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Exact formulas for qP, qSV, and SH group velocities in VTI media  

Joe Wong  

ABSTRACT 

For analyzing traveltimes of qP and qS arrivals propagating through media with 
transversely isotropic or VTI symmetry, geophysicists often use the Thomsen linearized 
formulas for phase velocities to approximate group velocities.  However, the Thomsen 
approximations are suitable only for weak anisotropy and for small angles relative to the 
VTI symmetry axis.  When the anisotropy is strong and for larger angles, exact 
expressions for group velocity may be more appropriate.  The exact group velocity 
formulas are not widely familiar to most applied geophysicists.  This report summarizes 
the derivation of these exact formulas using the method  of characteristics, and presents 
them in forms that facilitate calculation of traveltimes relevant to all the common 
acquisition geometries (surface reflection, VSP, and crosswell). 

INTRODUCTION 

A transversely isotropic medium with a vertical symmetry axis, commonly referred 
to as a VTI medium, possesses anisotropic velocities that are isotropic in any horizontal 
plane, but vary in any vertical direction with angle ߠ measured from the vertical 
symmetry axis.  Such media support three types of elastic waves: the coupled quasi-
pressure (qP) and quasi-shear (qSV) waves with polarization within any vertical plane, 
and the transverse shear (SH) wave with horizontal polarization perpendicular to the 
propagation plane.   

In real-world seismic surveys, event arrival times are important observable 
quantities that are associated with the group velocities of elastic waves propagating 
through isotropic and anisotropic geological media.  In applied seismology, analysis of 
traveltimes associated with VTI media often use approximate formulas to quantify qP 
and qSv group velocities.  An example of such approximations is the linearized 
expressions for phase velocity involving the Thomsen parameters (Thomsen, 1986).  
However, the Thomsen approximations are suitable only for weak anisotropy and for 
small angles relative to the VTI symmetry axis.  When strong anisotropy exists, or for 
large group angles, exact expressions are more suitable and should be used.    

Exact expressions for the x- and z-components (ݒ௚௫,  ௚௭) of the group velocity inݒ
VTI media can be derived from the exact expressions for phase velocity using the method 
of characteristics described by Červený (2001).  For each wave type M = qP, qSV, or SH, 
the squared phase velocity function ெܸଶ(ߠ) has an exact functional form ெ݂(ߩ, ,ଵଵܥ ,ଷଷܥ ,ସସܥ ,଺଺ܥ ,ଵଷܥ ,ߠଶ݊݅ݏ	  ௠௡ are the Voigtܥ is the density and ߩ where ,(ߠଶݏ݋ܿ	
elastic parameters for VTI media.  For each wave type, the characteristic function ܩெ(݌௫, ,௫݌) where ,(ߠ)௭) can be formed from ெܸଶ݌	  ௭) are slowness components.  Group݌	
velocity components (ݒ௚௫, ,௫݌)ெܩ ௚௭) are then calculated by taking the derivatives ofݒ   .௭݌ ௫ and݌ ௭) with݌	
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METHOD OF CHARACTERISTICS 

Given an exact form for phase velocity function ெܸଶ(ߠ), the x- and z-components 
for group velocity are found by evaluating the following expressions (see Equations 
3.6.28 and 3.6.30 in Červený, 2001): 

 ெܸଶ(ߠ) = ெ݂(ܥଵଵ, ,ଷଷܥ ,ସସܥ ,଺଺ܥ ,ଵଷܥ ,ߠଶ݊݅ݏ	  (1.1) , (ߠଶݏ݋ܿ	

,௫݌)ெܩ  (௭݌	 = 	 12 2ܯܸ(ߠ2ݏ݋ܿ	,ߠ2݊݅ݏ	,13ܥ,66ܥ,44ܥ,33ܥ,11ܥ)ܯ݂ (ߠ)  ,   (1.2)  

,௫݌)ெܩ  (௭݌	 = 0.5 ∙ ெ݂(ܥଵଵ, ,ଷଷܥ ,ସସܥ ,଺଺ܥ ,ଵଷܥ ,௫ଶ݌   ) ,  (1.3)		௭ଶ݌

௫݌  = sin /ߠ ெܸ(ߠ)	  , (1.4)  

௭݌  = cos /ߠ ெܸ(ߠ)  , (1.5)  

(ߠ)௚௫ݒ  = ܶ݀ݔ݀ ௚௫ݒ	= = 12 1݌݀(3݌	,1݌)݉ܩ݀   , (1.6)  

(ߠ)௚௭ݒ  = ܶ݀ݖ݀ ௚௭ݒ	= = 12 3݌݀(3݌	,1݌)݉ܩ݀   , (1.7)  

  ௚(ߠ) =  (1.8) ,  (௚௫ݒ/௚௭ݒ)݊ܽݐܿݎܽ

where ௚(ߠ) is the group or ray angle.  The group velocity components ൫ݒ௚௭(ߠ),ݒ௚௫(ߠ)൯ and the group angle ௚(ߠ) determine the speed and direction of energy 

propagation in the VTI symmetry plane.  The group angle ௚ is different from the phase 

angle ߠ.  All directions are measured relative to the vertical symmetry axis.  

In Equations 1.1 to 1.8, the angle ߠ is a parametric variable, and all equations 
involving it are parametric equations.   

EXACT EXPRESSIONS FOR GROUP VELOCITIES 

We define five squared-velocity quantities that are related to the density ߩ and 
Voigt elastic parameters ܥ௠௡ for VTI media (Carcione, 2007):  

 ௉ܸଽ଴ଶ = ߩ/ଵଵܥ =  (2.1)  , ߩ/ଶଶܥ

 ௉ܸଽ଴ଶ = ߩ/ଵଵܥ =  (2.2)  , ߩ/ଶଶܥ

 ଵܸଷଶ =  (2.3)  , ߩ/ଵଷܥ

 ௌܸଶ் =  (2.4)  . ߩ/଺଺ܥ

In the literature, the quantities ܥ௠௡/ߩ are usually given variable names ܣ௠௡.  We 
additionally define three auxiliary quantities : ଴݂, which is part of the analytic expressions 
defining the qP and qSv squared phase velocities; and ௣݂, and ௦݂, obtained by taking the 
derivative of  ଴݂ with respect to the slowness components ݌௫ and ݌௭.  
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 ଴݂ = [ ௉ܸଽ଴ଶ ௫ଶ݌ − ௉ܸ଴ଶ ௭ଶ݌ + ௌܸ଴ଶ ௭ଶ݌) − ௫ଶ)]ଶ݌ + ( ଵܸଷଶ + ௌܸ଴ଶ )ଶ(݌௭ଶ +  ௫ଶ ,  (2.6)݌

 ௣݂ = }ݐݎݍݏ ௦݂ଶ + 4( ଵܸଷଶ + ௌܸ଴ଶ )ଶ݌ଵଶ݌ଷଶ}	 ,  (2.7) 

 ௦݂ = ௉ܸଽ଴ଶ ଵଶ݌ − ௉ܸ଴ଶ ଷଶ݌ + ௌܸ଴ଶ ଷଶ݌) −  ଵଶ .  (2.8)݌

The exact expressions for phase and group velocities can now be written. 

For the qP wave:   

 ௤ܸ௉ଶ (ߠ) = ଵଶ ∗ [ ௉ܸଽ଴ଶ ߠଶ݊݅ݏ + ௉ܸ଴ଶ ߠଶݏ݋ܿ + ௌܸ଴ଶ − )ݐݎݍݏ ଴݂)] ,  (3.1) 

௫݌  = sin /ߠ ௉ܸ(ߠ)	 ,  (3.2) 

௭݌  = cos /ߠ ௉ܸ(ߠ) ,  (3.3) 

௤௉௫ݒ  = 	}(ଵ/2݌) ௉ܸଽ଴ଶ + ௌܸ଴ଶ + (1/ ௣݂)[ ௦݂( ௉ܸଽ଴ଶ − ௌܸ଴ଶ ) + 2( ଵܸଷଶ + ௌܸ଴ଶ  } ,  (3.4)	ଷଶ]݌(

௤௉௭ݒ  = 	}(ଷ/2݌) ௉ܸ଴ଶ + ௌܸ଴ଶ + (1/ ௣݂)[ ௦݂(− ௉ܸ଴ଶ + ௌܸ଴ଶ ) + 2( ଵܸଷଶ + ௌܸ଴ଶ  } .  (3.5)	ଵଶ]݌(

 

For the qSV wave: 

ଶݒܵݍܸ  (ߠ) = ଵଶ ∗ [ ௉ܸଽ଴ଶ ߠଶ݊݅ݏ + ௉ܸ଴ଶ ߠଶݏ݋ܿ + ௌܸ଴ଶ − )ݐݎݍݏ ଴݂)] ,  (4.1) 

௫݌  = sin /ߠ  (4.2)  , 	(ߠ)ݔܵݍܸ

௭݌  = cos /ߠ  (4.3)  , (ߠ)ݔܵݍܸ

௤ௌ௫ݒ  = 	}(ଵ/2݌) ௉ܸଽ଴ଶ + ௌܸ଴ଶ − (1/ ௣݂)[ ௦݂( ௉ܸଽ଴ଶ − ௌܸ଴ଶ ) + 2( ଵܸଷଶ + ௌܸ଴ଶ  } ,  (4.4)	ଷଶ]݌(

௤ௌ௭ݒ  = 	}(ଷ/2݌) ௉ܸ଴ଶ + ௌܸ଴ଶ − (1/ ௣݂)[ ௦݂(− ௉ܸ଴ଶ + ௌܸ଴ଶ ) + 2( ଵܸଷଶ + ௌܸ଴ଶ  } . (4.5)	ଵଶ]݌(

 

For the SH wave: 

 ௌܸுଶ (ߠ) = ௌܸଶ் ߠଶ݊݅ݏ + ௌܸ଴ଶ  (5.1)  , ߠଶݏ݋ܿ

௫݌  = sin /ߠ ௌܸ(ߠ)	 ,  (5.2) 

௭݌  = cos /ߠ ௌܸ(ߠ) ,  (5.3) 

ௌு௫ݒ  = ଵ݌ ௌܸଶ்  ,  (5.4) 

ௌு௭ݒ  = ଷ݌ ௌܸ଴ଶ  ,  (5.5) 

Equations 5.4 and 5.5 are equivalent to  

/ௌு௫ݒ  ௌ்ܸ = /ଵ݌	 ௌ்ܸିଵ = ்ݏ/ଵ݌ 	= sin   (5.6)  , ߠ

/ௌு௭ݒ  ௌܸ଴ = /ଷ݌	 ௌܸ଴ିଵ = ଴ݏ/ଷ݌ = cos  (5.7)  , ߠ

Finally, 

 
௩ೄಹೣమ௏ೄ೅మ + ௩ೄಹ೥మ௏ೄబమ 2ܶݏ12݌	=    + 02ݏ22݌ 	= 	1 .  (5.8) 
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Equation 5.8 shows that the group velocity surface and the slowness surface are 
both elliptical in shape (cf. Carcione, 2007; Equation 1.181). 

We have restricted our discussion to a transversely isotropic (VTI) medium with a 
vertical symmetry axis.  The extension to media with tilted or horizontal symmetry axes 
(commonly referred to as TTI or HTI media) is straightforward, as TTI propagation 
angles can be found from the VTI angles through rotation by an angle equal to that 
between the symmetry and vertical axes. 	 

EXAMPLES 

We wrote MATLAB software based on the above equations to generate examples 
of the qP, qSv, and SH phase and group velocities.  These examples are shown on Figures 
1 to 3 for three VTI substances: beryl, ice, and olivine.  Values for the densities and the 
five elastic constants C11, C33, C44, C66, and C13 for these crystalline materials were taken 
from Musgrave (2003).  To check the accuracy of the derived expressions, selected points 
were taken from the plots for beryl in Musgrave’s book and plotted on Figure 1 in direct 
comparison with the curves produced by the MATLAB code.  We can see that the curves 
for the qP, qSv, and SH group velocities agree very well with the points taken from 
Musgrave. 

On the examples, we can see clearly the differences in angular dependence of the 
qSv and SH group velocities.  These differences are the origin of shear-wave splitting.  
For the olivine example, the Voigt elastic constants are such that the calculated qSv group 
velocities show triplication at the cusp angles.  These triplications and cusps are predicted 
for materials with pure crystal structures, and are quite subtle.  Such purity does not exist 
for the vast majority of geological media, and so triplications and cusps are unlikely to be 
observed in seismic field data.  Because of this, the approximate formulas for group 
velocities presented by Thomsen (1986) and by Byun et al. (1989) have found more 
utility in the analysis of real-world seismic reflection data.  In my opinion, the Byun 
approximation for qP group velocity, summarized in Appendix B, is to be preferred over 
the Thomsen linear approximation because it is more accurate for large group angles, and 
since it avoids the use of the rather nebulous Thomsen parameter δ, it is more intuitive.    

CONCLUSION 

We have used the method of characteristics (Červený, 2001) to derive closed-form 
expressions for exact qP, qSv, and SH group velocities from the exact equations for phase 
velocities in VTI anisotropic media.  Berryman (1979) and Crampin (1981) have given an 
alternative technique for calculating exact group velocities from the exact expressions for 
the phase velocities.  This technique is summarized in Appendix A.  

The exact expressions are not much more complicated to use in calculations than 
the Thomsen linear approximations for weak anisotropy.  In cases where the anisotropy is 
strong, or for analyzing seismograms with large source-receiver offsets, use of the exact 
formulas may result in more accurate analyses of seismic data for all the common 
acquisition geometries (surface reflection, VSP, and crosswell). 
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FIG. 1:  Group velocities for beryl: ρ = 2850kg/m3, C11 = 287.3, C33 = 241.8, C55 = 70.2, C66 = 94.2, 
and C13 = 72.8 (Cmn units = GPa).  Lines are values calculated values using the exact formulas in 
this report; solid dots are values take from Musgrave’s diagram for beryl.  
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FIG. 2:  Group velocities for ice: ρ = 980kg/m3, C11 = 13.8, C33 = 15.0, C55, = 3.2, C66 = 5.35, and 
C13 = 5.8 (Cmn units = GPa).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

FIG. 3:  Group velocities for olivine: A11 = 15.06, A33 = 10.84, A55 = 3.12, A6 6 = 4.00, A13 = 1.64 
(Amn units = [km/s]2; from Daley et al., 2010).  
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APPENDIX A: BERRYMAN’S CALCUALTION PROCEDURE 

Berryman (1979) showed that the group velocities can be determined by taking 
derivatives of the squared phase velocities with respect to the phase angle ߠ.  The 
following expressions , adapted from Crampin (1981), summarize Berryman’s procedure:    

 
డ௏ಾ(ఏ)డఏ = ଵଶ௏ಾ(ఏ) ∙ డ௏ಾమ(ఏ)డఏ  ,  (A1)  

(ߠ)௚௫ݒ  = ெܸ(ߠ) cos ߠ − sin ߠ ߠ߲(ߠ)ܯܸ߲  ,  (A2) 

(ߠ)௚௭ݒ  = ெܸ(ߠ) sin ߠ +	cos ߠ ߠ߲(ߠ)ܯܸ߲  .  (A3)  

  ௚(ߠ) =  (A4) ,  (௚௫ݒ/௚௭ݒ)݊ܽݐܿݎܽ

where ݒ௚௫(ߠ) and ݒ௚௭(ߠ) are group velocity components, and ௚(ߠ) is the group or ray 

angle.  For M = qP, qSV, and SH, respectively, the exact square phase velocities ெܸଶ(ߠ) 
are given by Equations 3.1, 4.1, and 5.1.  All angles are measured from the VTI 
symmetry axis. 

The analytic forms of the derivatives ߲ ெܸ(ߠ)/߲ߠ and ߲ ெܸଶ(ߠ)/߲ߠ are obtained by 
simple algebraic manipulation of Equations 3.1, 4.1, and 5.1.  However, in writing 
software to calculate values of the group velocity components ൫ݒ௚௭(ߠ),  ൯ and the(ߠ)௚௫ݒ
group angle ௚(ߠ), it is often more convenient to use a numerical approximation to ߲ ெܸ(ߠ)/߲ߠ rather than the analytic forms indicated by Equation A1.    

 

APPENDIX B: BYUN-KUMAR APPROXIMATIONS FOR qP GROUP 
VELOCITY IN VTI/TTI MEDIA 

The exact expressions for group velocities in VTI media are appropriate for pure 
crystalline materials.  Even though they may exhibit elastic anisotropy, geological media 
generally do not possess pure crystalline structure.  Consequently, in most geophysical 
analysis of seismic propagation through VTI-like media, approximate formulas often are 
used to quantify qP and qSv group velocities.  Examples are the linearized approximate 
expressions for phase velocity involving the Thomsen parameters (Thomsen, 1986).  
Byun et al. (1989) and Kumar et al. (2004) have advocated a different approximation for 
the qP group velocity in VTI/TTI media, summarized in the following equations:  

௚ିݒ  ଶ(߮) = ܽ଴ + ܽଵܿݏ݋ଶ(߮ + (ߴ − ܽଶܿݏ݋ସ(߮ +  (B1)  ,  (ߴ

 ܽ଴ = ுܸି ଶ  ,  (B2) 

 ܽଵ = 4 ସܸହିଶ − 3 ுܸି ଶ − ௏ܸି ଶ  ,  (B3) 

 ܽଶ = 4 ସܸହିଶ − 2 ுܸି ଶ − 2 ௏ܸି ଶ  ,  (B4) 

 



Wong 

8 CREWES Research Report — Volume 25 (2013)  

where ߮ is the angle measured from the symmetry axis of the VTI medium. ுܸ,  ுܸ,  and ସܸହ are the velocities in the horizontal, vertical, and 45° directions relative to the 
symmetry axis.  The angle ߴ is the angle between the symmetry axis and the coordinate 
vertical axis.  If ߴ is 0°, we have a VTI medium.  For ߴ = 90,	we have an HTI medium.  
A TTI medium is defined when ߴ has a value between 0° and 90°.   

Figure B1 compares the exact phase and group qP velocities for ice with values 
calculated using the Byun-Kumar approximation.  We see that the approximate values are 
in close agreement with the exact group velocity.  According to this figure, the exact 
phase velocity and the exact group velocity are not much different from each other.  That 
they are so close is the reason that, for geophysical analysis of data through VTI/TTI 
media, values of phase velocity determined from the linearized Thomsen formulas often 
are suitable approximations for group velocities.  However, the Thomsen approximations 
are appropriate only for weak anisotropy and at small propagation angles.  

   

FIG. B1:  Comparison of group velocities for ice, calculated by exact formulas, and by the Byun-
Kumar approximation.  The parameters values used in Equations B1 to B4 are [VV, VH, V45 ] = 
[3.912, 3.753, 3.682] km/s, with tilt angle = 0°. 

 


