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ABSTRACT

Developments in seismic full waveform inversion have brought a renewed interest in
the scattering picture of wave propagation in recent years. Our experience has been that
advances in our understanding of particular aspects of scattering has led rapidly to a concur-
rent advance in our understanding of how to pose and analyze practical seismic inversion
methods. In this paper we study the partial wave analysis of elastic wave scattering in an
isotropic radially heterogenous medium in the context of Born-approximation. We show
that in the presence of a scatterer there is a phase shift in the outgoing scattered spherical
elastic wave. We also obtain the scattering amplitudes for scattering of P- and S-wave in
terms of phase shift for P-, SV- and SH-waves. We show that the phase shifts can be cal-
culated using the Lippman-Schwinger integral equation. A clear and consistent theory of
elastic partial wave scattering will lead to better sensitivity or Jacobian matrices, a critical
matter for the success of elastic seismic full waveform inversion.

INTRODUCTION

In seismic forward problem it is supposed that the source term is known and has no
dependency on the radiated field. The Born model of inverse scattering is a linearization
of the transformation from perturbations in a medium to a scattered waves field. The basic
idea in inverse scattering as its name indicates is the determination of physical properties of
medium from a scattered wavefield as data (Beylkin and Burridge, 1990). In other words,
if we have measurements of a field which is assumed to be the solution of the inhomoge-
neous wave equation, we can determine the perturbation that causes the scattering. In the
Born approximation this perturbation appears as a source term in the inhomogeneous wave
equation (Sato et al., 2012). In order to invert, we don’t need to know the radiated field
throughout the volume of the medium. Information about the field and its first derivative
on the surface surrounding the volume is sufficient for inverting the physical properties of
medium.

Partial wave analysis is a useful method to study the scattering for the case that the
perturbation of the medium is radially symmetric (depending only on the magnitude of the
distance) and is effective over a finite range (Zettili, 2001). In this method a plane wave
is written as a superposition of an infinite number of components, each with a definite
angular momentum. These are called partial waves. The process of decomposing a plane
wave into the partial waves is referred to as partial wave analysis. The angular distribution
of scattered particles in a particular process is described in terms of a differential cross
section.

The key equation in scattering theory in the Lippmann-Schwinger integral equation for
a scattered wave in which its asymptotic behaviour is

ψs(r) ∼ eik·r + f(θ, ϕ)
eikr

r
. (1)
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Here the first term is an initial incident plane wave and the second term is the outgoing
spherical wave modulated by the angle dependent function f , called the scattering ampli-
tude. This contains all information about the scattered wave and is directly related to the
differential scattering cross section

dσ

dΩ
=

outgoing flux/solid angle

incoming flux/area
= |f(θ, ϕ)|2. (2)

Taking the integral of (2) over solid angle results in the scattering cross section which can be
used to calculate the attenuation of the scattered wave due to energy spreading over space,
called the coda-attenuation factor (Sato et al., 2012). The differential cross section idea
has had significant seismic application. Exact and approximate expressions for scattered
and transmitted fields caused by an incident compressional or shear wave from a spherical
inclusion in an infinitely isotropic elastic medium have been investigated by many authors
(Hinders, 1991; Korneev and Johnson, 1993a,b, 1996; Politz, 1991).

With partial wave analysis, the scattering amplitude can be expressed as a function
of a phase shift parameter. The advantage of this method is that a complex function f
is expressed in terms of one parameter, phase shift, instead of phase shift and amplitude.
Phase shift contains all information about the properties of the scatterer and is obtained by
the boundary conditions on the wavefiled. In the partial wave analysis picture, the only
difference between the radial wave function in the presence and absence of a scatterer is
phase shift.

In this paper we generalize the partial wave analysis to the scattering of elastic waves.
For an isotropic homogeneous medium, the elastic wave equation reduces to two vector
Helmholtz equations, one for P-wave (compressional) and the other for S-wave (shear) with
the solutions called Hanson vectors (Morse and Feshbach, 1953; Hill, 1996). The angular
part of the solutions are expressed in terms of spherical harmonics and their derivatives
with respect to angle parameters. The scattering amplitude for the P-wave is expressed in
terms of spherical harmonics and for the S-wave is expressed as a derivative of the spherical
harmonics. In the case of the incident P-wave, the partial wave analysis works for scattered
P-wave. It means that scattering amplitude for a scattered P-wave can be expressed in
terms of phase shift. On the other hand for a scattered S-wave we can not make a phase
shift interpretation as in the P-wave case, because initially there is no S-wave to compare
with the scattered wave. There is a similar explanation for initial incident S-wave.

The next step to obtain the scattering amplitude is calculation of the phase shift. In this
part we use the Lippmann-Schwinger integral equation with the dyadic Green’s functions
and a source term obtained from the perturbed wave equation in a Born approximation
context.

This report is organized as follows. In section 1 we review the scattering and par-
tial wave analysis for a one dimensional scalar wave with examples, then we study one-
dimensional anelastic scattering. We extend the analysis to 3D scalar wave field scattering
in section 2. In section 3 we develop the partial wave analysis in an elastic medium. Two
cases will be investigated, scattering of initially incident P-wave and S-wave. In section 4,
using the Green’s function approach we extract the phase shift determined in section 4 for
scattering of P-wave. We sum up in section 5 with a conclusion.
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ONE-DIMENSIONAL SCALAR WAVE SCATTERING

In this section we will study the problem for elastic and anelastic scattering of the one-
dimensional scalar wave equation. For the scalar case, "elastic" means no energy loss in
the whole scattering process and "anelastic" means a portion of energy is converted to heat
in the medium. The scalar wave equation in one-dimension is given by

ψ′′(x, t)− c−2(x)ψ̈(x, t) = 0, (3)

where c(x) is the velocity of the scalar wave, prime refers to the spatial derivative and dot
indicates the time derivative. Inserting ψ(x, t) = e−iωtφ(x) the above equation reduces to

φ′′(x) + ω2c−2(x)φ(x) = 0. (4)

The essential assumption in perturbation theory is the definition of the reference medium
with a constant velocity c0 and an actual medium with spacially dependent velocity c(x).
The relationship between the velocity in actual and reference medium is expressed by

c(x) = c0 + δc(x) = c0(1 + ξ(x)), (5)

where |ξ(x)| � 1 is the fractional velocity. In the entire paper we assume that ξ(x) is
none-zero in a specific range say 0 < x < a, called the perturbation range. Inserting (5) in
(4) and using the (1 + x)−1 ≈ 1− x for x� 1, we arrive at

φ′′(x) + [k2 − 2k2ξ(x)]φ(x) = 0, (6)

where we defined k = ω
c0

. We assume that in x < 0 the wave field is zero. The solution of
eq.(6) in the absence of perturbation (ξ(x) = 0) or in the reference medium is

φ0(x) = sin(kx) =
1

2i
(eikx − e−ikx). (7)

The first term is related to the outgoing wave and the second term to the incoming wave.
What happens if ξ(x) 6= 0? In this case we expect only the outgoing wave to be affected by
the perturbation. If there is no absorbtion or attenuation in the medium the incoming and
outgoing fluxes should be equal. As a result, the effect of perturbation appears as a phase
multiplied by the outgoing field. So the total wave in the actual medium or in the presence
of perturbation is

φp(x) =
1

2i

{
e2iδkeikx − e−ikx

}
, (8)

where δk is called phase shift and is related to the perturbation in the medium. We can write
the equation (8) as a superposition of incident and scattered waves. Comparing (7) and (8)
we conclude

φp(x) = φ0(x) + φsc(x), (9)
where the scattered wavefield is

φsc(x) = φp(x)− φ0(x) = eiδk sin δke
ikx. (10)

The amplitude of the outgoing field eikx called the scattering amplitude and its modulus
square is the scattering cross section which is equal to sin2 δk. Also we can write the total
wave in the region x > a as

φp(x) = eiδk
1

2i

{
eiδkeikx − e−iδke−ikx

}
= eiδk sin(kx+ δk). (11)

Now, let us evaluate the phase shift method for simple examples.
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Delta function perturbation

Consider a localized perturbation represented by a delta function located in x = a

ξ(x) = ξ0δ(x− a), ξ0 > 0. (12)

The solution for both regions 0 < x < a and x > a is a sin function. We denote the
solution in 0 < x < a by φ− and the solution in x > a by φ+

φ−(x) = A− sin(kx), (13)

φ+(x) = eiδk sin(kx+ δk). (14)

We use equation (11) to write the solution in x > a. The wave equation (6) for potential
(12) is

φ′′(x) + k2[1− 2ξ0δ(x− a)]φ(x) = 0. (15)

To obtain the phase shift we have to use the boundary condition applied to solutions on the
left and right hand side of point x = a. Since in the wave equation there is a delta function
defined in x = a, the first derivative of the solution at this point is not continuous. There-
fore the boundary condition for this example is continuity of the wave and a prescribed
discontinuity of the first derivative at x = a. To examine the discontinuity of the solution
we integrate the equation (15){∫ a+ε

a−ε
φ′′(x)dx+ k2

∫ a+ε

a−ε
φ(x)dx− 2ξ0k

2

∫ a+ε

a−ε
δ(x− a)φ(x)dx

}
ε→0

= 0, (16)

which after simplification reduces to

φ′+(a)− φ′−(a) + k2 [φ+(a)− φ−(a)]− 2ξ0k
2φ+(a) = 0. (17)

The third term goes to zero because of the continuity of the wave equation. Finally, these
boundary conditions result

φ′+(a)− φ′−(a) = 2ξ0k
2φ+(a), (18)

φ+(a) = φ−(a). (19)

After simplification we arrive at

tan(ka+ δk) =

[
1

tan(ka)
+

2ξ0
k

]−1
. (20)

In the case of low frequency ka� 1 we have

tan(δk) ≈
ka

1 + 2ξ0a
. (21)
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FIG. 1. Diagram illustrating the well perturbation in Eq.(22)

Well perturbation

Another example is scattering from the well perturbation

ξ(x) =

{
ξ0, 0 < x < a
0, x > a.

(22)

This perturbation represents an actual medium in which the velocity is higher than the
reference medium in the perturbation interval 0 < x < a. Similar to the first example, the
solution in both regions is a sin function but with different amplitude and different phase.
The wave equation in two regions are

φ′′−(x) + (k2 + 2ξ0k
2)φ−(x) = 0, 0 < x < a (23)

φ′′+(x) + k2φ+(x) = 0, x > a (24)

by definition k− = k
√

1 + 2ξ0, solutions are

φ−(x) = A− sin(k−x), (25)

φ+(x) = eiδk sin(kx+ δk). (26)

Finally using the continuity of the wave function and its first derivative we obtain the phase
shift as

δk = tan−1
[

tan(ka
√

1 + 2ξ0)√
1 + 2ξ0

]
− ka. (27)

Also the amplitude of the wave in the interior region is

|A−| =
sin(ka+ δk)

sin(ka)
. (28)

In fig.2 we plot the phase shift as a function of κ = ka for perturbation factor ξ0 = 0.1. We
can see that the shape of potential and phase shift are almost the same.
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FIG. 2. Phase shift versus wave number for well perturbation model.

Anelastic scattering

Now let us consider anelastic scattering. In this case the total wave field is given by
(Zettili, 2001)

φap(x) =
1

2i

{
γke

2iδkeikx − e−ikx
}
, (29)

where γk is a real number such that 0 < γk < 1. Since there is energy loss due to ab-
sorbtion, the incoming and outgoing fluxes are not equal. Similar to the elastic case, the
scattered wave is modulated by δk. The scattered wave field is

φasc(x) = φap(x)− sin(kx) =
1

2i
(γke

iδk − 1)eikx. (30)

The amplitude of the outgoing field eikx is called scattering amplitude and its modulus
square is the scattering cross section which is equal to sin2 δk. Also we can write the wave
in the region x > a as

φap(x) =
1

2
eiδk(γk + 1) sin(kx+ δk) +

1

2i
eiδk(γk − 1) cos(kx+ δk). (31)

In the case that γk = 1, the anelastic scattered wave reduces to the elastic one.

SCATTERING OF 3D SCALAR WAVE

In this section we generalized the previous section results to the 3D case. The Helmholtz
equation in 3D is given by

ψ′′(x, t)− c−2(x)ψ̈(x, t) = 0. (32)

Inserting ψ(x) = φ(x)e−iωt in above equation leads to

φ′′(x, t) + c−2ω2φ(x) = 0. (33)
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Separation of variables for this equation results in the following solution

φlm(x) = fl(r)Ylm(θ, φ), (34)

where fl satisfies in the following equation

(rfl(r))
′′ +

(
c−2(x)ω2 − l(l + 1)

r2

)
(rfl(r)) = 0. (35)

Similar to the one dimension case, we write the perturbation in velocity

c(x) = c0 + δc(r) = c0(1 + ξ(r)), (36)

where |ξ(r)| � 1 is the fractional velocity. Then the following equation reduces to

f ′′l (kr) +
2

kr
f ′l (kr) +

(
1− 2ξ(r)− l(l + 1)

(kr)2

)
fl(r) = 0. (37)

Here prime is differentiation with respect to kr. We assume that at large distances r � a,
the perturbation ξ(r) falls off faster than r−2, in this case

f ′′l (kr) +

(
1− l(l + 1)

(kr)2

)
fl(kr) ≈ 0. (38)

The general solution of this equation is a combination of the spherical Hankel functions

fl(kr) = Aljl(kr) +Blnl(kr), (39)

where jl is Bessel and nl is Neumann function. For values near the origin

jl(kr) '
2ll!

(2l + 1)!
(kr)l, nl(kr) ' −

(2l − 1)!

2ll!
(kr)−l−1 (40)

as k → 0, all the partial waves go rapidly to zero except for the l = 0 wave. For large
values of kr

jl(kr) '
1

kr
sin

(
kr − lπ

2

)
, nl(kr) ' −

1

kr
cos

(
kr − lπ

2

)
. (41)

Since the Neumann function diverges at the origin the solutions for the region near the
origin are Bessel function. For large distances (39) reduces to

fl(kr) =
Al
kr

sin

(
kr − lπ

2

)
− Bl

kr
cos

(
kr − lπ

2

)
, (42)

we can write this solution as follows

fl(kr) '
Cl
kr

sin

(
kr − lπ

2
+ δl

)
, (43)

where
Al = Cl cos δl, Bl = −Cl sin δl, Cl =

√
A2
l +B2

l . (44)

CREWES Research Report — Volume 26 (2014) 7



or

δl = − tan−1
(
Bl

Al

)
. (45)

Expansion of the incident plane wave is given by

eikz = eikr cos θ =
∑
l

(2l + 1)iljl(kr)Pl(cos θ), (46)

at large distances

eikz '
∑
l

(2l + 1)il
sin
(
kr − lπ

2

)
kr

Pl(cos θ). (47)

Comparing to the asymptotic form of the total wave

ψ(x) ' eikz +
eikr

r
fl(θ), (48)

with
fl(θ) =

∑
l

al
1

2k
i(2l + 1)Pl(cos θ), (49)

we arrive at

ψ(x) ' 1

2ikr

∑
l

(2l + 1)
[
(1− al)eikr − (−1)le−ikr

]
Pl(cos θ). (50)

On the other side we have

ψ(x) =
∑
l

(2l + 1)

2ikr
Cl
[
exp(ikr + iδl)− (−1)l exp(−ikr − iδl)

]
Pl(cos θ), (51)

comparing (50) and (51) we arrive at

al = [1− e2iδl ], Cl = eiδl . (52)

The final form of the scattering amplitude is

fl(θ) =
1

k

∑
l

eiδl sin δl(2l + 1)Pl(cos θ) (53)

For an anelastic scattering, similar to the one-dimension case the scattering potential is

fal (θ) =
1

2ik

∑
l

(γke
2iδl − 1)(2l + 1)Pl(cos θ) = (54)

1

k

∑
l

(γk sin 2δk + i(1− γk cos 2δk))Pl(cos θ). (55)

It can be seen from (55) that scattering amplitude is a complex function which can be de-
termined by having the phase shift δl. The spherical outgoing field is multiplied by the
scattering amplitude that displays the pattern of scattering. Using the scattering ampli-
tude we can also obtain the total cross section of scattering and we can see how energy is
distributed over space after scattering.
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SCATTERING IN HETEROGENOUS ELASTIC MEDIUM

Consider the wave propagation in an infinite heterogeneous, isotropic and non disper-
sive, non attenuating medium. The displacement field U satisfies in the elastic wave equa-
tion (e.g., Aki and Richards, 2002)

∇ ·TU = ρ
∂2U

∂t2
, (56)

where ρ is the spatial dependent density and TU is the stress tensor corresponding to the
displacement field

T = λ∇ ·UI + µ(∇U + U∇). (57)

The coefficients λ and µ are known as Lamé parameters. In addition the complete dyadic
in spherical coordinate is given by

I = r̂r̂ + θ̂θ̂ + φ̂φ̂. (58)

For a heterogenous medium, physical properties of the medium like λ, µ and ρ vary be-
tween two or more points which means these elastic properties are spatially dependent.
The displacement field thus satisfies

µ∇2U + (λ+ µ)∇∇ ·U + (∇λ)∇ ·U + ∇µ · (∇U + U∇) = ρ
∂2U

∂t2
. (59)

for a radially heterogeneous medium ρ(x) = ρ(r),λ(x) = λ(r), and µ(x) = µ(r) the
elastic wave equation reduces to (Ben-Menahem and Singh, 1981)

µ∇2U + (λ+ µ)∇∇ ·U + r̂
dλ

dr
∇ ·U +

dµ

dr

(
2
∂U

∂r
+ r̂×∇×U

)
= ρ

∂2U

∂t2
. (60)

In a homogeneous medium, where elastic properties are constant, equation (60) reduces to
the Navier-Stokes equation

α2∇(∇ ·U)− β2∇×∇×U + ω2U = 0′ (61)

where
α2 =

λ+ 2µ

ρ
, β2 =

µ

ρ
. (62)

Using the Helmholtz decomposition

U = Uα + Uβ, ∇×Uα = 0, ∇ ·Uβ = 0, (63)

equation (61) reduces to

(∇2 + α2)Uα = 0, (∇2 + β2)Uβ = 0 (64)

So the elastic wave equation for a homogeneous medium reduces to the two Helmholtz
vector equation, one for P-wave and the other for S-wave. Since the problem we investigate
is scattering from an inclusion with spherical symmetry, we are interested in the solution
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of the above equation in a spherical coordinate system. The solutions of the vector wave
equation called Hanson vectors are given by(Morse and Feshbach, 1953; Hill, 1996)

Mf
lm = fl(kSr)Λ

3
lm (65)

Nf
lm =

1

2l + 1

{
(l + 1)fl−1(kSr)Λ

1
lm − lfl+1(kSr)Λ

2
lm

}
(66)

Lf
lm =

1

2l + 1

{
fl−1(kP r)Λ

1
lm + fl+1(kP r)Λ

2
lm

}
(67)

where fl is the solution of the spherical Bessel equation and a set of orthogonal vector
functions Λi

lm, i = 1, 2, 3, are defined as

Λ1
lm = lPlm +

√
l(l + 1)Blm, (68)

Λ2
lm = −(l + 1)Plm +

√
l(l + 1)Blm, (69)

Λ3
lm =

√
l(l + 1)Clm, (70)

where
Plm = r̂Ylm(θ, ϕ), (71)√

l(l + 1)Blm =

(
θ̂
∂

∂θ
+ ϕ̂

im

sin θ

)
Ylm(θ, ϕ), (72)

√
l(l + 1)Clm =

(
θ̂
im

sin θ
− ϕ̂ ∂

∂θ

)
Ylm(θ, ϕ). (73)

Orthogonality relations are given as (Ben-Menahem and Singh, 1981)∫
Plm ·P∗l′m′dΩ =

∫
Blm ·B∗l′m′dΩ =

∫
Clm ·C∗l′m′dΩ = δmm′δll′Γlm, (74)

also ∫
Λk
l′m′ ·Λ∗k

′

l′m′dΩ = δmm′δll′δkk′Γlmγk, (75)

where
γ1 = l(2l + 1), (76)

γ2 = (l + 1)(2l + 1), (77)

γ3 = l(l + 1), (78)

Γlm =
4π

2l + 1

(l +m)!

(l −m)!
. (79)

Assume that the incident wave is a P-wave in the z-direction. In this case the polarization
also is in the z-direction, and the initial P-wave is given by zeikP z. To expand this vector
function in terms of Hansson vectors we need to first expand the scalar plane wave as
follows

eikP z = eikP r cos θ =
∑
l

il(2l + 1)jl(kP )Pl(cos θ). (80)
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Writing the unit vector z in spherical coordinates and doing some algebra (Appendix:A)
we arrive at

zeikz =
∑

il−1(2l + 1)Ll0(kP r, θ). (81)

This is the longitudinal wave because ∇ × (zeikz) = 0. In the case that the polarization
is in the z-direction the incident wave is a superposition of the longitudinal Hansen vector
Llm with zero azimuth number m = 0. For an isotropic radially heterogenous medium,
since the properties of medium is independent of direction, a scattered P-wave with zero m
scattered to the waves with m = 0. Eq. (81) is the key equation for partial wave analysis
when the incident wave is a P-wave.

We also need to obtain the partial wave expansion of the initial S-wave for partial wave
analysis of scattering of S-waves. A shear wave can be represented by either xeikz or yeikz,
because both are transverse vectors

∇ · (xeikz) = ∇ · (yeikz) = 0. (82)

The expansions of S-waves in terms of transverse Hanson function Mlm and Nlm are (Ap-
pendix A)

x̂eikz =
∑
lm

C+
lmMj

lm(kSr, θ, ϕ) + C−lmNj
lm(kSr, θ, ϕ), (83)

ŷeikz = i
∑
lm

C−lmMj
lm(kSr, θ, ϕ) + C+

lmNj
lm(kSr, θ, ϕ), (84)

where we defined
C±lm = il−1

2l + 1

2l(l + 1)
[δm,1 ± l(l + 1)δm,−1] . (85)

In what follows for simplicity we skip writing the arguments for Hanson vectors. We show
that the S-wave decomposed to the two divergenceless parts. The first part is related to the
SH-wave and the second one to the SV-wave. The reason that we designate Mlm as an
SH-wave is that it is orthogonal to the two other Hanson vectors∫

Nlm ·M∗
lmdΩ = 0, (86)∫

Llm ·M∗
lmdΩ = 0, (87)

In consequence, horizontal and vertical S-waves are defined as follows

SVl = cl [Nl1 − l(l + 1)Nl,−1] , (88)

SHl = cl [Ml1 + l(l + 1)Ml,−1] , (89)

where
cl = il−1

2l + 1

2l(l + 1)
. (90)

Because of the orthogonality relation (86), we can easily show that the SH- and SV waves
are orthogonal ∫

SHl · SV∗l dΩ = 0. (91)
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Since the P-wave has components in three direction the SH wave can not be scattered to
a P-wave. On the other hand a SV -wave is constructed of vectors in three direction; as a
result a P -wave can be scattered to SV -wave and vice versa.

The first step is studying the seismic scattering in the far field is obtaining the incident
waves in the far distance. First consider the SH-wave, for large distance

Mj
l± =

√
l(l + 1)

kSr
sin

(
kSr −

lπ

2

)
Cl±, (92)

so we have

SH =
1

kSr

∑
l

il−2cl
[
i−leikSr − ile−ikSr

]√
l(l + 1) (Cl1 + l(l + 1)Cl,−1) , (93)

The asymptotic form of N is

Nj
l± =

√
l(l + 1)

kSr
cos

(
kSr −

lπ

2

)
Bl±, (94)

so for SV-wave we find

SV =
1

kSr

∑
l

il−1cl
[
i−leikSr + ile−ikSr

]√
l(l + 1) (Bl1 − l(l + 1)Bl,−1) , (95)

on the other hand we have√
l(l + 1) (Bl1 − l(l + 1)Bl,−1) = 2

(
cosϕ

dPl1
dθ
θ̂ − sinϕ

Pl1
sin θ

ϕ̂

)
,

√
l(l + 1) (Cl1 + l(l + 1)Cl,−1) = 2i

(
cosϕ

Pl1
sin θ

θ̂ − sinϕ
dPl1
dθ
ϕ̂

)
.

Therefore (93) and (95) lead to

SH =
2

kSr

∑
l

il−1cl
[
i−leikSr − ile−ikSr

](
cosϕ

Pl1
sin θ

θ̂ − sinϕ
dPl1
dθ
ϕ̂

)′
(96)

SV =
2

kSr

∑
l

il−1cl
[
i−leikSr + ile−ikSr

](
cosϕ

dPl1
dθ
θ̂ − sinϕ

Pl1
sin θ

ϕ̂

)
. (97)

The partial wave expansion we obtained for SH- and SV-waves contain both waves con-
verging to and diverging from the origin. As we will show later the effect of a perturbation
in the medium appears as a phase shift in scattered waves diverging from origin.

SCATTERING OF P-WAVE

Let us analyze the scattering of the different types of waves. For an incident P-wave, we
show in Eq.(81) that the azimuth number m is zero. In an isotropic medium the physical

12 CREWES Research Report — Volume 26 (2014)



Partial wave analysis of seismic wave scattering

properties don’t change in the different directions, so for the initially incident P-wave,
scattered waves have zero m values.

The scattered wave field contains the P- and SV wave vector fields with m = 0. Since
initially near the origin we have only the P-wave the radial part of the total wave for P-wave
includes both Bessel and Neuman spherical functions. On the other hand for the SV-wave,
we have just first order Hankel functions in the radial part of the wave

U =
∑
l

APl Lj
l0 +BP

l Ln
l0 + CS

l Nh
l0. (98)

Here j refers to the spherical Bessel, n to the Neuman and h to the Hankel functions. To
extract the partial wave analysis we need to write the total wave field in the asymptotic
region. In this region as kr →∞ we have

jl±1(kP r) ≈ ∓
1

kP r
cos

(
kP r −

lπ

2

)
, (99)

nl±1(kP r) ≈ ∓
1

kP r
sin

(
kP r −

lπ

2

)
, (100)

h
(1)
l±1(kSr) ≈ ∓

1

kSr
(−i)leikSr. (101)

Inserting the asymptotic form of the above functions in (65) to (67)

Lj
l0(kP r, θ) =

1

kP r
cos

(
kP r −

lπ

2

)
Pl(θ)r̂, (102)

Ln
l0(kP r, θ) =

1

kP r
sin

(
kP r −

lπ

2

)
Pl(θ)r̂, (103)

Nh
l0(kSr, θ) =

il

kSr
eikSr

dPl(θ)

dθ
θ̂. (104)

We note that from (102) and (103) the angle-dependent part of the PP-wave can be effec-
tively described by the Legender function Pl(θ). Furthermore for the PS-wave the angle
dependent part is the first derivative of the Legender function. As we will see later the
same dependency upon the Legender function will be established for PP- and PS-scattering
amplitudes. Inserting (102) to (104) to (98) results

U =
∑
l

1

kP r

[
APl cos

(
kP r −

lπ

2

)
+BP

l sin

(
kP r −

lπ

2

)]
Pl(θ)r̂+CS

l

il

kSr
eikSr

dPl(θ)

dθ
θ̂.

(105)
Now we define the amplitudes for the incident and scattered P-waves in terms of a phase
factor δPl as follows

APl = DP
l cos δPl , BP

l = DP
l sin δPl , tan δPl =

BP
l

APl
. (106)
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As a result we may try to rewrite the wavefield in terms of phase shift

U =
e−ikP r

2kP r

∑
l

(DP
l e
−iδPl il)Pl(θ)r̂+

eikP r

r

∑
l

1

2kP

[
DP
l e

iδPl e−i
lπ
2

]
Pl(θ)r̂ +

eikSr

r

∑
l

ilCS
l

kS

dPl(θ)

dθ
θ̂. (107)

The scattering amplitude of the P-wave is a complex function that has amplitude and phase.
The main idea behind the partial wave analysis is that we can determine the scattering
amplitude in terms of a real phase factor. To do this, first we write the wave field in terms
of scattering amplitudes

U =
1

kP r

∑
l

il−1 cos

(
kP r −

lπ

2

)
Pl(θ)r̂ +

eikP r

r

∑
l

FPPl (θ)r̂ +
eikSr

r

∑
l

FPSl (θ)θ̂.

(108)
Where the first term is the initial P-wave in the z-direction, the second term is the scattered
PP-wave and the third term is scattered PS-wave. In addition FPPl (θ) and FPSl (θ) are the
scattering patterns for scattered PP and PS-wave modes. Separating the spherical out-going
waves in (108) takes the form

U =
e−ikP r

2kP r

∑
l

i2l−1Pl(θ)r̂ +
eikP r

r

{∑
l

FPPl (θ)− iPl(θ)
2kP

}
r̂ +

eikSr

r

∑
l

FPSl (θ)θ̂.

(109)
Comparing (107) and (109) we obtain

DP
l = il−1eiδ

P
l . (110)

In addition, the scattering amplitudes for PP- and PS-waves can be expressed in terms of
phase shift

FPPl (θ) =
Pl(θ)

kP
eiδ

P
l sin δPl , (111)

FPSl (θ) = il
CS
l

kS

dPl(θ)

dθ
. (112)

Therefore the PP-scattering amplitude can be determined by having the phase shift δPl . If
the phase shift goes to zero we don’t have the scattered P-wave, namely the perturbation
in the medium appears as a phase shift in scattering potential. The advantages of partial
wave analysis is that determination of a complex amplitude with a real and imaginary parts
reduces to determination of a real phase number. However the above analysis does not hold
for the scattered PS wave because the incident wave is a P-wave. Let us insert (110) in (113)
and see the difference between the wave field in a reference medium without perturbation
and an actual medium with perturbation.

U =
e−ikP r

r

∑
l

(−1)l

2ikP
Pl(θ)r̂ +

eikP r

r

∑
l

e2iδ
P
l

2ikP
Pl(θ)r̂ +

eikSr

r

∑
l

CS
l

il

kS

dPl(θ)

dθ
θ̂. (113)
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Comparing this to the case with no perturbation, we observe that for P-wave, spherical wave
emerging from scatterer there is a an additional phase shift e2iδPl . In a word the effects of
perturbation in the medium appear as a phase shift in outgoing spherical P-wave. For the
S-wave we don’t have such a phase shift because the initial incident wave is P-wave.

The scattering amplitude contains the perturbation in density and elastic properties,
namely

FPPl (θ, δρ, δλ, δµ) = Pl(θ)∆
PP
l (δρ, δλ, δµ), (114)

FPSl (θ, δρ, δλ, δµ) =
dPl(θ)

dθ
∆PS
l (δρ, δλ, δµ), (115)

where we defined the perturbation-dependent term as

∆PP
l (δρ, δλ, δµ) =

1

kP
eiδ

P
l sin δPl , (116)

∆PS
l (δρ, δλ, δµ) =

1

kS
ilCS

l . (117)

As a result the scattering pattern can be written as product of an angular term and a term
containing the perturbation of properties of the medium. Let us consider the three first
terms of the scattering pattern, in this case

FPP = ∆PP
0 − 1

2
∆PP

2 + cos θ∆PP
1 +

3

2
cos2 θ∆PP

2 , (118)

also for PS-scattering potential we have

FPS = − sin θ∆PS
1 − 3 sin θ cos θ∆PS

2 . (119)

Note that in the absence of any perturbation in medium, phase shift δPl for all values of l
is zero. This means that the phase shift measures how the wave in the reference medium
differs from the wave in the actual medium. Now let us derive the ∆PP

l in terms of medium
properties. The scattering potential for PP-wave mode is given by

FPP = ρ0

[(
−1 + cos θ +

2

γ20
sin2 θ

)
δρ̃− 2δα̃ +

4

γ20
sin2 θδβ̃

]
. (120)

Collecting the same powers of cos we arrive at

FPP = ρ0

[(
2

γ20
− 1

)
δρ̃− 2δα̃ +

4

γ20
δβ̃ + cos θδρ̃− cos2 θ

2

γ20
(δρ̃+ 2δβ̃)

]
. (121)

comparing (116) and (121) we obtain

∆PP
0 = ρ0

[
1

γ20

(
δρ̃+ 2δβ̃

)
− (δρ̃+ 2δα̃)

]
,

∆PP
1 = ρ0δρ̃,

∆PP
2 = ρ0

[
− 2

γ20
(δρ̃+ 2δβ̃)

]
.
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Let us consider to an example: scattering from a hard sphere elastic medium where inside
the sphere the wavefiled is zero. In this case the boundary condition for the wavefield is
given by

APl Lj
l0(kPa, θ) +BP

l Ln
l0(kPa, θ) + CS

l Nh
l0(kSa, θ) = 0. (122)

The above vector identity splits to two scalar equation with three unknown as

APl jl−1(kPa) +BP
l nl−1(kPa) + Cl(l + 1)hl−1(kPa) = 0, (123)

APl jl+1(kPa) +BP
l nl+1(kPa)− Cllhl+1(kPa) = 0, (124)

and solving these equation for APl and BP
l gives

tan δPl =
BP
l

APl
= −

jl−1(kPa) + jl+1
(l+1)hl−1(kP a)

lhl+1(kP a)

nl−1(kPa) + nl+1
(l+1)hl−1(kP a)

lhl+1(kP a)

. (125)

SCATTERING OF S-WAVE

Assume that the incident wave is an S-wave in the x-direction. Since the S-wave de-
pends to the azimuthal number m = ±1, the scattered wave also has the same dependency
upon m. This happens in a radially heterogenous medium, because the perturbations are
independent of azimuth angle φ. In this case the total wavefield is a function of the basis
vectors with m = ±1. At large distance we have P-, and SH- and SV waves, so the total
wavefield is a function of Llm, Nlm and Mlm.

U =
∑
l

CP
l

[
Lh
l1 − l(l + 1)Lh

l,−1
]

+

ASVl
[
Nj
l1 − l(l + 1)Nj

l,−1
]

+BSV
l

[
Nn
l1 − l(l + 1)Nn

l,−1
]

+

ASHl
[
Mj

l1 + l(l + 1)Mj
l,−1
]

+BSH
l

[
Mn

l1 + l(l + 1)Mn
l,−1
]
. (126)

In partial wave analysis we are interested in the asymptotic form of the total wave field in
the far distance. This would help us to express the scattering amplitudes in terms of one
real parameter called phase shift instead of a complex number which has real and imaginary
parts. It follows from (102) to (104) for large values of kr

Lh
l± =

ileikP r

kP r
Pl±, (127)

Nj
l± =

√
l(l + 1)

kSr
cos

(
kSr −

lπ

2

)
Bl±,

Nn
l± =

√
l(l + 1)

kSr
sin

(
kSr −

lπ

2

)
Bl±,

Mj
l± =

√
l(l + 1)

kSr
sin

(
kSr −

lπ

2

)
Cl±, (128)
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Mn
l± = −

√
l(l + 1)

kSr
cos

(
kSr −

lπ

2

)
Cl±. (129)

With this we can write (133) as

U =
eikP r

kP r

∑
l

CP
l i

lPl1r̂+

2

kSr

∑
l

{
ASVl cos

(
kSr −

lπ

2

)
+BSV

l sin

(
kP r −

lπ

2

)}(
cosϕ

dPl1
dθ
θ̂ − sinϕ

Pl1
sin θ

ϕ̂

)
2i

kSr

∑
l

{
ASHl sin

(
kSr −

lπ

2

)
−BSH

l cos

(
kSr −

lπ

2

)}(
cosϕ

Pl1
sin θ

θ̂ − sinϕ
dPl1
dθ
ϕ̂

)
.

(130)
Now let us define two phase factors for SV- and SH-waves such that the amplitudes take
the forms.

ASVl = CSV
l cos δSVl , BSV

l = CSV
l sin δSVl , (131)

ASHl = CSH
l cos δSHl , BSH

l = CSH
l sin δSHl . (132)

Therefore we can identify the wavefield in terms of phase shifts

U =
eikP r

kP r

∑
l

APl i
−l cosϕPl1r̂+

1

kSr

∑
l

{(
CSV
l i−le−iδ

SV
l

)
eikSr +

(
CSV
l ileiδ

SV
l

)
e−ikSr

}(
cosϕ

dPl1
dθ
θ̂ − sinϕ

Pl1
sin θ

ϕ̂

)
+

1

kSr

∑
l

{(
CSH
l i−le−iδ

SH
l

)
eikSr −

(
CSH
l ileiδ

SH
l

)
e−ikSr

}(
cosϕ

Pl1
sin θ

θ̂ − sinϕ
dPl1
dθ
ϕ̂

)
.

(133)
where we split the spherical incident and outgoing wave field. On the other hand we can
write the wave field in terms of scattering amplitudes for P-, SH- and SV-waves. For
an incident S-wave propagating in the z-direction with polarization in the x-direction, the
incident plus scattered wave to be

U = xeikz +
eikP r

kP r

∑
l

FPl r̂ +
eikSr

kSr

∑
l

FSVl θ̂ +
eikSr

kSr

∑
l

FSHl ϕ̂. (134)

Using the expansion of the incident wave the result is

U =
eikP r

kP r

∑
l

FPl r̂ +
eikSr

kSr

∑
l

FSVl θ̂ +
eikSr

kSr

∑
l

FSHl ϕ̂+

cosϕ
e−ikSr

kSr

∑
l

i2l−1cl

(
dPl1
dθ
− Pl1

sin θ

)
θ̂ +

eikSr

kSr

∑
l

cl
i

(
dPl1
dθ

+
Pl1

sin θ

)
cosϕθ̂

sinϕ
e−ikSr

kSr

∑
l

i2l−1cl

(
dPl1
dθ
− Pl1

sin θ

)
ϕ̂− eikSr

kSr

∑
l

cl
i

(
dPl1
dθ

+
Pl1

sin θ

)
sinϕϕ̂. (135)
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Comparing with the Eq. (133) we arrive at

FPl = APl i
−l cosϕPl1, (136)

CSV
l = il−1cle

−iδSVl , (137)

CSH
l = il−1cle

−iδSHl , (138)

and

FSVl = −2cl

[
e−iδ

SV
l sin δSVl

dPl1
dθ

+ e−iδ
SH
l sin δSHl

Pl1
sin θ

]
cosϕ, (139)

FSHl = 2cl

[
e−iδ

SH
l sin δSHl

dPl1
dθ

+ e−iδ
SV
l sin δSVl

Pl1
sin θ

]
sinϕ. (140)

Next we examine how the phase shift can be extracted using the green function.

GREEN’S FUNCTION

The equation of motion for elastic wave is given by{
δjkω

2ρ(r) + ∂icijkl(r)∂l
}
Gkm(r, r′) = δjmδ(r− r′). (141)

The Green’s dyadic, Gkm(r, r′), is the response at location r in the k-direction due to an
impulsive force applied at r′ in the mth direction and cijkl is stiffness tensor. The Green’s
function for unbounded media is given by(Ben-Menahem and Singh, 1981)

G(r, r′) = −i i
µ
kβ
∑
l,m

1

Γlm

[
1

l(l + 1)
M

(j)
lm(kβr<)M

∗(h)
lm (kβr>)+

1

l(l + 1)
N

(j)
lm(kβr<)N

∗(h)
lm (kβr>) +

(
α

β

)3

L
(j)
lm(kαr<)L

∗(h)
lm (kαr>)

]
where r> = min(r, r′) and r> = max(r, r′). In the case that the incident wave is a P-
wave, the scattered waves are PP- and PS-wave modes, and as a result the Green’s function
reduces to the propagation of P- and SV waves as follows

G(r, r′) = − i
µ
kβ
∑
l

1

Γl0

[
1

l(l + 1)
N

(j)
l0 (kβr<)N

∗(h)
l0 (kβr>) +

(
α

β

)3

L
(j)
l0 (kαr<)L

∗(h)
l0 (kαr>)

]
.

To extract the scattered wave from the incident wave, we have to split the wave equation
into the inhomogeneous wave equation, namely a wave equation for a scattered wave in a
reference medium with a source term constructed from incident wavefield and perturbation
parameters. First the elastic wave equation for radially heterogenous medium is given by

µ∇2U + (λ+µ)∇∇ ·U + r̂
dλ

dr
∇ ·U +

dµ

dr

(
2
∂U

∂r
+ r̂×∇×U

)
+ρω2U = 0. (142)

The Born approximation is given by

U = Ui + US, (143)
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where Ui is incident wave and Us is the scattered wave with ‖ Us ‖�‖ Ui ‖. In addition
the perturbation in the properties of medium is given by

λ(r) = λ0 + δλ(r),

µ(r) = µ0 + δµ(r),

ρ(r) = ρ0 + δρ(r),

where δλ(r), δµ(r), δρ(r) � 1. Inserting the Born approximation (143) and perturbation
terms in above equation (142)

µ0∇2Ui + (λ0 + µ0)∇∇ ·Ui + ρ0ω
2Ui+

µ0∇2Us + (λ0 + µ0)∇∇ ·Us + ρ0ω
2Us+

δµ(r)∇2Ui + (δλ(r) + δµ(r))∇∇ ·Ui + δρ(r)ω2Ui+

δµ(r)∇2US + (δλ(r) + δµ(r))∇∇ ·US + δρ(r)ω2US+

r̂
dδλ

dr
∇ · (Ui + US) +

dδµ

dr

(
2
∂(Ui + US)

∂r
+ r̂×∇× (Ui + US)

)
= 0.

The first term is zero because it is the homogeneous wave equation for the incident wave.
The second term is the same equation for the scattered wave, but it is not zero because the
scattered wave does not satisfy the homogeneous wave equation. Furthermore with factors
of the all terms with factors of the scattered wave and perturbation terms are zero. Finally
the equation reduces to

µ0∇2Us + (λ0 + µ0)∇∇ ·Us + ρ0ω
2Us + VB(Ui) = 0, (144)

where the vector potential term is given by

VB = δµ∇2Ui + (δλ+ δµ)∇∇ ·Ui + δρω2Ui − r̂δλ
d

dr
∇ ·Ui

−δµ d
dr

(
2
∂Ui

∂r
+ r̂×∇×Ui

)
. (145)

To extract the above equation we used partial integration. Using the following relations

∇2Ui = −k2αUi, (146)

∇∇ ·Ui = −k2αUi, (147)

∇ ·Ui = −kαfl(kαr)Pl, (148)

the vector potential (145) can be written as

VB = il−1(2l + 1)

{
−k2α(δλ+ 2δµ)Ll0 + δρω2Ll0 + kαr̂δλ

∂fl(kαr)

∂r
Pl − 2δµ

∂2Ll0

∂r2

}
.

In addition using the following relations

k2αδµ = ρ0ω
2 1

γ20

(
δρ

ρ0
+ 2

δβ

β0

)
.
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k2αδλ = ρ0ω
2

(
δρ

ρ0

{
1− 2

γ20

}
+ 2

{
δα

α0

− 2

γ20

δβ

β0

})
,

we can write

VB(r′) = vr(r
′)Pl(cos θ′)r̂′ + vθ(r

′)
dPl(cos θ′)

dθ′
θ̂′. (149)

where

vr(r) = ρ0ω
2

[
δρ

ρ0

{
1− 2

γ20

}
− 4

γ20

δβ

β0
− 2

1

γ20

(
δρ

ρ0
+ 2

δβ

β0

)
∂2

∂(kαr)2

]
∂fl(kαr)

∂kαr
, (150)

and

vθ(r) = −2ρ0ω
2

[
δα

α0

+
1

γ20

(
δρ

ρ0
+ 2

δβ

β0

)
∂2

∂(kαr)2

]
fl(kαr)

kαr
. (151)

The Lippmann-Schwinger integral equation expresses the scattered wave field in terms of
a retarded Green’s function and a Born potential term, and is given by

Us = −
∫
dΩ′

∫
r′2dr′VB(r′) ·G>(r, r′), (152)

where the retarded dydic Green’s function is

G>(r, r′) = Grr(r, r
′, θ′)r̂′r̂+Grθ(r, r

′, θ′)r̂′θ̂+Gθr(r, r
′, θ′)θ̂

′
r̂+Gθθ(r, r

′, θ′)θ̂
′
θ̂. (153)

Components of the dydic Green’s function are given by

Grr(r, r
′, θ′) = grr(r, r

′)Pl(cos θ′)Pl(cos θ), (154)

Grθ(r, r
′, θ′) = grθ(r, r

′)Pl(cos θ′)
dPl(cos θ)

dθ
, (155)

Gθr(r, r
′, θ′) = gθr(r, r

′)
dPl(cos θ′)

dθ′
Pl(θ), (156)

Gθθ(r, r
′, θ′) = gθθ(r, r

′)
dPl(cos θ′)

dθ′
dPl(cos θ)

dθ
. (157)

In addition, the radial parts of the green function components are

grr(r, r
′) = i

(
α

β

)3

h
(1)
l−1(kαr)

djl(kαr
′)

kαdr′
, (158)

grθ(r, r
′) = ih

(1)
l−1(kβr)

jl(kβr
′)

(kβr′)
, (159)

gθr(r, r
′) = i

(
α

β

)3

h
(1)
l−1(kαr)

jl(kαr
′)

kαr′
, (160)

gθθ(r, r
′) = i

h
(1)
l−1(kβr)

l(l + 1)

(
djl(kβr

′)

kβdr′
+
jl(kβr

′)

kβr′

)
, (161)
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Finally the scattered wave reduces to

Us =
4π

2l + 1
×

Pl(θ)

{∫
r′2dr′ [grr(r, r

′)vr(r
′) + l(l + 1)grθ(r, r

′)vθ(r
′)]

}
r̂+

dPl(θ)

dθ

{∫
r′2dr′ [gθr(r, r

′)vr(r
′) + l(l + 1)gθθ(r, r

′)vθ(r
′)]

}
θ̂. (162)

In the far distance we have

grr(r, r
′) ≈ eikP r

r

[
(−i)l+1

(
α

β

)3
djl(kαr

′)

k2αdr
′

]
=
eikP r

r
grr(r

′),

grθ(r, r
′) ≈ eikSr

r

[
(−i)l+1 jl(kβr

′)

(k2βr
′)

]
=
eikSr

r
grθ(r

′),

gθr(r, r
′) ≈ eikP r

r

[
(−i)l+1

(
α

β

)3
jl(kαr

′)

k2αr
′

]
=
eikP r

r
gθr(r

′),

gθθ(r, r
′) ≈ eikSr

r

[
(−i)l+1

l(l + 1)

(
djl(kβr

′)

kβdr′
+
jl(kβr

′)

kβr′

)]
=
eikSr

r
gθθ(r

′).

Now let us consider the scattered wave

Us =
eikP r

r

∑
l

FPl (θ)r̂ +
eikSr

r

∑
l

FSl (θ)θ̂. (163)

Comparing (162) and (163) we get

FPl (θ) =
4π

2l + 1
Pl(θ)

∫
r′2dr′ [grr(r

′)vr(r
′) + l(l + 1)grθ(r

′)vθ(r
′)] , (164)

and

FSl (θ) =
4π

2l + 1

dPl(θ)

dθ

∫
r′2dr′ [gθr(r

′)vr(r
′) + l(l + 1)gθθ(r

′)vθ(r
′)] . (165)

If we compare the above scattering potential with

FPl (θ) =
Pl(cos θ)

kP
eiδ

P
l sin δPl , (166)

FSl (θ) = il
CS
l

kS

dPl(cos θ)

dθ
, (167)

we arrive at

eiδ
P
l sin δPl =

4πkα
2l + 1

∫
r′2dr′ [grr(r

′)vr(r
′) + l(l + 1)gθr(r

′)vθ(r
′)] , (168)

CS
l =

4πkβi
−l

2l + 1

∫
r′2dr′ [grθ(r

′)vr(r
′) + l(l + 1)gθθ(r

′)vθ(r
′)] . (169)

Equations (168) and (169) indicate that the phase shift for P-wave and the scattering am-
plitude for the PS-wave can be obtained using the components of the Green’s function and
the Born vector potential.
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CONCLUSION

The Born approximation is based on two major assumptions. The first one is that the
scattered wavefield is comparatively small relative to the incident wavefield. The second
one is that the fractional perturbations in physical properties are small enough that we need
keep only the first-order terms. Using the Born approximation and taking into account
the far distance approximation the scattered wave field is a spherical wave function. This
outgoing field in the presence of a perturbation in medium undergoes a phase shift relative
to the case with no perturbation. This is the central idea of Partial wave analysis. Analysis
for scalar waves(quantum problems) and electromagnetic waves are well studied. However
for elastic waves the case is rarely investigated, especially the phase shift interpretation
of the scattering. In this research we applied the conventional partial wave analysis used
in quantum theory and electrodynamics to elastic wave scattering. We demonstrated that
in scattering from a perturbation in elastic properties of a medium the scattered outgoing
wave is a spherical wave modulated by a scattering amplitude. We also showed that the
scattering amplitude can be be expressed by one parameter called phase shift. The only
difference between the wave in the absence and presence of the perturbation is this phase
shift. It describes all perturbations in the medium. In other words, by knowing the phase
shift we can determine the physical properties in the medium that caused the scattering.

Partial wave analysis reduces the problem of scattering to a phase shift that has all in-
formation about the target. In the case of the Born approximation it is a function of the per-
turbations in the the medium. Phase shift itself is obtained using the Lippmann-Schwinger
equation in the Born approximation context, where we assume that the scattered wave
field is small comparing to the initial incident wave. In this approximation the medium
is considered as a unperturbed or reference medium plus a perturbation term in the elas-
tic properties. In this case elastic wave equation reduces to a wave equation in reference
medium with scattered wavefield on one side, and a source term constructed of the pertur-
bations and incident wave in other side. Thus, the scattering amplitude for elastic waves is
summarized by determining the of phase shift which contains all the information about the
medium properties. The most important feature of this method from the physics point of
view is that the only effect of a perturbation is a phase shift in the scattered wavefield. From
a mathematical perspective, it reduces the problem of finding a complex function (two real
numbers) to a single real number, the phase shift.
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APPENDIX A: EXPANSION OF P- AND S-WAVES

Assume that the incident wave field is a compressional wavefield propagating in the
z-direction and polarized in the z-direction

U0 = ẑeikz. (170)
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To expand (170) in terms of spherical harmonics, first we write the vector z in terms of
spherical unit vectors

zeikz = r cos θeikz − θ sin θeikz, (171)

using the expansion of the plane wave eikz the first term reduces to

cos θeikz =
∑

il(2l + 1)jl(kr) cos θPl(cos θ). (172)

Using the following relation for the Legendre function

(2l + 1)xPl = (l + 1)Pl+1 + lPl−1, (173)

(172) reduces to

cos θeikz =
∑

il−1[ljl−1(kr)− (l + 1)jl+1(kr)]Pl. (174)

The second term uses the following

(2l + 1)Pl =
d

dx
[Pl+1 − Pl−1], (175)

the second term of (171) becomes

− sin θeikz =
∑

il−1 {jl−1(kr) + jl+1(kr)}
dPl
dθ

. (176)

Inserting (174) and (176) in (171) we arrive at

zeikz =
∑

il−1
[(
lrPl + θ

dPl
dθ

)
jl−1 +

(
−(l + 1)rPl + θ

dPl
dθ

)
jl+1

]
. (177)

Finally the incident P-wave is expressed in terms of Hansson vector Llm

zeikz =
∑

il−1δm0

[
Λ1
lmjl−1 + Λ2

lmjl+1

]
=
∑

il−1(2l + 1)δm0Llm (178)

Now let us consider the divergenceless wave field, called the S-wave. We assume the wave
traveling in the z-direction with the polarization in the x-direction

x̂eikz = (r sin θ cosϕ+ θ cos θ cosϕ−ϕ sinϕ)
∑
l

il(2l + 1)jl(kr)Pl(cos θ). (179)

Since the left-hand side is a divegenceless vector, the right-hand side should be, as well.
As a result we can expand the right-hand side in terms of M and N vectors

x̂eikz =
∑
lm

clmMlm + blmNlm. (180)

Multiplication both sides by
∑

l′m′ M
∗
l′m′ and integration over dΩ the right hand side re-

duces to∫ [ ∑
lm,l′m′

clmMlm ·M∗
l′m′ + blmNlm ·M∗

l′m′

]
dΩ =

∑
lm

clml(l + 1)j2l
4π

2l + 1

(l +m)!

(l −m)!
,

(181)
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where we used the orthogonality of the Hanson vectors. The left hand side reduces to (we
eliminate j2l from both sides)∑

lm

∫
(θ cos θ cosϕ−ϕ sinϕ) ·Λ∗3lmil(2l + 1)Pl(cos θ) sin θdθdϕ, (182)

where the integration over ϕ gives∫
(θ cos θ cosϕ−ϕ sinϕ) ·Λ∗3lmdϕ =

∫ {[
−im Y ∗lm

sin θ

]
cos θ cosϕ+

[
∂Y ∗lm
∂θ

]
sinϕ

}
dϕ.

(183)
Regarding to the integrations over ϕ∫

dϕe−imϕ cosϕ =

∫
dϕ
e−imϕ

2
(eiϕ + e−iϕ) = π(δm,1 + δm,−1), (184)∫

dϕe−imϕ sinϕ =

∫
dϕ
e−imϕ

2i
(eiϕ − e−iϕ) = −iπ(δm,1 − δm,−1), (185)

The right hand side of (180) reduces to

−iδm,1π
(
mPlm
sin θ

cos θ +
dPlm
dθ

)
− iπδm,−1

(
mPlm
sin θ

cos θ − dPlm
dθ

)
. (186)

Using the following integral∫ π

0

(
Pl1

sin θ
cos θ +

dPl1
dθ

)
Pl sin θdθ =

∫ π

0

Pl1Pl1 sin θdθ =
2l(l + 1)

2l + 1
(187)

we find that
cl1 = cl = −il+1 2l + 1

2l(l + 1)
. (188)

In the same manner for m = −1 considering to the following property of Pl

Pl,−1 = −(l − 1)!

(l + 1)!
= − 1

l(l + 1)
, (189)

we get

cl−1 = −i
l+1

2
(2l + 1) = l(l + 1)cl. (190)

or
clm = [δm,1 + l(l + 1)δm,−1)] cl, (191)

To obtain the blm coefficients, let us consider to the case of waves traveling in the z-direction
with the polarization in the y-direction

ŷeikz = (r sin θ sinϕ+ θ cos θ sinϕ+ϕ cosϕ)
∑
l

il(2l + 1)jl(kr)Pl(cos θ). (192)

ŷeikz, can be evaluated from x̂eikz by

ŷeikz =
1

ik
∇× (x̂eikz) =

∑
lm

clm
1

ik
∇×Mlm + blm

1

ik
∇×Nlm. (193)
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we have
M =

1

k
∇×N, N =

1

k
∇×M (194)

we have
ŷeikz = −i

∑
lm

clmNlm + blmMlm, (195)

In a similar manner to that in which we extracted clm, we obtain

blm = [δm,1 − l(l + 1)δm,−1)] cl, (196)

inserting (191) and () in () and () we arrive at

x̂eikz = −
∑
lm

il+1 2l + 1

2l(l + 1)
{[δm,1 + l(l + 1)δm,−1] Mlm + [δm,1 − l(l + 1)δm,−1] Nlm} ,

(197)

ŷeikz = −i
∑
lm

il+1 2l + 1

2l(l + 1)
{[δm,1 + l(l + 1)δm,−1] Nlm + [δm,1 − l(l + 1)δm,−1] Mlm} ,

(198)
or

x̂eikz =
∑
lm

cl {[Ml1 +Nl1] + l(l + 1) [Ml,−1 −Nl,−1]} (199)

ŷeikz = i
∑
lm

cl {[Ml1 +Nl1]− l(l + 1) [Ml,−1 −Nl,−1]} (200)
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