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SUMMARY 

A published method for the calculation of 1D synthetic seismograms with constant-Q  
attenuation is described and extended to the case of a VSP with a buried source.  Based 
on layer matrices (or propagator matrices) the method is very accurate for a broad 
frequency range from low to high and efficiently models fine layering.  Extensions to 
allow internal multiples, surface related multiples, and attenuation to be included or not, 
are described.  The method runs rapidly (a minute or less) in native Matlab code even 
with thousands of layers.  This is suitable to study the effect of internal multiples and 
attenuation on a synthetic seismogram.  The method also has the ability to create both 
pressure and displacement responses making it suitable to studying geophone and 
hydrophone recordings.  Examples from a simple conceptual model and from well logs 
are shown. 

INTRODUCTION 
Seismic modelling for the case of a zero-offset vertical seismic profile, or VSP, is 

considered here as a generalization of the construction of a 1D normal incidence 
synthetic seismogram from well-log information.  A common approach is that of Waters 
(1992) in which the well logs are “blocked” or resampled into layers of constant “time 
thickness” and then all reflection arrivals (primaries and multiples) are computed from a 
recursion.  As presented in Waters, the method used a computational mesh to compute all 
possible primaries and multiples, with their respective transmission losses, but does not 
include anelastic attenuation.  Also, both source and receiver are considered to be at the 
earth’s surface which is either taken as the first logged depth or, with inclusion of a 
simple overburden model, as the surface elevation at the well.  To generalize this to a 
VSP configuration, the solution must be generalized to allow any receiver depth. 

The further generalizations considered here stem partially from the method of Ganley 
(1981) and are partially original.  The solution is still 1D (so no wavefront spreading and 
no source offset) but inclusion of constant-Q  attenuation is directly modelled.  
Moreover, there is no resampling to layers of constant traveltime thickness and there is 
no need for the layers to have uniform depth thickness.  The method, as coded in Matlab 
and released to CREWES Sponsors, is sufficiently efficient that models can be run at or 
near the depth sample rate of the logs (typically 1 ft) in just a few minutes on a personal 
computer.  This allows the study of fine layering effects such as stratigraphic filtering 
(O’Doherty and Anstey, 1971) and described elsewhere in this research report (Margrave, 
2014).  Ganley’s approach differs from earlier methods (e.g. Trorey, 1962) by the use of 
frequency-domain layer matrices instead of the computational mesh of Waters or Trorey.  
Such matrices automatically include all multiples, transmission losses, traveltime, and Q 
attenuation, and this greatly simplifies the algorithmic structure.  Also, by working in the 
frequency domain, the frequency-dependent effects of attenuation can be faithfully 
modelled to very high frequencies.  This is in contrast to some modern finite difference 
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approaches such as Emmerich and Korn (1987) or Krebes and Quiroga-Goode (1994) 
where considerable oversampling is required to reach high frequencies with fidelity. 

Ganley’s method easily generalizes to a receiver at any depth but arbitrary source 
depth is more complicated.  While Ganley gave a solution for arbitrary source deopth, an 
alternative with clear physical foundation is given here.  We also extend Ganley’s method 
to model either pressure or displacement, and show how to turn on and off such effects as 
internal multiples, transmission losses, and attenuation. 

THEORY 
Layer matrices and their use 
This development follows that of Ganley (1981) but is presented here in a revised 
manner.  Here we describe the mathematical entities required for the construction of the 
layer matrices and show how they are used to extrapolate the wavefield solution up or 
down through the model.  For each layer, there exists a propagator, kP , to be defined 
explicitly later, that propagates a wavefield forward in time across the layer.  If we define 

kD  and kU  to be the downgoing and upgoing wavefields at the top of the layer, then 

k kP D  and 1
k kP U  are the downgoing and upgoing waves at the layer bottom (Figure 1).  

The use of the inverse propagator is required on the upgoing wave since it must move 
backward in time to go from the top to the bottom of the layer.   

 
Figure 1:  The waves and propagators used in the theory are depicted as they interact with 
interface k  where the reflection coefficient is .kr   The downgoing and upgoing waves at the top 

of layer k  are kD  and kU  while at the top of layer 1k   they are 1kD   and 1kU  .  At the 

bottom of the same layer these waves are k kP D  and 1
k kP U  where kP  describes propagation 

forward in time across the layer.  The inverse propagator is needed on the upgoing wave at the 
bottom of the layer because that wavefield is earlier in time compared to the upgoing wave at the 
layer top.  Waves k kP D  and 1kU   are incident on interface k  while waves 1

k kP U  and 1kD   
are scattered from the interface.  Equations 1 and 2 give the scattered waves in terms of the 
incident waves.  Equation 6 uses the layer matrix (equation 5) to relate the waves at the top of 
layer k  to those at the top of layer 1k  . 

Let kr  be the reflection coefficient for incidence from above at the kth interface and we 
take the kth layer to lie between interfaces k-1 and k.  At the kth  interface, the incident 
waves are k kP D  and 1kU   which relate to the scattered waves 1

k kP U  and 1kD   via 
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where R  is -1 for a displacement solution and +1 for pressure.  With some algebra, these 
equations can be re-arranged to give explicit formulae for ,k kD U  in terms of 1 1,k kD U+ +  
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We define the layer matrix kA  as 
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and then equations 3 and 4 can be combined into the matrix equation 
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= =       

      
. (6) 

Layer matrices contain all physical effects including propagation, attenuation, 
transmission, reflection, and reverberation.  Simple modifications of the layer matrix can 
be used to turn off selected physical effects.  If it is desired to turn off internal multiples, 
then we must set all reflections of upgoing waves to zero.  That is, we set the reflection 
term in equation 1 to zero.  Some algebra then shows that the layer matrix is changed to  

 
( )

1
no_int

2

01
1 1

k
k

k k k k k

P
A

r Rr P r P

− 
=  

− −  
. (7) 

If we further wish to suppress transmission losses (suppressing both internal multiples 
and transmission losses give the popular “primaries only” seismogram) then we must also 
set the transmission coefficients in equations 1 and 2 to unity.  The result is a layer matrix 
which suppresses internal multiples and transmission losses given by 

 CREWES Research Report — Volume 26 (2014) 3 



Margrave 

 
1

po 0k
k

k k k

P
A

Rr P P

− 
=  
 

. (8) 

For the kth layer, the propagator is given by  

 ( )/ 2 /k k k k kf h Q v i f h v
kP e eπ π− −=  (9) 

where f  is frequency, kh  is the layer thickness, kQ  is the attenuation constant for the 
layer, and kv  is the frequency-dependent phase velocity.  The assumed form for kv  is 

 0
0

0

0

11 ln
11 ln

k
k

k

v fv v
Q ff

Q f
π

π

  
= ≈ +      −  

 

, (10) 

where 0v  is the velocity at the reference frequency 0f .  Justification for equations 9 and 
10 may be found in Ganley (1981) or a seismology text such as Aki and Richards (2002).  
Essentially, these equations implement the constant-Q model of attenuation (e.g. 
Kjartanssen, 1979).  In equation 10, we take 0v  to be the value measured in a sonic log 
which is typically done with a frequency, 0f , near 12500 Hz.  Theory also requires that 
the reflection coefficients for incidence from above be calculated with the frequency-
dependent phase velocity as 

 1 1

1 1

k k k k
k

k k k k

v v
r

v v
 
 

 

 





 (11) 

where k  is the layer density.  Thus, in addition to frequency-dependent attenuation and 
phase delay caused by the propagator of equation 9, the constant Q model predicts 
frequency-dependent reflection via equation 11. 

The form of equation 6 implies that the layer matrices can be composited to relate the 
solution in the first layer to that in the bottom half space by 

 1 11
1 2

1 11

n n
n

n n

D DD
A A A A

U UU
+ +

+ +

    
= =    

     
 , (12) 

where  

 
1

n

k
k

A A
=

≡∏ . (13) 

Generally we will assume 1 0nU + =  and relate 1U  and 1D  through a free surface 
condition.  This reduces equation 12 to two equations in two unknowns and the solution 
is obtained.  All of the entities in equation 12 are functions of frequency, so we must 
solve this equation independently for every frequency of interest.  There is no constraint 
on the thicknesses or the properties of the layers used so we do not need the constant 
time-thickness layers or even constant depth thickness.  It remains to specify the source. 
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Case of source at the surface z=0 
This is the easiest case because we only consider a downgoing wave from the source.  

In the first layer, the downgoing and upgoing waves are related by the free-surface 
condition at the top of the layer.  The total downgoing field consists of the injected source 
wavelet plus the reflection of the upgoing field from the free surface.  We write this as 

 1 0 1D W Rr U= − , (14) 

where, as before R  is -1 for a displacement solution and +1 for pressure, 0 1r =  is the 
free-surface reflection coefficient for incidence from above, and W  is the source 
waveform.  The presence of R  in equation 14 describes the essential condition at the free 
surface that, in the absence of a source, the total field, 1 1U D+ , vanishes for pressure and 
doubles for displacement. 

With this specification, equation 12 becomes 

 0 1 11 121 1

1 21 220 0
n nW Rr U A AD D

A
U A A

+ +−      
= =      

      
 (15) 

where 1 0nU + =  has been assumed and A  is given by equation 13.  Matrix equation 15 is 
two equations with two unknowns ( 1U  and 1nD + ).  The solution is 

 1
11 0 21

n
WD

A Rr A+ =
+

 (16) 

and 

 1 21 1nU A D += . (17) 

Equations 16 and 17 give a complete solution for the case of a surface source.  A surface 
receiver will record the sum of 1U  and 1D  while a receiver at the top of layer k will 
record the sum of kU  and kD .  Since 1nD +  and 1nU +  are now known, the solution at any 
layer top can be calculated similar to equation 12 using an appropriate product of layer 
matrices from layers k to n.  Receivers inside a layer can be simulated by first computing 
the result at the layer top and then propagating it with a suitable propagator (modified 
from equation 9) to the actual receiver location. 

Case of source in first layer 
Consider a first layer, perhaps of considerable thickness, with the source located 

within it and divide that layer into two with an imaginary boundary at the source depth.  
Then call the portion of the layer above the source layer 1, and below the source as layer 
2.  The reflection coefficient at the interface of these layers is 1 0r =  and the source is 
simultaneously at the bottom of layer 1 and at the top of layer 2.  The upper surface of 
layer 1 is a free surface and this causes the downgoing and upgoing waves in that layer to 
be related to each other via 
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 1 0 1D Rr U= − . (18) 

We now relate the downgoing and upgoing waves at the top of layer 1, 1 1,D U , to the 
corresponding waves at the top of layer 2.  At the interface between these two layers, the 
source injects an upgoing wavelet uW  and a downgoing wavelet dW .  Thus 2D  is the 
sum of 1D  propagated across layer 1 and dW  

 2 1 1 dD PD W= + , (19) 

where 1P  describes the propagation of a downgoing wave down through layer 1 (or an 
upgoing wave up through layer 1).  Similarly 1U  is the sum of 2U  and uW  propagated up 
across layer 1 

 ( )1 1 2 uU P U W= + . (20) 

Equations 19 and 20 are equivalent to  

 
1

21 1

21 1

0
0

d

u

D WD P
U WU P

− −    
=      +    

. (21) 

Layers 2 through n have non-diagonal layer matrices and the wavefields in layer 2 can be 
related to those in the bottom half space below layer n by 

 2 11 121 1

2 21 220 0
n nD A AD D

A
U A A

+ +      
= =      

      
, (22) 

where  

 2 3
2

n

k n
k

A A A A A
=

= =∏  , (23) 

in which the kA  are the layer matrices for the individual layers.  (Note the slight 
difference between equations 23 and 13.) 

We can describe the source wavelet in terms of a single waveform as 

 dW W= , (24) 

and 

 uW RW= . (25) 

The occurrence of RW  as the source term in equation 25, while in equation 24 we have 
just W , causes the upgoing and downgoing displacements to have opposite signs while 
the upgoing and downgoing pressures are equal, as is expected for an explosive source. 

From 18, 19, 20, 24 and 25 we have 
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 2 1 0 1D PRr U W= − + , (26) 

 1
2 1 1U P U RW−= − . (27) 

Then combining these with 22 we have 

 11 1 1 0 1nA D PRr U W+ = − + , (28) 

 1
21 1 1 1nA D P U RW−

+ = − . (29) 

These are two equations for the unknowns 1U  and 1nD + .  Substituting 29 into 28 gives 

 ( )11 1 1 0 1 21 1 1n nA D PRr P A D PRW W+ += − + +  (30) 

so that 

 ( ) ( )2 2
1 11 0 1 21 1 01nD A Rr P A W P r+ + = − . (31) 

and finally 

 
( )2

1 0
1 2

11 0 1 21

1
n

W P r
D

A Rr P A+

−
=

+
, (32) 

and 

 ( )1 1 21 1nU P A D RW+= + . (33) 

Thus equations 32 and 33 give a complete solution to the VSP problem for a source 
buried in the first layer. 

Case of source in an arbitrary layer 
Suppose the source is in layer s.  As before we break layer s into two at the source 

depth and suppose that there are now n layers over a half space and 1 s n≤ ≤ .  Thus the 
source is simultaneously at the bottom of layer s and the top of layer s+1.  Then define 

 1 2
1

n

k s s n
k s

A A A A A+ +
= +

= =∏  , (34) 

as the layer propagator connecting the half-space with layer s+1, and  

 
1

1 2 1
1

s

k s
k

B A A A A
−

−
=

= =∏  , (35) 

as the propagator connecting layer s with layer 1.  (Layer s occurs in neither A  or B .) 
Similar to equation 21, the fields in layers s and s+1 are related by 
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1

1

1

0
0

s ss

s ss

D D WP
U U RWP

−
+

+

−    
=     +    

, (36) 

while layer 1 relates to layer s via 

 1 11 12

1 21 22

s

s

DD B B
UU B B
    

=     
     

, (37) 

and layers n+1and s+1 are related by 

 1 11 12 1

1 21 22 0
s n

s

D A A D
U A A

+ +

+

     
=     

   
. (38) 

Finally, the up and downgoing fields in layer 1 are linked by the free surface condition 

 1 0 1D Rr U= − . (39) 

From equation 37, we write  

 0 1 11 12s sRr U B D B U− = + , (40) 

 1 21 22s sU B D B U= + , (41) 

and from equation 38  

 1 11 1s nD A D+ += , (42) 

 1 21 1s nU A D+ += , (43) 

and from equation 36 

 ( )1
1s s sD P D W−
+= − , (44) 

 ( )1s s sU P U RW+= + . (45) 

From 45 and 43 we have 

 21 1s s n sU P A D P RW+= +  (46) 

and from 44 and 42 

 ( )1
11 1s s nD P A D W−

+= − . (47) 

Now use 46 and 47 to eliminate sD  and sU  from 40 and 41 to get 

 ( ) ( )1
0 1 11 11 1 12 21 1s n s n sRr U B P A D W B P A D P RW−

+ +− = − + +  (48) 

and 
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 ( ) ( )1
1 21 11 1 22 21 1s n s n sU B P A D W B P A D P RW−

+ += − + + . (49) 

Equations 48 and 49 are two equations for the two unknowns 1U  and 1nD + .  Eliminating 

1U  gives 

 
( ) ( ) ( ) ( )1 1

0 21 11 1 22 21 1 11 11 1 12 21 1s n s n s s n s n sRr B P A D W B P A D P RW B P A D W B P A D P RW− −
+ + + + − − + + = − + + 

or 

( ) ( ) ( ) ( )1 1
0 21 11 1 22 21 1 11 11 1 12 21 1

1 1 1 1
0 21 11 0 22 21 11 11 12 21 1 0 21 0 22 11 12

s n s n s s n s n s

s s s s n s s s s

Rr B P A D W B P A D P RW B P A D W B P A D P RW

Rr B P A Rr B P A B P A B P A D Rr B P r B P B P B P R W

− −
+ + + +

− − − −
+

 − − + + = − + + 
   − − − − = − + − +   
So that 

 ( )
( ) ( ) 

1

2 2
11 0 21 0 22 12 0 1

1 2 2
11 11 0 21 21 12 0 22 11 0 1 21

1

s

s
n

B Is
P P

B Rr B P r B B R W r P W
D

A B Rr B A P B Rr B A Rr P A+
→
→

   + − + −   = =
+ + + +

, (50) 

where the final limit shows agreement with the previous case in which the source is in the 
top layer. 

We can write a form of equation 50 that suppresses surface related multiples by setting 
0 0r = .  This results in 

 
2

11 12
1 2

11 11 21 12

s
n

s

B P B R W
D

A B A B P+

 − =
+

. (51) 

Relationship between the buried source and surface source solutions 

There is a fundamental disconnect between the surface source expression for 1nD +  
given by equation 16, and either buried source expression given by equation 32 or 
equation 50.  The problem is that the surface source expression is not a limiting case of 
the buried source as the depth of burial goes to zero.  Considering equation 32 we can see 
that, when the depth of burial goes to zero, 1nD +  vanishes.  Intuitively, this is because the 
surface ghost and the downgoing primary cancel.  From a physical perspective, we are 
familiar with explosive sources (dynamite on land and air guns in water) always being 
buried.  Placing them at the surface would result in the vast majority of the energy being 
released to the atmosphere.  On land, we have the Vibroseis source at the surface but it 
comes with a large hold-down weight which locally changes the boundary conditions 
beneath the machine to other than a free surface.  Given these considerations, it is 
justifiable to treat these two theories (surface source and buried source) as distinct and 
maintain separate codes for each.  In the CREWES library, the surface source is found as 
vspmodelq while the buried source is vspmodelqs.  
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Extrapolation to the receiver 

The solution at any receiver can be found by extrapolating 1nD +  up to the receiver 
depth using an appropriate concatenation of layer matrices.  (We could equally well 
choose to extrapolate 1U  down to the receiver depth.)  However, we must use a slightly 
different form for the solution depending upon whether the receiver is above or below the 
source.  We consider the most general case of the source in an arbitrary layer here with 

1nD +  given by equation 50.  Suppose the receiver is at the top of layer r , where 1 r n≤ ≤ , 
then, let  

 ,
1 1

n
r n

k r r n n
k r

A A A A A A+ −
=

= =∏   (52) 

and 

 ,
1 1 ,

s
r s

k r r s s
k r

B A A A A A r s+ −
=

= = ≤∏  . (53) 

As defined, ,r nA  represents propagation from the bottom layer up to the receiver, while 
,r sB , defined only if the receiver is above the source, represents propagation from the 

source up to the receiver. 

Then the solution at the receiver is given by 

 1,

0
r nr n

r

D D
A

U
+   

=   
  

, for r s> (receiver below source) (54) 

and  

 1,
, ,0

r nr n
d r u r

r

D D
A W W

U
+   

= − +   
  

, for r s< (receiver above source) (55) 

with 

 ,
, 0

r s
d r

W
W B  

=  
 

 (56) 

and 

 ,
,

0r s
u rW B

RW
 

=  
 

. (57) 

The extra terms in equation 55, as defined by equations 56 and 57, have an interesting 
physical interpretation.  ,d rW  is the downgoing source wavefield above the source level.  
This exists mostly in negative time and is present in the solution computed as in equation 
54 because the method of defining the source (equation 36) lacks a causality condition.  
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That is, the downgoing source wavelet should not exist before time zero, but to enforce 
this we must calculate this term and subtract it.  ,u rW  is the upgoing direct wave from the 
source.  This is also not contained in equation 54 and must be calculated explicitly.   

A SIMPLE SYNTHETIC EXAMPLE 
To illustrate this theory and the resulting MATLAB code, consider the model shown 

in Figure 2.  This model has physical interfaces at depths 200m, 750m, and 1350m, and is 
sampled at 10m.  This means that there are 200 distinct layers each characterized by its 
own layer matrix [ ], 1, 200kA k∈ . 

  
Figure 2:  A simple 4-layer model.  Curves are shown for velocity (m/s), density (kg/m3), and Q 
(multiplied by 100).  There are 4 physical layers but the model is sampled at 10m intervals so 
there are 200 numerical layers.  The wavelet is also shown. 

The displacement field resulting from this model is shown in Figure 3 where the 
source has been placed at a depth of 300 m which puts it just beneath the first physical 
interface. In this case, receivers were placed every 10m from 0 to 1500m.  Also shown 
are layer interface positions, and events labelled A,B,C,D, which are respectively: the 
upgoing direct wave, the downgoing direct wave, the reflection of A from the free 
surface, and the reflection of B from the second interface.  The upgoing and downgoing 
direct waves have opposite polarities as is expected for a displacement field from a 
compressional source.  Also, event A preserves its polarity upon reflection from the free 
surface which results in a doubling of the displacement at the free surface.  Conversely, 
event B reverses polarity upon reflection from the second interface.  The different 
polarity behaviour of these two reflections is determined by the different impedance 
contrasts at the free surface and the second interface. 
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Figure 3:  The total displacement field for the model of Figure 2.  Below the source, the solution 
follows from equation 54 while above the source equation 55 is used.  The horizontal dashed blue 
lines denote the physical interfaces in the model.  The source is at 300m depth at the intersection 
of events A and B.  Labeled events are A: The upgoing wave from the source; B: The downgoing 
wave from the source; C: The reflection of A from the free surface; D: The reflection of B from the 
second interface. 

 
Figure 4: Similar to Figure 3 except that equation 54 is used both above and below the source.  
This illustrates the effect of the correction terms in equation 55. Labelled evens are B1: The 
upgoing reflection of the downgoing direct wave when it encounters the first interface in negative 
time; B2: The “ghost” reflection of the downgoing direct wave in negative time; B3: The reflection 
of B2 at the first interface.  
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Shown in Figure 4 is the displacement solution for this model when equation 54 is 
used both above and below the receiver.  This illustrates the effect of the extra terms in 
equation 55.  An enlarged comparison is found in Figure 5.  As can be seen, the use of 
equation 54 above the source causes the downgoing direct wave to be unphysically 
extended above the source into negative time and omits the upgoing direct wave.  This 
creates a series of unphysical events as this wave encounters interfaces and the free 
surface.  Noise is also created (visible in the upper left of figure 5b) caused because the 
extension of the direct wave into negative time requires an inverse Q operator which 
rapidly overwhelms the dynamic range of the computation. 

 
Figure 5: Enlargements of (a) the upper left corner of Figure 3 and (b) the upper left corner of 
Figure 4. This illustrates the effect of the extra terms in equation 55 that are needed above the 
source location. The source is at depth 300m. a) is the correct solution using both equations 54 
and 55 while b) uses only equation 54 and is incorrect above the source. 

COMPARISON OF DISPLACEMENT AND PRESSURE SOLUTIONS 

In the preceding theory (e.g. equation 50), the variable R  is -1 for a displacement 
solution and +1 for pressure. This allows the generation of either a 1D displacement 
solution or a pressure solution.  In either case, the specified wavelet is also assumed to be 
specified in either displacement or pressure so that the resulting seismograms will not 
have scaling differences.  However, they will have many phase (polarity) differences.  
Figure 6 is a side-by-side comparison of the displacement and pressure solutions for the 
model of Figure 2.  In Figure 6, horizontal grey lines denote the depths of the three model 
interfaces (200m, 750m, and 1350m) while the vertical dotted lines are simply timing 
markers at 0.5 sec intervals.  Aside from the obvious polarity differences of the upgoing 
direct wave as it leaves the source (source depth is 300m), there are also notable 
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differences in the polarity of reflections at the model interfaces and at the free surface 
(0m depth). 

 
Figure 6: Comparison of the displacement solution (left) and the pressure solution (right) for the 
model of Figure 2.  The source was at 300m depth.  The red squares indicate areas shown 
enlarged in Figure 7. 

To better understand these differences, it is useful to consider two extreme cases: that 
of incidence from below on a free surface, and that of incidence from above on a 
perfectly rigid medium.  For any interface, we take the conventional definition of 
reflection coefficient for incidence from above as 

 2 1

2 1

I Ir
I I

+ −
=

+
 (58) 

where 1I  is the impedance (density times velocity) above the interface, 2I  is the 
impedance below, and the + superscript indicates incidence from above.  Defined in this 
way, if the lower medium has higher impedance than the upper then 0r+ > , and vice-
versa.  For incidence from above, a displacement wave reflects according to 

 ref incu r u+= −  (59) 

while a pressure wave reflects as 

 refl incp r p+= . (60) 

For incidence from below, we would use r r   in equation 59 and 60.  These results 
are not meant to be obvious but they are standard results from textbooks in basic 
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seismology or acoustics.  The derivation of these expressions assumes that both 
displacement and pressure must be continuous across the interface.  The −  sign in 
equation 59 means that, when 0r+ > , then displacement reverses polarity on reflection 
while pressure does not.  When 0r+ <  then pressure reverses polarity on reflection while 
displacement does not.  For the case of incidence from below, the reflection coefficient 
changes sign (i.e. r r− += − ) so that just the opposite set of polarity reversals occurs.  
Since transmission coefficients are always non-negative, there are no polarity reversals 
on transmission.  Let us now see how this perfectly represents the two extreme cases. 

First, for incidence from below on a free surface such as we have in our model at z=0, 
we intuitively expect that the total pressure must vanish at the interface because it must 
vanish in the vacuum above the interface and it must be continuous across the interface.  
Since 1 0I =  in this case, we have 1r+ =  and 1r− = − .  Using r−  in equation 60 we have 

refl incp p= −  so that the total pressure at the interface ( refl incp p+ ) is zero.  For 

displacement, we use r−  in equation 59, to conclude ref incu u=  so that the total 
displacement at the interface ( ref incu u+ ) is twice that of the incident wave.  We can 
generalize these observations to the statement:  

For a wave incident from below when 0r+ > , or for a wave incident from above when 
0r+ < , then pressure changes sign on reflection while displacement does not. 

Second, consider incidence from above on a perfectly rigid medium.  This means that 

2I →∞  and 1r+ → .  Since a perfectly rigid medium cannot have any motion, we expect 
that the total displacement must vanish at the interface because displacement must be 
continuous across the interface.  Putting 1r+ =  into equation 59 gives ref incu u= −  so the 
total displacement does indeed vanish.  Considering equation 60 in this context we see 
that the pressure at the boundary must be twice that of the incident wave.  We then 
generalize to the following statement 

For a wave incident from above when 0r+ > , or for a wave incident from below when 
0r+ < , then displacement changes sign on reflection while pressure does not. 

Careful inspection of Figure 6 shows instances of all of these situations.  Figure 7 
shows enlarged views of four different interactions.  Panels a) and b) show the interaction 
with the free surface where the vanishing of total pressure and the doubling of 
displacement are easily apparent.  Panels c) and d) show the upgoing direct wave 
interacting with the interface at 200m for which 0r+ < .  The polarity reversal of the 
reflected displacement is observable as is the non-reversal of the pressure wave.  (Note 
that polarity is a property of the time series and must be assessed on these plots by 
scanning horizontally at constant depth.)  Panels e) and f) show the downgoing reflection 
from the free surface interacting with the same 200m interface as the previous two 
panels.  In this case incidence is from above and displacement does not reverse polarity 
while pressure does.  Finally, panels g) and h) show the downgoing direct wave 
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interacting with the 750m interface for which 0r+ > .  In this case, displacement reverses 
polarity which pressure does not. 

Further inspection of Figure 6 shows two events which might be considered as ghosts 
of the downgoing wave for the buried source.  Both are reflections of the upgoing direct 
wave with the first ghost reflecting from the 200m interface and the second from the free 
surface.  Careful comparison of the displacement and pressure solutions shows that the 
downgoing direct wave and the two ghosts are identical for both solutions.  Further, we 
notice that the upgoing primary reflections of the two solutions are opposite in polarity.   

 
Figure 7: Enlargements of the areas indicated on Figure 6 allowing detailed 

comparison of the polarity differences between the displacement and pressure solutions.  
Here the red squares indicate the precise position of the interface. 

THE SOURCE GHOST AND THE P-Z SUBTRACTION TECHNIQUE 
In the model of Figure 2, the upgoing direct wave from the source generates 

downgoing reflections at the 200m interface and at the free surface.  Both of these events 
could be called source ghosts and both are highlighted, together with the downgoing 
direct wave, on Figure 8, which shows both the displacement and pressure solutions.  The 
polarities of the direct wave and its ghosts are the same on both the displacement and 
pressure solutions; however, inspection shows that the various upgoing waves in the 
displacement solution are opposite in polarity to the same waves in the pressure solution.  
This is in fact generally true and is a consequence of equations 59 and 60.  These basic 
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relations gave rise to the P-Z subtraction method (Barr and Sanders, 1989) who proposed 
to record both hydrophones (pressure) and geophones (particle velocity which is the time 
derivative of displacement) one the ocean bottom and, with some data processing 
involved, subtract the geophone recording from the hydrophone recording to eliminate 
the downgoing waves. 

 
Figure 8: The pressure and displacement solutions for the model of Figure 2 are compared with 
the direct downgoing wave and its two phosts highlighted.  The polarity of the downgoing waves 
are identical on both solutions while the upgoing pressure waves have polarity opposite to 
displacement. 

Figure 9 shows the result of subtracting the displacement solution of Figure 8 from the 
pressure solution.  In actual data processing, this step requires the estimation of a 
balancing filter that compensates for the different responses of hydrophones and 
geophones.  However, this is not necessary with the present modelling code and the 
subtraction perfectly isolates the upgoing waves.  Inspection of Figure 9 shows that the 
upgoing waves consist of primary reflections as well as reflections of the ghost waves 
and other downgoing waves. 
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Figure 9: The result of subtracting the displacement field of Figure 8 from the pressure field.  The 
downgoing waves have been eliminated and only the upgoing waves remain. The red lines 
indicate some of the upgoing events. 

AN EXAMPLE FROM WELL LOGS 
The theory presented here places no restrictions on the number of layers in the model 

or their thicknesses.  The most detailed descriptions of earth properties available to us are 
made in well logging experiments where typically measurements are made at 1 foot 
intervals.  In Figure 10, an earth model is shown derived from Alberta well 1409 at 
Blackfoot field.  The Q values were deduced from an empirical rule presented in 
Margrave (2013).  The model shown is sampled at 1m intervals and was derived by 
resampling the well measurements with appropriate anti-alias averaging.  Also shown is 
the 30 Hz dominant frequency, minimum-phase, wavelet used in the simulations which 
follow. 

Figures 11, 12, and 13 show the displacement solutions for total field, downgoing 
field, and upgoing field for a source at z=0.  Clearly these solutions are much more 
complex than the previous model because the layer properties have tremendous variation 
and because there are many more layers.  Since the depth sample size is 1m, there are 
about 1700 total layers with the upper 200 layers having simple overburden properties 
while the lower 1500 layers have properties from the well logs.  The Matlab code that 
implements this method runs in less than 1 minute on a modern PC.  The rapidly 
fluctuating layer properties give rise to a complex pattern of reflection and transmission.  
Since the algorithm described here computes the upgoing and downgoing fields 
separately, we can easily display them and this helps in the interpretation of the results. 

The next six figures show two buried source solutions for comparison with Figures 
11-13.  In Figures 14-16 are the total, downgoing, and upgoing fields for a source at 
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z=100m which is in the overburden.  The source ghost from the free surface is clearly 
disable and lags about 200ms behind the primary downgoing wave.  Comparing figures 
13 and 16 shows that there are many more strong reflections in the case of the buried 
source than for the surface source.  Figures 17-19 are the total, downgoing, and upgoing 
fields for a source at z=400m which is in the upper portion of the logged model.  Now 
there are many more ghost reflections generated as the upgoing direct wave traverses the 
logged portion of the model between 400m and 200m.  There are subtle horizontal 
lineations visible in some of these images (e.g. Figures 18 and 19 near 480m) and these 
correspond to low impedance zones in the model which produce large displacements. 

 
Figure 10:  An earth model derived from well 1409 at Blackfoot field (Alberta).  The original well 
was sampled at 1 ft intervals while the model shown here has been resampled to 1m.  Curves for 
velocity and density come directly from measured values while the Q curve is deduced from the 
other two by an empirical rule.  Logging started at 200m depth and an overburden model is 
shown to connect logged values to the surface.  Also shown is the wavelet used in subsequent 
simulations. 
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Figure 11:  The total displacement field for the model of Figure 10 for a surface source (z=0). 

 
Figure 12:  The downgoing field from Figure 11. 
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Figure 13: The upgoing field from Figure 11. 

 
Figure 14:  The total displacement field for the model of Figure 10 when the source is at a depth 
of 100m.  Compare to Figure 11. 
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Figure 15:  The downgoing field from the solution of Figure 14. 

 
Figure 16:  The upgoing field from the solution of Figure 14. 
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Figure 17:  The total displacement field for the model of Figure 10 and with a source depth of 
400m.  Compare to Figures 14 and 11. 

 
Figure 18: The downgoing field from the solution of Figure 17. 
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Figure 19: The upgoing field from the solution of Figure 17. 

 
Figure 20: The surface seismograms from the receiver at z=0 in Figures 11, 14, and 17.  In the 
upper figure the traces are shown in raw amplitude while in the lower figure the traces have been 
gained by multiplication by t (time) and normalized to 1. 
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Figure 21:  Spectra of the three gained and normalized surface seismograms from the lower 
panel of Figure 20.  Also shown is the spectrum of the source wavelet.  The spectra have been 
shifted vertically to ease comparison as they would otherwise plot on top of each other.  

The z=0 receiver in these simulations is a prediction of the expected recording at the 
earth’s surface.  The three z=0 seismograms, corresponding to the receiver at zero depth 
in Figures 11, 14, and 17, are shown in Figure 20.  The raw seismograms show strong 
decay with time due to a combination of transmission losses and Q  attenuation.  It is also 
apparent that the surface source produces the weakest seismogram due to increased Q  
and transmission effects.  In the lower panel the seismograms have been gained by simple 
multiplication by t (i.e.    gs t t s t ) and normalized to 1, to facilitate comparison.  In 
Figure 21 are the amplitude spectra of these gained seismograms together with the 
amplitude spectrum of the source wavelet.  There is stronger decay with increasing 
frequency in the seismograms than is in the source wavelet and this is due to the 
cumulative effect of the Q  model.  We can also see that the spectra apparently flatten 
after about 60db of attenuation (measured from the maximum of each spectrum) which 
may indicate the dynamic range for this modelling.  This point needs further 
investigation.  At this stage, it is also not obvious that the Q  attenuation is producing 
accurate results.  Elsewhere in this report (Margrave 2014) it is shown in great detail that 
the attenuation is accurate and believable and that the stratigraphic filtering of O’Doherty 
and Anstey (1971) is produced by this algorithm.   

CONCLUSIONS 
A propagator method for the construction of synthetic seismograms including 

constant- Q  attenuation and all possible multiples has been described and implemented in 
Matlab code released to sponsors.  This source code is well documented and can easily be 
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translated into any other language.  Although previously described in the literature, 
extensions to arbitrary source depth and to turn internal multiples, surface multiples, and 
attenuation off and on are described.  As described, the method has the ability to model 
either displacement or pressure recordings which have opposite polarity effects on 
reflection.  Examples were presented for a simple conceptual model and for a model 
derived from well-log measurements.  The resulting synthetic VSP’s are shown to be 
correct and to have high fidelity. 
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