
Estimating anelastic dispersion from uncorrelated vibe data

Estimating anelastic dispersion from uncorrelated vibe data

Kris Innanen

ABSTRACT

A vibroseis sweep and a dispersive geological volume act to negate each other: the
sweep delays the arrival of higher frequencies and the dispersive medium hurries them
along. We derive a simple analysis procedure in which the time-frequency spectra of a
programmed sweep and an uncorrelated measurement of that signal after propagation are
compared in order to estimate the frequency-dependence of the phase velocity. The ap-
proach is developed with a synthetic example and applied to a 3C VSP data set. Geophysi-
cally reasonable phase velocity estimates — though ones which must still be independently
verified — are derived.

INTRODUCTION

In a sense, vibroseis sweeps and anelastic/dispersive Earth volumes counteract one an-
other. The sweep causes higher seismic frequencies to arrive later at a geophone, and the
dispersive volume causes them to arrive sooner. The purpose of this paper is to explore
some of the consequences of this, both in an applied sense, wherein we use this fact to
estimate the dispersive seismic phase velocity one frequency at a time, and in a more philo-
sophical sense, wherein we imagine some strange but physically realizable pathological
examples of it in action.

From an applied perspective, what sets this approach apart in the panoply of dispersion
estimation methods (in which we include all Q estimation, e.g., Tonn, 1991; Zhang and
Ulrych, 2002; Cheng, 2013) is that it allows each phase velocity, i.e., the value c(f) for any
given frequency f , to be determined individually. Normally during Q estimation a single
value of Q is inferred, and only then through an assumed Q model and reference velocity,
for instance

c(f) = cref

[
1 − 1

πQ
log

(
f

fref

)]
, (1)

are the phase velocities c(f), in parameterized form, subsequently determined. However it
is reasonable to question whether we know with enough certainty that this Q model holds
in a given volume of Earth. With the current approach c(f) is observed, not inferred.

In this paper we derive and provide early synthetic and field testing of the c(f) esti-
mation. After some qualitative comments on the approach, we begin by taking the vibe
sweep and dispersive wave propagation formulas, turning them into expressions that allow
us to compare the departure and arrival times (at the source and receiver respectively) of
particular seismic frequencies. This leads immediately to a data analysis formula giving
us c(f) from measured direct arrivals in a VSP experiment, assuming access to a stable
time-frequency decomposition methodology. The Gabor transform (e.g., Margrave, 1998;
Margrave and Lamoureux, 2001) tool in the CREWES toolbox is used in this paper.

The idea is tested with synthetic VSP data generated using a pseudo-2D Helmholtz
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solver which can implement any desired body wave dispersion model. A large scale VSP
experiment is synthesized and the dispersive wave velocity from a nearly constantQmodel
(e.g., Aki and Richards, 2002) is determined very accurately over the full synthetic band-
width.

A walkaway 3C-VSP data set is currently being analyzed to determine QP and QS

profiles. The significant attenuation and clear down-going P and S modes in this data set
make it a good candidate to validate the uncorrelated data idea. The challenge in moving
this idea to field data application lies primarily in the small differences between departure
and arrival times; nevertheless a real signal is detected and from it we infer a phase velocity
distribution with geophysically reasonable values. Independent Q analysis of the field data
is ongoing (Montano et al., 2014), and this is expected to provide a benchmark against
which our derived c(f) can be verified.

ANALYSIS OF UNCORRELATED VIBE DATA

Qualitative remarks

In most models of body wave dispersion (Aki and Richards, 2002), high seismic fre-
quencies propagate more quickly than low frequencies. In the standard nearly-constant
Q model, and other macroscopic models based on the Kramers-Krönig relations, this is
connected to imposition of causality constraints. Meanwhile, in a vibroseis sweep, though
there is a tremendous freedom in determining the rate at which it happens, the low frequen-
cies are sent into the medium before the high, and thus have a significant head start.

Consequently, a vibroseis sweep in a dispersive medium is a little like Achilles and the
tortoise—the high frequencies will be using their higher phase velocities to try to catch up
with the low frequencies, which will have been given a significant head start. In a standard
seismic experiment and sweep (like the walkaway VSP illustrated in Figure 1) they will
never manage it, since the delay in the vibe sweep is too large. The small degree to which
they do catch up can nevertheless be measured, and used to infer the frequency dependence
of the phase velocity in the medium.

We can also, though with less practical outcomes in mind, consider the type of sweep,
scale of experiment, source and receiver separation, and dispersion law needed for a very
interesting thing to happen — for all the frequencies delayed by the sweep to arrive at
the geophone at the same time. For this special situation, the Earth will have acted as the
correlator.

For the remainder of this section, we will take the standard quantities associated with
vibroseis data and anelastic/dispersive wave propagation, and arrange them such that they
help us to discuss the arrival and departure times of given frequencies. The comparison of
these gives us a method for determining the phase velocity c(f) along the wave path.
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FIG. 1. VSP configuration considered in this paper. The average influence of QP and VP (ω) over a
wave path will be considered, so we will assume an effective homogeneous medium lying between
the source point (xs, 0) and the geophone point (0, zg).

Time of departure of frequency f in a vibroseis sweep

Suppose a vibroseis sweep begins at t = 0. A common mathematical model of the
sweep program is

s(t) = Im
[
a(t)eiφ(t)

]
, (2)

with the role of the amplitude a(t) being primarily to taper early and late times, and the
phase having the time dependence of the frequency, f(t), encoded in it:

φ(t) = 2πf(t)t. (3)

A linear sweep would then have the form

f(t) = fmin +

(
fmax − fmin

T

)
t, (4)

parameterized by the low frequency limit fmin, the high frequency limit fmin, and the sweep
length T . The inverse of the function f(t) is the time at which frequency f departs into the
Earth from the vibe pad. Calling this time τS(f), we have

τS(f) = t(f), (5)

and so, in the case of the linear sweep in equation (4), frequency f departs along its wave
path at time

τS(f) =

(
f − fmin

fmax − fmin

)
T (6)

relative to the sweep start time t = 0.
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Propagation time of frequency f in a dispersive Earth volume

Assuming a straight ray path (dashed as opposed to solid line in Figure 1), let the time it
takes for the seismic wave at frequency f to propagate to the geophone be ∆τ(f), satisfying

∆τ 2(f) =
x2s + z2g
c2(f)

. (7)

Formula for data analysis

Let τM(f) be the time at which the frequency f arrives at a particular depth zg after
propagating a distance L = (x2s +z2g)

1/2 through the Earth volume. From equations (6)-(7),
we have

τM(f) = τS(f) +
L

c(f)
, (8)

which means

c(f) =
L

τM(f) − τS(f)
. (9)

Assuming an approximately straight ray path, knowledge of the source offset xs and the
depth zg of the geophone provide L. If the Gabor transform of the programmed sweep
is overlain on that of the measured direct arrival, with its first coherent frequency fmin set
at t = 0, the time difference τM(f) − τS(f) can be picked off by hand or by automated
picking at each frequency as suggested in Figure 2. With L and τM(f)−τS(f) determined,
equation (9) can be used to find the average dispersive wave velocity c(f) experienced by
the wave along the path of length L.

In Figure 2 we have significantly exaggerated the differences between the departure and
arrival times of the vibe data. We will continue with this idealization in the next section to
carry out a proof of concept synthetic, but we must keep in mind that in field data, the time
and spatial scales of the experiment coupled with the parameters of a standard sweep make
the time differences τM(f) − τS(f) small compared to the absolute times/frequencies we
will see on the Gabor time-frequency plane. This has no effect on the concepts or approach,
but only on the challenge of extracting useful signal.

SYNTHETIC TESTING

In this section we assemble the numerical tools needed to provide a proof-of-concept
test of the uncorrelated vibe data analysis. The key requirements are (1) an accurate for-
ward modelling tool which can accept any desired sweep input and propagate it through
a medium characterized by any desired dispersion model; (2) a robust time-frequency de-
composition tool such as the Gabor transform; (3) an automatic arrival time picker.
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FIG. 2. Scheme for determining c(f) from a comparison of the time-frequency plot of the pro-
grammed sweep (blue) compared to the measured uncorrelated sweep (red). The time differences
here are exaggerated; in practical applications the difference between red and blue curves on the
time-frequency plot would be much subtler.
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1D Helmholtz solver with an NCQ wave model

A numerical solver for the 1D Helmholtz equation[
d2

dx2
+K2(x, ω)

]
P (x, ω) = 0, (10)

where ω = 2πf is the angular frequency, can be used to make the walkaway VSP data
set we are interested in analyzing. Although a walkaway VSP problem is fundamentally
multidimensional, we are going to study the data assuming simple effective medium along
the ray path between the source and receiver. Our interest is also purely in the phase
information in the data, so the lack of geometric spreading does not impact the results.
In Figures 3a–b a finite difference solution in a two-interface model is shown with the
interfaces in red. The propagation constant is chosen to have the NCQ form (Aki and
Richards, 2002)

K(x, ω) =
ω

c(x)

[
1 +

i

2Q(x)
− 1

πQ(x)

(
ω

ω0

)]
, (11)

which causes the decay and spreading of the pulse when inverse Fourier transformed to
P (x, t) as seen in the Figures.
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FIG. 3. Helmholtz solution transformed to the physical domain P (x, t). The velocities of the three
layers are from top to bottom 1500ms/, 2500ms/ and 3500m/s, and the quality factors of the three
layers are 100, 20 and 5. The interfaces are at depths 450m and 750m respectively.

Direct uncorrelated arrivals in walkaway VSP data

In Figures 4a–b the use of the 1D modelled field to simulate reasonably accurate walk-
away VSP data is illustrated. The 1D scheme in Figure 4a is solved for a large range of
receiver depths (as seen in the example in Figure 3). The desired WVSP data set is put
together by matching each one of its source-receiver separations (Figure 4b) to equivalent
separations in the 1D data set (Figure 4a). Since we are neglecting amplitudes and spatial
variations of parameters in this analysis, this makes for a fast, accurate forward modelling
scheme.
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FIG. 4. (a) 1D medium whose traces are calculated with the Helmholtz solver using any desired
sweep and any desired dispersion model. (b) The WVSP output configuration. Since our interest
is phase analysis assuming homogeneous effective media, we can use traces with the required
absolute source-receiver separation from (a) to populate the data set from configuration (b).

A vibe sweep (2-100Hz over 2.5 seconds with 0.15s taper) measured at 40 geophones
arrayed between 100m and 4000m depth, from a source 500m offset from the well is syn-
thesized and plotted in Figure 5. The scale of the experiment was deliberately made larger
than a standard WVSP, to make our proof-of-concept numerical test a bit easier to carry out
and visualize. Nothing in the methodology requires an experiment this large.

Gabor analysis

The CREWES Gabor transform tool fgabor.m is used to analyze the traces at each
depth of the WVSP data set. In Figure 5 the time-frequency amplitude spectra determined
from the geophones at half (a) and three-quarters (b) of the maximum VSP sensor depth
are illustrated. The slight t(f) curvature visible in these plots is a consequence of the
dispersion of the medium — a linear sweep was input into the medium.

Picking maxima and/or first breaks

The approach is based on the determination of differential times – the times at which
a given frequency leaves a source and arrives at a receiver. Whether that differential is
measured by picking maxima or first breaks will have to be left until more field data ex-
amples have been analyzed and any bias in the Gabor maxima have been identified. In this
synthetic study we pick maxima.

In Figures 7a–b the same Gabor spectra illustrated in the previous section are subject
to a simple maximum detection routine. These maxima are plotted in yellow. These picks
will play the role of the blue curve in the schematic diagram of Figure 2.
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FIG. 5. Synthetic uncorrelated WVSP gather.
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FIG. 6. Time frequency spectra taken from geophones at (a) 1/2 maximum depth and (b) 3/4
maximum depth measuring the uncorrelated sweeps. The slope and curvature of these curves
relative to those of the programmed sweeps will drive our c(f) estimation procedure.
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FIG. 7. Maxima picks on Gabor amplitude spectra. Since differential arrival and/or departure/arrival
times are the input to the estimation procedure, in principle either maxima or first breaks can be
used, provided consistent use of either one is made. Here we use maxima. Whether this introduces
any bias or systematic error in the results is a matter of ongoing research. In the field test described
in a forthcoming section, we find it more convenient to pick first arrivals of wave energy.

Dispersion estimation

In Figure 8 the original programmed sweep is illustrated. This sweep function is sub-
jected to the Gabor transform, with the starting frequency set at t = 0, and the result is
plotted on the same t-f plane as the measured sweep.

0 0.5 1 1.5 2 2.5 3 3.5 4
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0
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FIG. 8. Programmed sweep f(t). The Gabor transform of this sweep describes a curve which is
analyzed as the inverse of the sweep program, t(f) = τS(f), in the time-frequency plane. This
provides part of the input for the c(f) calculation.

In Figures 9a-b the amplitude of the programmed sweep is plotted in the Gabor domain
with its maxima illustrated in blue. In Figures 9c-d the two measured sweeps (see also
Figure 7) after propagation in the dispersive medium are also plotted.

In Figures 10a-b the same plots are repeated with just the picks. At each frequency
the difference between the programmed sweep time (in blue, i.e., the time at which that
particular frequency left the source) and the measured sweep time (in red, i.e., the time at
which that particular frequency arrived at the receiver) is computed. These ∆τ values are
plotted in Figures 10c-d.

The differences ∆τ in Figures 10c-d are used in the denominator of equation (9), with
the numerator being estimated from the source and receiver locations and the assumption
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FIG. 9. (a-b) sweep waveform as it departs from the source, with blue curve describing τS(f); (c-d)
sweep waveforms as they are measured at two different receiver points, with red curve describing
τM (f).
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FIG. 10. Repeat of Figure 9 with just the picks represented. The departure/arrival times at each
frequency are compared to determine c(f).
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of straight ray paths.
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FIG. 11. Estimated phase velocity curves (red) vs. exact phase velocity curves (black). TheQ value
used in the modelling was 5, and that needed to match the estimated phase velocity was 8 which
is likely because of a bias derived from the use of maxima. This may require additional calibration.
Nevertheless the trend is matched very well.

Using the time differences read from the Gabor plot and equation (9), we estimate the
phase velocity as a function of frequency. The results are illustrated in Figure 11a-b in
red overlain on the actual phase velocity curve used in the forward modelling (black), but
with the latter computed with a slightly higher Q value, 8 instead of 5. We suspect this
is indicative of some bias resulting from the use of Gabor maxima. It remains a matter of
ongoing study, but our general sense is that we have extracted in a fairly stable manner a
good estimate of the phase velocity curve.

FIELD DATA TESTING

Hall et al. (2012) describes a 3C walkaway VSP experiment, in which vibroseis and dy-
namite sources illuminate 3C geophones arrayed from 60m to 500m depth, in a walkaway
mode incorporating offsets from 10m to 1km. The basic configuration of the experiment
is illustrated in Figure 12. The figure is somewhat schematic; for greater detail and full
discussion of processing see Hall’s report.

The v, h1 and h2 component geophone responses were transformed into vertical, trans-
verse and radial components after correlation (Figure 13). We will focus on the vertical
component in this paper, and make use of the uncorrelated responses.

The sweep program was 10-300Hz over 20s. In Figure 14 the first 5s of the sweep is
illustrated, as modelled by the formula

s(t) = Im
{
a(t)eif(t)t

}
, (12)

where a(t) contains a short taper function (not the taper used in the actual experiment),
whose early time effect can be seen between 0 and 500ms on the plot, and where f(t)
implements the linear 10-300Hz program.

For our analysis we select a mid-range source offset of 320m. We will extract for
initial comparison two vertical geophone responses, one at 120m depth and the other at
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FIG. 12. Configuration of the 3C walkaway VSP experiment. Source points (including vibroseis)
are separated by roughly 100m out to a maximum offset of roughly 1km. 3C vectorseis geophones
are arrayed at 2m intervals in the well from a depth of 60m to roughly 500m.
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FIG. 13. Correlated data, vertical and radial components, 10m offset (Hall et al., 2012).
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FIG. 14. First 5s of the sweep program, 10-300Hz over 20s (Hall et al., 2012).

400m depth. We aim to strike a balance here: the greater the source-receiver separation,
the greater the travel time delay associated with each frequency, and therefore the more
pronounced should be our delay signal ∆τ ; however, the greater the separation, the more
attenuated the waveform becomes, making discernment of the delay more difficult. With
that in mind, in Figure 15 the two extracted traces are plotted near their experimental posi-
tions.
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FIG. 15. Uncorrelated vertical component traces are selected from 120m and 500m depth, illumi-
nated from walkaway source at 320m.

The Gabor amplitude spectra of the traces in Figure 15 are plotted in Figure 16, the
shallow (a) and the deeper (b). Several harmonics are visible, but the main direct arrival
is clearly visible in both panels. The curvature of the arrival time at lower frequencies is
more pronounced in the shallower response. The reason for this is likely that the path from
the source to the shallower geophone takes the wave through the near surface, which is
typically more dispersive than the deeper, more consolidated rock. In any case, we select
the Gabor spectrum in Figure 16a to use for our estimation effort.

First breaks in the Gabor spectra of the programmed sweep and the measured sweep
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FIG. 16. Gabor amplitude spectra computed from the response of the geophones at (a) 120m and
(b) 400m depth. The low-frequency curvature of the direct wave arrival is more pronounced in (a),
plausibly because the wave, propagating through a greater part of the near-surface, is subjected to
a greater degree of dispersion for a longer duration. We select (a) for our estimation procedure.

are hand-picked (Figure 17), focusing in on the frequency range 10-40Hz.
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FIG. 17. First breaks on the Gabor spectra. (a) The programmed sweep; (b) the measured direct
arrival at the 120m geophone. Frequency range 10-40Hz is focused on.

The picks are plotted together as a function of frequency in Figure 18a, with the pro-
grammed sweep in red and the measured geophone response in black. As a validating
point, we note that the direct arrivals in Figure 13 have slopes indicative of a velocity of
roughly 2000m/s, which means the wavefront moves between the source and receiver in
approximately 0.17s. As the slopes of the measured and programmed sweeps come into
alignment, beyond 35Hz, the time offset between the (now both approximately linear) sets
of picks is close to this value.

The differences ∆τ(f) between these two sets of picks are plotted in Figure 18c, and
the recovered phase velocities themselves are plotted in Figure 18d. We see a range of
velocities between 500m/s at 15Hz to roughly twice that at 28Hz.
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FIG. 18. (a) Programmed sweep arrival time picks (red) vs. measured direct arrival picks (black).
(b) The picks form curves with distinct frequency-dependent slopes, but by 35-40Hz the slopes
come into approximate alignment, separated by between 0.1s and 0.2s. This agrees with the rough
velocity derived from the correlated data. (c) The differential travel times are collected, and (d)
transformed via the inversion formula into estimates of the phase velocity curve, which grows from
roughly 500m/s at 15Hz to almost 1000m/s at 28Hz.

CREWES Research Report — Volume 26 (2014) 15



Innanen

SELF-CORRELATING EARTH VOLUMES

For every xs, zg, and dispersion law c(f), there exists a sweep program for which the
Earth volume between the source and receiver brings all frequencies to the measurement
point simultaneously. In this situation the measured arrival times τM(f) are all identical,
and τM = τM0 ceases to be frequency dependent. The delay time at the source is in that
case

τS(f) = τM0 −
L

c(f)
=
L

c0

(
1 − c0

c(f)

)
(13)

where c0 is the reference velocity L/τM0 . Using the fact that τS(f) is the inverse of the pro-
grammed sweep τS(f) = t(f) and the program is f(t), equation (13) and a knowledge of
the medium dispersion, it is in principle possible to design a sweep which “self-correlates”,
in the sense that all frequencies will arrive at the geophone simultaneously. Sweeps of this
type are likely beyond the specs of most vibroseis sources at the moment, as the frequen-
cies would have to be scanned very rapidly to allow the high frequencies a chance to catch
the low.

CONCLUSIONS

A vibroseis sweep and a dispersive geological volume act to negate each other: the
sweep delays the arrival of higher frequencies and the dispersive medium hurries them
along. We derive a simple analysis procedure in which the time-frequency spectra of a pro-
grammed sweep and the uncorrelated measurement are compared in order to estimate the
frequency-dependence of the phase velocity. The approach is developed with a synthetic
example and applied to the 3C VSP data set. The geophysically reasonable results of this
test act as the first validation of the idea.

Further validation of the approach will proceed in two parts. First, the remaining traces
and offsets will be subjected to the same analysis. With several 10s, or more, realizations
a statistical validation of the estimate will be possible. Secondly, independent Q analysis
(Montano et al., 2014) and the assumption of a standard macroscopic dispersion law (e.g.,
the log of the frequency) can be used as further independent validation. The curve in Figure
18d does not rule out a logarithmic c(f), though to the eye it appears approximately linear
in the frequency range we have considered.
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