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Porous medium – the P-wave case 

P.F. Daley  

ABSTRACT 
A subset of the general equations used to describe seismic wave propagation in a 

poroviscoelastic medium is investigated using finite difference methods. Theoretically for 
an isotropic medium of this type there are four modes a propagation: a compressional 
( )P  wave, a shear ( )VS  wave and a shear ( )HS  wave as well as what in termed a slow 

compressional ( )SP  whose actual existence has, until fairly recently, been questioned. 
The scaled down version of the full poroviscoelastic equation set is one which is 
viscoelastic and but does not contain any shear type propagation. It is the acoustic 
analogue of the elastic wave equation, being a set of two coupled equations in the fast 
and slow compressional ( )P  wave modes, which may be further downgraded to a single 

equation in the fast compressional ( )P  wave mode as the slow compressional ( )P  wave 
mode is difficult to physically detect and as a consequence omitted, at least in this 
preliminary study.  The relatively simple equation remaining was chosen so that a 
comparison with the seismic response of the acoustic wave could be done to ascertain the 
possible usefulness of pursuing this topic further. Apart from hydrocarbon related seismic 
applications, the use of this theory for near surface seismic or Ground Penetrating Radar 
(GPR) applications to locate toxic or hazardous waste sites and possibly be of assistance 
in delineating the extent of seepages either from actual dumping or deteriorating 
containers is a possibility. 

INTRODUCTION 
It is difficult to discuss the problem of seismic waves propagating in a porous 

viscoelastic medium without simultaneously introducing concepts, and thus equations 
related to the interaction between the fluid and the solid matrix, that is, without speaking 
to at least the basic concepts of Darcy’s Law. There are numerous works which 
concentrate on developing the theory of seismic wave propagation within the framework 
of what could loosely be termed either reservoir geophysics or reservoir engineering. To 
list some of the more prominent papers and texts that deal with this topic presents another 
problem, as the notations are not standardized nor are the coordinate systems, or possibly 
more accurately, the relative coordinate systems employed. Further, many of the 
theoretical developments are problem specific. As for the theory and only the classic 
papers in this research area by Frankel (1944) and Biot (1956a, 1956b, 1956c, 
1962a,1962b) will be referenced, leaving the investigation of matters related to Darcy’s 
Law to the reader. For a marginally comprehensive knowledge of this area of study, 
topics, as mentioned in the previous sentence, must eventually be looked at in some 
depth.  

The motivation for considering this problem is, as an example, that for a conventional 
hydrocarbon (oil and gas) production reservoir at some depth within the earth, fluids flow 
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within the interstitial cavities of a matrix solid, driven conventionally, by hydrostatic 
pressure and is brought to the surface at specific locations (wells). To assume that the 
reservoir may be described by an acoustic or even elastic or anelastic medium could be 
considered presumptuous. Although history has shown that these are reasonable initial 
approximations, new technologies for monitoring the production history (time lapse 
seismology) and enhanced production, involving the injection of fluids either of necessity 
or convenience into the reservoir may indicate that a more relevant theory should be 
considered. Over the past few decades the technology associated with seismic data 
acquisition and primary and secondary recovery methods has increased enormously in 
complexity and utility. What have not kept pace, to the same extent, are fundamental 
seismic modeling capabilities. 

In a general isotropic poroviscoelastic medium there are four modes of propagation, 
the conventional longitudinal P wave and the two shear modes VS  and HS . As in the 
elastic case the HS  propagates independently of the P and VS . The P wave is associated 
with wave propagation in the matrix. In addition, there is, at least theoretically, another P 
wave, associated with the liquid, propagating in the medium with a velocity that is 
usually less than the shear, VS , wave. If the medium is anisotropic, it is deemed to be 
anisotropic in viscoelastic parameters as well as permeability. One of the basic premises 
of the governing theory is that there is an interaction between a wave propagating in the 
matrix and in the fluid. A problem of significance is determining the viscoelastic 
parameters that define the medium. It is for this reason only the longitudinal case will be 
considered here, a modified analogue of the elastodynamic problem. Further, it will be 
assumed that that the medium is dissipative, that is, the medium is viscoelastic. As a 
preliminary exercise, this was thought to be a reasonable starting point. 

In addition, since many reservoir environments are partially saturated with one or 
more fluids, incorporation of partial saturation as well as multi-fluid interaction and 
dissipation due to absolute movements of the fluid is necessary. Development of a more 
realistic physical and mathematical model is essential in understanding the propagation of 
seismic waves in the real environment. 

From Hassanzadeh (1991) “Synthetic seismograms computed using this method 
indicate that in the presence of heterogeneities the Biot mechanism (namely, the 
macroscopic differential fluid-solid movement, controlled primarily by hydraulic 
permeability) contributes considerably to the dispersion and dissipation of compressional 
waves. The dispersion and dissipation of the fast wave is due to the conversion of a 
small amount of its energy into the slow wave each time it crosses an interface between 
two dissimilar materials. In cases involving several layers and multiple reflections, as in 
the crosswell geometry, the cumulative effect of this kind of conversion is significant. The 
amount of energy lost as a result of this kind of conversion is influenced by the 
permeability of the medium. No equivalent single-phase model can adequately describe 
these effects on seismic waves propagating through fluid filled porous media.” 
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BIOT-FRANKEL’S EQUATIONS 
The Biot – Frankel equations governing compressional ( )P  wave propagation in a 

porous viscoacoustic (fast and slow P waves− ) medium are given by 

 ( ) ( ) ( )2 2 2
11 12 1 ,t tP U V b U V f tU Q V ρ ρ+ + ∂ − +∇ + ∇ = ∂ x  (1) 

 ( ) ( ) ( )2 2 2
12 22 2 ,t tQ U V b U V f tU R V ρ ρ+ − ∂ − +∇ + ∇ = ∂ x  (2) 

The damping coefficient b  in equations (1-2) is related to Darcy’s coefficient of 
permeability k , fluid viscosity, η , and porosity φ  as 2b kηφ=  . The quantity ( ),U tx  is 

the dilation ( ( ) ( ), ,U t t= ∇⋅x u x ) in the solid and ( ),V tx  is the dilation (

( ) ( ), ,V t t= ∇⋅x v x ) in the fluid and it has been assumed that the source is located in 
some region or inclusion of convenience of the medium.  Biot’s coefficients, P , Q  and 
R  ( )2P λ µ= + , which may be functions of position, must satisfy the inequality 

2 0PR Q− > . In the limit, 12 22, , , 0R Q ρ ρ → , a scalar compressional wave equation is all 
that remains.  

In the “viscous” case, 2b kηφ=  where as previously stated viscosityη − , 
porosityφ −  and permeabilityk − . Equations (1) and (2) for b  are valid in the low-

frequency range where the flow in the porous medium is of the Poiseuille1 type. Most 
studies have indicated that for seismic frequencies, these equations are reasonably good 
approximations (Dutta and Ode, 1979; Bourbie et al., 1987). In the theory of poroelastic 
wave propagation, Biot (1956a) defined a characteristic frequency Cf given by the 
equation 

   
2C

f

f
k

ηφ
πρ

=  (3) 

where the quantities , and kφ η are defined above. The pore fluid density is denoted as fρ  
and is discussed below. Frequencies less than Cf , which include common seismic 
frequencies, are assumed to be satisfied by this relation. 

The coefficients 11ρ , 12ρ  and 22ρ , which have the dimensions of density and may also 
be spatially dependent, satisfy the inequalities 

 11 12 220, 0, 0ρ ρ ρ> > >  (4) 
 2

11 22 12 0ρ ρ ρ− >  (5) 
In the limit of the non-porous case, 11ρ ρ→ , where ρ  is the density of an elastic 

medium 

1 Poiseuille flow means that any possible fluid flow within the medium is non-turbulent. 
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In an infinite medium, apart from source excitation, the problem may be fully 
specified by the initial conditions 

 
0 0 0 0

0t tt t t t
U U V V

= = = =
= = = =∂ ∂  (7) 

and assuming that the solution is such that radiation conditions are physically realizable. 

The source, which will be chosen as a point source of P waves, is located within the 
medium, which may be taken to be a vertically and laterally inhomogeneous half space, 
or at the interface, 0z = . 

At the surface, 0z = , the stress free boundary conditions are  

 
0 0

0z zz z
U V

= =
= =∂ ∂ . (8) 

 In the latter case, the free surface boundary conditions are of the form 

 ( ) ( )0z Sz
x f tU δ γ

=
=∂  (9) 

 ( ) ( )0z fz
x f tV δ γ

=
=∂  (10) 

where 1γ  and 2γ  are constants are specified in terms of the porosity ( )φ and effective 

density of the matrix solid, together with factors inherent to the fluid; ( )1Sγ φ= −  and 

fγ φ=  with 1S fγ γ+ = . The above equations would be applicable to a layer at the 
earth’s surface that is fully or partially fluid saturated. The reason for continuing to refer 
to this last type of problem is that it is familiar, and as the equations for wave propagation 
in this medium type is the same as for a hydrocarbon reservoir at depth, may serve as a 
point of reference. 

The wave propagation will be assumed to be confined to a spatial plane defined as 
( )0 ;0x a z b≤ ≤ ≤ ≤  and all of these four boundaries are initially assumed to be 
perfectly reflecting. These conditions require that some measures such as absorbing 
boundaries (Clayton and Engquist, 1977 and Reynolds, 1978) or attenuating boundaries 
(for example, Cerjan et al., 1985) be incorporated in the solution method so that spurious 
reflections from them will not contaminate the wavefield propagating within the spatial 
plane. 

 

INERTIAL CONSTANTS 
Inertial constants, which take into account the fact that the relative fluid flow through 

the pores is not uniform, can be expressed in terms of the actual mass densities of the 
matrix and fluid, Sρ  and fρ , respectively, plus an apparent mass density representing the 
inertial coupling: 
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 ( ) ( )11 1 1S f Tρ ρ φ ρ φ= − + −  (11) 

 ( )12 1f Tρ ρ φ= −  (12) 

 22 f Tρ ρ φ=  (13) 

where φ  is the porosity as defined before and T  is called the tortuosity parameter. The 
tortuosity T , which must satisfy the condition 1T ≥ , is related not only to porosity but 
also to the geometry of the medium where flow occurs. Berryman (1980) investigated the 
effect of porosity on this parameter, and by making an analogy to the mass effect added 
in the analysis of the movement of a solid obstacle in a fluid flow, proposed 

 ( )1 1 1T r φ= − −  (14) 

where r  is a factor to be determined from a microscopic model of the frame moving in 
the fluid. For the case of solid spherical particles in a fluid, 1 2r = . Other investigators 
have related tortuosity T  to the concept of formation factor (Archie, 1942; Johnson and 
Sen, 1981).  

In order for the kinetic energy to be a positive definite quadratic form, the coefficients 
11ρ , 12ρ , and 22ρ  must satisfy the following conditions (Biot, 1956a): 

 2
11 22 11 22 120, 0, 0ρ ρ ρ ρ ρ> > − >  (15) 

The total density ρ , of the fluid-solid aggregate, can be expressed as 
 11 12 222ρ ρ ρ ρ= + +  (16) 

or alternatively as 
 ( )1S fρ ρ φ ρ φ= − +  (17) 

which represents the weighted sum of the solid and fluid mass densities. 
If the porosity of the material is assumed to remain constant, the parameters P , Q , 

and R  in equations (1) and (2) can be expressed in terms of more familiar constants such 
as the bulk modulus of the fluid ( fK ), the bulk modulus of the individual solid grains (

sK ), the frame moduli ( bK  and µ ), and the porosity φ  (Geertsma and Smit, 1961; Stoll, 
1974): 
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 ( )( )1 4 3S S b fP K K K K Dφ α φ φ µ = − − + +   (18) 

 2
SR K Dφ=  (19) 

 ( ) SQ K Dα φ φ= −  (20) 

 S fD K Kα φ φ= − +  (21) 

 1 b SK Kα = −  (22) 

However, some of the quantities, in particular, the frame bulk modulus ( bK ) and shear 
modulus (µ ), must be inferred. 

THE 2.5D FINITE DIFFERENCE – FINITE INTEGRAL TRANSFORM 
PROBLEM 

Equations (1) and (2) are considered in a 3D Cartesian space. The media parameters 
are assumed to vary in the ( ),x z plane. They are taken as constant in the y direction. A 
finite Fourier cosine transform (Appendix A) with respect to the y coordinate is applied 
leaving problem that will be dealt with using a finite difference methods. It may have 
more instructive to assume that the medium is slightly varying in the y direction. 
However, this introduces another subtopic in this area of research which will be dealt 
with at a later time. It would also complicate the derivations to the point that the original 
intent could be lost. This initial problem is complicated enough. After applying the finite 
cosine transform equations (1) and (2) become 

 ( )

2
11 12 1 1 12

.
21 22 2 2 2

x z

A A b b fS S S Sn
A A b b fF Fc F F

π −            ∇ − = + +              −             

 

 
 (23) 

where the dot and double dot above a quantity indicate the first or second partial 
derivative with respect to time. ( ),U S V F→ → ( ), ,,time time

x z x zS F  

The quantities which require definition in the above equations are given by the 
following sequence of equations. Many of the quantities are discussed in the previous 
sections. 

 11 12
11 2

R QA
PR Q
ρ ρ −

=  − 
 (24) 

 12 22
12 2

R QA
PR Q
ρ ρ −

=  − 
 (25) 

 12 11
21 2

P QA
PR Q
ρ ρ −

=  − 
 (26) 
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 22 12
22 2

P QA
PR Q
ρ ρ −

=  − 
 (27) 

 ( )1b b R Q D = +   (28) 

 ( )2b b P Q D = +   (29) 

 2 0D PR Q= − >  (30) 

In what follows, the following definitions will be required: 

 ,t h h x zδ δ δ δ= = =  (31) 

After approximating the time derivatives equation (23) has the form 

 

( )

2
11 12 ,2 2

.
21 22 ,

1
11 1 12 1 ,

1
21 2 22 2 ,

1
11 1 12 1 ,

1
21 2 22 2 ,

2

2 2
2 2

2 2
2 2

m n
x z

m n

m n

m n

m n

m n

A AS St jt
A AF Fc

A b t A b t S
A b t A b t F

A b t A b t S
A b t A b t F

δ πδ

δ δ
δ δ

δ δ
δ δ

+

+

−

−

       ∇ + − =               
 + − 

+  − +   
 − + 

+  + −   













12

2

.
f

t
f

δ
 
 
 

 (32) 

and upon introducing the spatial derivatives of the two dimensional Laplacian the 
following is obtained after some manipulations 

 

( ) ( )
( ) ( )

1, 1, , 1 , 12

1, 1, , 1 , 1

2 22 2
11 12 ,

2 22 2
,21 22

11 1 12 1

21 2 22 2

4 2 4 2

4 2 4 2

2 2
2 2

m n m n m n m n

m n m n m n m n

m n

m n

m

S S S S
F F F F

A t j c A t j c S
FA t j c A t j c

A b t A b t S
A b t A b t

δ

δ δ π δ δ π

δ δ π δ δ π

δ δ
δ δ

+ − + −

+ − + −

 + + +
− + + + 

 − + − +  
  − 
 − + − +   

− + 
 + − 

   

   





1
1, 2

1
2,

1
11 1 12 1 ,

1
21 2 22 2 ,

2 2
2 2

n

m n

m n

m n

f
t

fF

A b t A b t S
A b t A b t F

δ

δ δ
δ δ

−

−

+

+

   
− =   

  
 + − 
  − +   









 (33) 

Introducing the next four matrix definitions 

 11 1 12 1

21 2 22 2

2 2
2 2

A b t A b t
A b t A b t

δ δ
δ δ

+ − 
=  − + 

D  (34) 
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( )

( )
( ) ( )

( ) ( )

1 3
22 2 12 11

2 4
21 2 11 1

2 21
2 2

A b t A b t
A b t A b tDEN

δ δ
δ δ

−
  + − −

= = =   − − +     
D

D D
D

D D
 (35) 

 
( ) ( )
( ) ( )

( ) ( )

( ) ( )

2 22 2 1 3
11 12

2 2 2 42 2
21 22

4 2 4 2

4 2 4 2

ˆ ˆˆ
ˆ ˆ

A t j c A t j c

A t j c A t j c

δ δ π δ δ π

δ δ π δ δ π

   − + − +
 = =  
 − + − +    

D D
D

D D
 (36) 

 
( ) ( )

( ) ( )

1 3
11 1 12 1

2 4
21 2 22 2

2 2
2 2

A b t A b t
A b t A b t

δ δ
δ δ

 − + 
= =   + −    

D D
D

D D
 (37) 

an intermediate result is obtained as 

 

1
, 1, 1, , 1 , 12
1

, 1, 1, , 1 , 1

1
1, , 2

1
2, ,

ˆ

m n m n m n m n m n

m n m n m n m n m n

m n m n

m n m n

S S S S S
F F F F F

fS S
t

fF F

δ

δ

+
+ − + −

+
+ − + −

−

−

   + + +
= −   + + +   
     

− −     
    

    

    

 

 

D

DD DD D
 (38) 

from which after more algebra the following two equations result: 

 

( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

11 2
, , 1, 1, , 1 , 1

32
, 1, 1, , 1 , 1

1 1 3 2 1 3 3 4
, , , , , , , , , ,

1 1 3 2 11
, , , , , ,

ˆ ˆ ˆ ˆ

m n m n m n m n m n m n

m n m n m n m n m n

m n m n m n m n m n m n m n m n m n m n

m n m n m n m n m n m n m

S S S S S

F F F F

S F

S

δ

δ

+
+ − + −

+ − + −

−

 = + + + + 
 + + + − 

   + − + −   
 + − 

    

   

 



D

D

D D D D D D D D

D D D D D D ( ) ( ) ( )

( ) ( )

3 3 4 1
, , , ,

1 32
, 1 , 2

n m n m n m n

m n m n

F

t f fδ

− + − 
 + 

D D

D D

 (39) 

 

( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

21 2
, , 1, 1, , 1 , 1

42
, 1, 1, , 1 , 1

2 1 4 2 2 3 4 4
, , , , , , , , , ,

2 1 4 2 21
, , , , , ,

ˆ ˆ ˆ ˆ

m n m n m n m n m n m n

m n m n m n m n m n

m n m n m n m n m n m n m n m n m n m n

m n m n m n m n m n m n m

F S S S S

F F F F

S F

S

δ

δ

+
+ − + −

+ − + −

−

 = + + + + 
 + + + − 

   + − + −   
 + − 

    

   

 



D

D

D D D D D D D D

D D D D D D ( ) ( ) ( )

( ) ( )

3 4 4 1
, , , ,

2 42
, 1 , 2

n m n m n m n

m n m n

F

t f fδ

− + − 
 + 

D D

D D

 (40) 

Although the above appear quite convoluted, the production of finite difference computer 
code is reasonably uncomplicated. The stability criterion is the same as that for an 3D
acoustic wave equation. 
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CONCLUSIONS 

The general equations used to describe the fast and slow waveP − seismic wave 
propagation in a poroviscoelastic medium is investigated using finite difference – finite 
integral transform methods. The componenty − of the two coupled 3D equations is 
removed using a finite cosine transform. The resultant problem is a finite difference in 
( ), ,x z t . Finite difference analogues for the two equations are presented. A preliminary 
program has been written for the coder (C++) enhanced version of Matlab. This has been 
left in a beta state as the intent of this project was to introduce at least a mild variation of 
media parameters in the y direction. As previously mentioned, this extension produces 
extremely complicated computer code which is under development. 
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APPENDIX A: FINITE COSINE TRANSFORM 

If the function ( )yφ  satisfies the Dirichlet conditions in the interval ( )0,c  and if in 
this interval the relation 

 ( ) ( )
0

cos
c n yn y dy

c
πφ  Φ =  

 ∫  (A.1) 

is valid at all points in the interval ( )0,c , where the function ( )yφ  is continuous, the 
following equality 

( ) ( ) ( ) ( )
1 0

0 2 2cos cos
n n

n y n yy n n
c c c c c

π πφ
∞ ∞

= =

Φ    = + Φ ≡ Φ   
   

∑ ∑  (A.2) 

holds. 

It is understood that the 0n =  term has been included in the summation in the last 
term in equation (5) for convenience of notation. Some upper bound on the summation 
must be determined that adequately approximates the infinite series. This number has a 
linear dependence on the distance c and is dependent on the spectral content of the source 
wavelet.  
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