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ABSTRACT

A finite-difference algorithm was developed based on the Biot’s equations of motion
for modelling wave propagation in poroelastic media. In contrast with the elastic mod-
elling, in the poroelastic approach the properties of the pore fluid are taken into account
in the algorithm. Poroelastic modelling could be useful in cases where the fluid content
of the rock is of interest, i.e. Carbon Capture and Storage (CCS) projects. We examined
our program using a model based on the Quest CCS project in Alberta to investigate the
detectability of CO2 after one year of injection. This was done by defining two models for
baseline and monitor scenarios that represented the subsurface before and after injecting
CO2. The difference between the calculated seismic sections for the two scenarios shows
that the residual amplitude is comparable with the signal amplitude. With this result, the
injected CO2 in the Quest project over a year could be detected providing the data have
good bandwidth and a high signal-to-noise ratio. The effect of the porosity and the fluid
properties on the output of the algorithm is being examined in an ongoing study.

INTRODUCTION

Wave propagation in porous media has attracted attention in the last fifty years since
Maurice Biot established his theory on poroelasticity (Biot, 1962). Biot’s theory could be
used in the oil and gas industry for exploration and monitoring purposes. It could also be
used for the detection of CO2 in Carbon Capture and Storage (CCS) projects where CO2

is injected into deep geological formations for permanent storage. A poroelastic medium
is composed of two phases. One phase is the porous elastic solid frame, and the other
is the compressible viscous pore fluid that can move within the pore space. The relative
movement of the fluid with respect to the solid generates a "slow P-wave" that travels with
a velocity close to the wave velocity in the fluid. The wave-induced fluid flow leads to
energy dissipation in the medium that is often neglected in elastic modelling algorithms.
Some studies show that the presence of the slow P-wave in the fluid saturated media may
change the seismic wave-field noticeably (Gurevich et al., 1997; Shapiro and Müller, 1999).
At seismic frequencies the viscosity effects become stronger than the internal effects. Thus,
the slow p-wave diffuses when traveling through the medium. However, if the viscosity is
zero, the slow P-wave is a travelling wave at all ranges of frequency (Carcione et al., 2010).

There have been extensive numerical examination studies of Biot’s theory since the
fluid content of the rock is always of interest in reservoir characterization and monitoring.
Carcione et al. (2010) presented a comprehensive review on the numerical methods used for
poroelastic media. Sheen et al. (2006) used a staggered-grid velocity-stress finite-difference
for a gas-water interface and Dai et al. (1995) employed a MacCormack finite-difference
scheme for simulating the wave motion in poroelastic media.

Having an effective boundary condition is essential in any finite-difference wave mod-
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elling algorithm to avoid artificial reflections from the computational boundaries. The per-
fectly matched layer (PML) was introduced by Berenger (1994) for electromagnetic waves
and was later used by Chew and Liu (1996) for elastic waves. This layer is defined so
that the reflection coefficient at the computational boundary is zero at all angles and the
outgoing waves are absorbed as much as possible. In this work this boundary condition
is used for a poroelastic finite-difference algorithm that was previously developed by the
authors (Moradi and Lawton, 2013). The modelling algorithm is based on the Biot’s the-
ory of poroelasticity (Biot, 1962) and the medium is assumed to be porous and saturated
with fluid. The finite-difference scheme that we use is similar to that of Sheen et al. (2006).
However, our numerical examples are from aCO2 storage project, and we would like to ex-
amine the algorithm for possible monitoring purposes in these type of projects. Therefore,
we present a poroelastic time-lapse modelling study later in this report.

THEORY

Biot’s theory of poroelasticity

Maurice Biot (1962) was the first to establish the theory of poroelasticity. He made
the following assumptions to derive the equations of motion in the porous media: (1) the
rock frame is assumed to be elastic and isotropic; (2) the pores are connected so that the
fluid could travel through the pore space; (3) the seismic wavelength is much larger than
the average pore size; and (4) the deformations are small enough that the mechanical pro-
cesses become linear. Although Biot extended his theory to other cases such as anisotropic
media, in this work we focus on the isotropic case. The partial differential equations for
the isotropic poroelastic media could be written as first order equations in time:
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−
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, E =

(
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, F = −bA, and

ρ11 = (1− φ) ρs + ρa, (5)

ρ22 = φρf + ρa (6)

where ρf and ρs are the fluid and the solid densities, and ρa is an additional density caused
by the presence of the fluid. φ is the porosity and b is the fluid mobility defined by η/κ,
where κ and η are permeability and fluid viscosity.

In the 2D case, equations (1) to (4) make a set of 8 coupled equations that could be used
for numerical modelling. A finite-difference program was developed in the previous work
(Moradi and Lawton, 2013) to simulate wave propagation in isotropic poroelastic media;
however, the boundary conditions for the algorithm were not developed at the time. There-
fore, to eliminate the artifacts caused by the computational boundaries, a PML condition is
added to the program.

Perfectly matched layers

To derive the equations for PML, the regular coordinate variables in the frequency do-
main are replaced by the complex stretched variables which are defined as:

x̃ =

∫ xi

0

Si (xi) dxi, Si(xi) = 1− ai/iw i = 1, 2, 3 (7)

(Chew and Liu, 1996; Sheen et al., 2006), where ai is the damping factor in xi direction,
and ω is the temporal frequency. Here we show the process of deriving the PML equations
for one of the differential equations of motion, and the rest could be derived similarly.
Assuming the 2D case where the wave is traveling within the x − z plane, for the vertical
particle velocity of the fluid we have:
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which after transforming to the frequency domain becomes:
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∂Ŝ

∂z̃
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From the definition in equation (7) we can use ∂/∂x̃i = ( 1
Si
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variable x̃i by the regular coordinate variable xi. For simplicity of the equations, the ve-
locities and the stresses are split into x and z components. For example: Vi = V x

i + V z
i .

Equation (8) after change of variables and splitting becomes:
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∂

∂t
+ ax

)
V x
z = A

(
∂τxz
∂x

)
+ C

(
W x
z + ax

∫ t

−∞
W x
z dt

)
(12)

(
∂

∂t
+ az

)
V z
z = A

(
∂τzz
∂z

)
+B

∂S

∂z
+ C

(
W z
z + az

∫ t

−∞
W z
z dt

)
(13)

The same approach could be used to obtain the rest of equations. As previously men-
tioned, in the 2D case there are 8 coupled equations to solve. The number of equations
is doubled after splitting the velocities and stresses in two directions of x and z. This set
of 16 equations is approximated using the finite-difference method to simulate the wave
propagation in poroelastic media.

The grid is divided into two regions: the internal region and the PML region. The values
of ax and az are both zero in the internal grid. In the PML region, these values could be
either zero or none-zero depending on the location of the grid point. This is shown in
Figure 1. At the corners of the grid, both ax and az are none-zero to help in damping the
strong reflections generated in these areas. In our study, ax and az are calculated based on
the criteria suggested by Collino and Tsogka (2001). For example:

ax = log

(
1

R

)(
3Vp
2

)(
x2

L3
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)
(14)

where R is the theoretical reflection coefficient and x is the distance from the PML bound-
ary. LPML = nPML × dx is the thickness of the PML region, where nPML is the number
of the grid points included in the PML boundary, and dx is the grid spacing.

NUMERICAL MODELLING

Finite-difference approximation

As explained earlier, the equations of motion for poroelastic media in the 2D case make
a set of 16 equations after applying the PML boundary condition. In order to simulate wave
propagation in the poroelastic media, these equations are discretized using a velocity-stress
staggered-grid finite-difference approximation. The discretized equations for equations 1 to
4 are presented with more detail in the previous report by the authors (Moradi and Lawton,
2013). Finite-difference approximation could be applied to the PML equations similarly.
For example equations 11 and 12 become:
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These equations are used to develop our forward modelling program in Matlab. The algo-
rithm is then tested by numerical models created from the Quest carbon capture and storage
project in Alberta.
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FIG. 1. Schematic view of the PLM region and how the damping factors are defined in two direc-
tions.

Single layer model

The numerical model used in this study is based on the Quest CCS project in Alberta.
The target formation for injection is the Basal Cambrian Sandstone (BCS) which is a saline
aquifer within the Western Canadian Sedimentary Basin (WCSB) (Shell, 2010). In an
earlier study (Moradi and Lawton, 2012), the in-situ properties of BCS were extracted from
the available well data. These properties are listed in Table 1 as BCS1. In addition, using
Gassmann’s fluid substitution (Gassmann, 1951; Smith et al., 2003), 40% of the in-situ
brine was substituted by CO2 and the properties of the new saturated BCS were calculated.
These values are listed in Table 1 as BCS2, and represent BCS after injecting CO2.

Table 1. Physical properties of the BCS

Property BCS1 BCS2

ρf 1070 (kg/m3) 937 (kg/m3)
ρ 2400 (kg/m3) 2370 (kg/m3)
Vp 4100 (m/s) 3800 (m/s)
Vs 2390 (m/s) 2400 (m/s)
φ 16% 16%
η 0 0

To examine the PML boundary condition, we define a single layer model with the
properties of BCS1. A Ricker wavelet with the dominant frequency of 40 Hz is used as
an explosive source in the finite-difference algorithm. The temporal and spatial sampling
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rates were chosen to be 0.2 ms and 2 meters, respectively. The unknowns are the solid and
fluid particle velocities and the stresses that need to be calculated by the program. Figure
2a shows the calculated vertical component of the solid particle velocity for this model at
the time of 0.15 s. As expected from the Biot’s theory, a slow wave(Ps) is generated due to
the relative movement of the fluid with respect to the solid. Without boundary conditions,
the outgoing wave generates strong reflections from the boundaries of the model (Figure
2.b). After applying the PML to the algorithm, the artifacts are strongly attenuated. Figure
2c to 2e show the results for the PML with three different thicknesses of 15, 20, and 25 grid
points at the time of 0.23 s. There is a significant improvement in absorbing the outgoing
wave when increasing the PML from 15 to 20 grid points. However, going to 25 grid points
from 20 does not make a considerable change. For this example, 20 grid points seems to
be satisfactorily efficient. Regardless of the PML thickness, there are still some reflection
from the boundaries which could not be completely removed.

A point worth considering is that having a sharp transition from the internal grid to the
PML grid could also generate some reflections. This problem could be partially resolved by
smoothing the damping factors ax and az. Figure 3 shows the same example for nPML = 20
both before and after smoothing the damping factors. The smoothed PML seems to absorb
the outgoing wave more effectively than the original PML. Figure 4 shows seismic traces
generated based on this model, and the smoothed PML boundaries are compared with the
none-smoothed ones for two cases of nPML = 15 and nPML = 20. It is obvious that in both
cases, smoothing the damping factors reduces the reflected waves from the computational
boundary considerably.

Two layer model

A second model is generated based on the properties listed in Table 1. This model
consists of two layers: BCS1, on the top, and BCS2 at the base. As explained previously,
BCS1 represents the BCS properties before injecting any CO2. The rock properties of
BCS after injecting CO2 is represented by BCS2. These layers are in fact two sandstones
with the same solid properties but different fluid content. The change in the fluid content of
the rock leads to a change in the seismic response of the model. Figure 5a shows a snapshot
from the vertical particle velocity of the solid calculated for this model. As expected from
the Biot’s theory, a slow P-wave (Ps) is generated due to the fluid movement. There are also
some wave conversions at the boundary. For example: slow P-wave converted to a fast P-
wav (PsPf ), and fast P-wave converted to a slow P-wave (PfPs). To compare our algorithm
with an elastic one, the fluid properties are set equal to zero to perform elastic modelling.
Figure 5b shows the elastic snapshot. This figure illustrates how these algorithms simulate
the wave propagation differently. However, in the seismic frequencies the slow P-wave
could not be recorded, since it is diffusive, but the energy loss caused by this wave changes
the wave-field.

Time-lapse modelling

Poroelastic modelling could be useful in projects where the pore fluid changes through
time, including CCS projects. The main goal of this work is to use the poroelastic algorithm
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FIG. 2. Snapshots of the vertical particle velocity of the solid at time 0.15 seconds(a) and 0.23
seconds (b) to(e) with different values of nPML: b) zero, c)15, d) 20, and e) 25 grid points

CREWES Research Report — Volume 26 (2014) 7



Moradi and Lawton

a)

X(m)

Z
(m

)

t=0.23 s  n
PML

=20, PML: Not Smooth

0 500 1000 1500

0

500

1000

1500

b)

X(m)

Z
(m

)

t=0.23 s    n
PML

=20  PML: Smoothed

0 500 1000 1500

0

500

1000

1500

FIG. 3. Same snapshots from Figure 2.d, with a not smoothed PML (a) and a smoothed PML (b).

a)

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

−4

−2

0

2

4

x 10
−11

Time(s)

P
ar

tic
le

 V
el

oc
ity

 (
m

/s
)

n
PML

=20

 

 

Smoothed PML
Original PML

b)

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

−4

−2

0

2

4

x 10
−11

Time(s)

P
ar

tic
le

 V
el

oc
ity

 (
m

/s
)

n
PML

=15

 

 

Smoothed PML
Original PML

FIG. 4. Traces from the example in Figure 2 with 20 grid points PML (a), and 15 grid points PML
(b). The results with the smoothed PML is the curve in blue, and the one without smoothing is the
curve in red.
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for a CCS project to perform theoretical detectability analysis of the CO2. For this purpose
a coarse model is made based on the log data from the Quest project. This model that is
shown in Figure 6a consists of four main layers. We assume that all layers except BCS
are elastic. BCS is located between the depths of 2000 and 2050 meters and could not be
distinguished from the upper layer due to the low contrast in the velocity of the two layers.
This model is used as our baseline model where the properties of BCS are the same as
BCS1 in Table 1. For the monitor scenario a CO2 plume is added to the baseline model
to simulate a subsurface model after injecting CO2. The properties of the plume are the
same as BCS2 in Table 1 which represents the BCS with 40% CO2 saturation. The size of
the plume is calculated based on the amount of injected CO2 in one year that is 1.2 million
tonnes. Assuming the porosity of 16% for the BCS, and 40% CO2 saturation, the volume
of the plume will be 3 × 107m3. If we consider a cylinder as the CO2 plum, the radius of
the plume will be 800 m and its height will be 50 meters which is the thickness of BCS. In
our 2D model, the plume appears as a 800m× 50m block (Figure 6b).
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FIG. 6. a) Baseline and b) monitor model generated based on the Quest project. The color-bar
shows the p-wave velocity of the saturated rock in m/s.

Both models are then used to generate shot gathers. The grid spacing and temporal
spacing are 4 m and 0.2 ms, and the PML boundary has 20 grid points. Figure 7 shows
sample shot gathers from the vertical component of the solid particle velocities for both
baseline and monitor scenarios. These shot gathers are then used to generate the zero offset
sections shown in Figure 8. InjectingCO2 into BCS causes a change in the properties of the
saturated rock. These changes lead to a shift in travel-times for the waves traveling through
the plume and a change in the reflection from the top and the base of the plume. The time-
lapse effect could be observed by subtracting the monitor section from the baseline section.
Figure 9a shows the residual section after subtraction. This section needs to be migrated
since there are some diffractions from the edges of the CO2 plume. An elastic Kirchhoff
migration algorithm was used to migrate this section. The result is shown in Figure 9b.
The effect of the plume is clearly visible in this section. Selected traces from the modeled
monitor and the baseline sections are shown in Figure 10. The amplitude of the reflections
from the top and the base of the BCS have increased in the monitor scenario due to CO2

injection. There is also a time shift for the reflection from the base of the plume since
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FIG. 7. Sample shot gathers generated for baseline (two shots in the left) and monitor (two shots
in the right) scenarios using the poroelastic finite-difference algorithm.

the wave is traveling through a slower layer after injecting CO2. The difference between
the baseline and the monitor traces (the solid black curve) shows that the amplitude of the
residual trace is comparable with the amplitude of the signal. This means that the CO2

plume could be detected in the seismic data providing the data have good bandwidth and a
high signal to noise ratio. The dashed brown curve shows the difference between the time-
lapse effect in the poroelastic algorithm and the one in the elastic algorithm. This difference
is about 10% of the maximum amplitude of the baseline (or monitor) trace. In addition, the
thickness of our target layer was only 50 meters which makes the difference between the
two algorithms small. Any other property that effects the fluid flow could also effects the
difference between the elastic and the poroelastic algorithms. For example, the porosity of
the rock or any of the fluid properties might change the calculated wave-field. Therefore,
our program needs to be examined for different models to understand the changes that these
properties cause on the wave-field.
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FIG. 8. Calculated zero offset sections for the baseline (a) and the monitor (b) scenarios.
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CONCLUSION

Model based poroelastic time-lapse modelling was performed for the Quest carbon cap-
ture and storage project in Alberta. A finite-difference code was developed in Matlab based
on the Biot’s theory of poroelasticity in which the properties of the pore fluid are taken into
account in wave propagation. Based on the results, the CO2 plume could be detected in the
seismic data after one year of injection if the data is of good quality. However, a compari-
son between the poroelastic algorithm and a elastic one shows a small difference between
the time-lapse residual calculated by those two algorithm. The reason could be the target
poroelastic layer being relatively thin. However the the poroelastic algorithm is being ex-
amined for different fluid properties as well as layer thicknesses and porosity to investigate
the effect of these parameters on the calculated wavefield.
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