − rs), (40)

where L(n)
0

(
rg, r, ω|s(n)

0

)
=
(
∇2 + ω2s

(n)
0 (rg)

)
is the wave modeling operator, ∇2 is the

Laplace operator, Fs(ω)δ(rg − rs) is the source term. And then take partial derivative with
respect to model parameters on both sides of the equation (B-1):
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According to the sifting property of delta function:

fvirtual = L
(n)
0

(
rg, r, ω|s(n)

0

)
∂G
(

rg ,rs,ω|s(n)
0

)
∂s

(n)
0 (r)

= −ω2Fs(ω)G
(

r, rs, ω|s(n)(r)
0

) , (42)

where fvirtual is the virtual source (Pratt et al., 1998). The pseudo-Hessian proposed by
Shin et al. (2001b) becomes:

H(n)
p_a = fvirtualf

∗
virtual =

∑
rs

∫
dω<{ω4|Fs(ω)|2G(r′, rs, ω)G∗(r′′, rs, ω)}, (43)

And when r′ = r′′, the diagonal of the pseudo-Hessian is expressible as:

H̄(n)
p_a = diag (fvirtualf

∗
virtual) =

∑
rs

∫
dω<{ω4|Fs(ω)|2G(r, rs, ω)G∗(r, rs, ω)}, (44)

So, it can be seen that the diagonal part of pseudo-Hessian is actually equivalent to the
source illumination, as shown in the denominator of equation (24).
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