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ABSTRACT 

In this study, we present the result obtained from incorporating well log information 

into a conjugate gradient optimization scheme in Full Waveform Inversion (FWI). We test 

this approach on synthetic datasets generated using the three sonic logs from Hussar. Using 

formation tops to guide the interpolation, the sonic logs are interpolated to form the 2D 

velocity model used in this study. The initial velocity model for the inversion is a linear 

v(z) velocity model. We adopt the conjugate gradient algorithm as described by Magnus 

R. Hestenes and Eduard Stiefel. Our results show that combining well information with 

conjugate gradient directions in FWI can save computational time, as well as getting a good 

inverted model after a few iterations. The inverted model shows encouraging results and 

this proves that the algorithm works well and can resolve thin beds in the model.  

INTRODUCTION 

Full waveform inversion is an optimization technique that seeks to find a model of the 

subsurface that best matches the recorded field data at every receiver location. The method 

begins from a best guess of the true model, which is iteratively improved using linearized 

inversions methods although the FWI problem is non-linear (Warner et al, 2013). FWI is 

formulated as a generalised inverse problem with a numerical solver-a forward modelling 

code and its adjoint. FWI can be viewed as an iterative cycle involving modelling, pre-

stack migration and velocity model updating in each iteration (Margrave et al, 2010).  

Despite its success, FWI suffers from cycle skipping problems, and convergence 

problems when the starting model is far from the true model and in the absence of low 

frequencies. However different approaches have been developed to mitigate the problems 

with conventional FWI, such as incorporating well information to FWI (Margrave et al, 

2011a). Well information can aid in (1) calculating the step-length (a scalar which 

multiplies the gradient for the model update), (2) constraining the line search calculation 

used in a steepest descent optimization scheme, and (3) improving the wavelet estimate 

which is essential for proper updates. Some other approaches that mitigate the problems 

with conventional FWI  are Tomographic Full waveform Inversion (TFWI) which 

combines both FWI and WEMVA (Biondi and Almomin,2012), and Adaptive Waveform 

Inversion (AWI) in which the observed and predicted datasets are matched trace-by-trace 

using a least squares convolutional filter (Warner and Guasch, 2014).  

In a previous paper (Arenrin et al, 2014), we compared using well log derived step 

length with a line search optimization scheme, and found that deriving step lengths based 

on well information produced good inversion results. In that paper, we also proposed that 

a combination of step lengths derived based on well information with any type of 

optimization scheme should produce desirable results than using either method only. In 

this report, we combine well information with conjugate gradient optimization scheme and 

obtain encouraging results within a few iterations.  
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FWI FUNDAMENTALS 

The theory of FWI has been described in literature by Tarantola (1984), Lailly (1983).  

Pratt et al, (1998) used a frequency-space modelling formalism for FWI. A full 

mathematical derivation of the theory of FWI can be found in these papers. FWI compares 

observed and predicted data by subtracting the two datasets to obtain a residual, for real 

data we anticipate that this residual should be minimized in a least square sense. The FWI 

objective function is the L2 norm of the residuals and can be represented mathematically 

as  
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where k  is the objective function we want to minimize, ,s r  are the sources and receivers 

over which the sum is taken,  is the observed data, and k  is the predicted data for the 
thk  iteration (Margrave et al, 2010). 

If we are interested in inverting for the velocity model of the subsurface, the model 

update can be expressed as the gradient of the objective function multiplied by a scalar 

expressed mathematically as 
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where    is a scalar, the hat (^) over a variable indicates its temporal Fourier transform, 

 ˆ , ,s x z   is a model of the source wavefield for source s  propagated to all   ,x z ,    

is temporal frequency,     ,
ˆ , ,

r s k
x z   is the kth data residual for source s back propagated 

to all  ,x z  , and    is complex conjugation. Specifically  
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x z   is the real data at 

receivers  r s   as back propagated into the medium and    ,
ˆ , ,

r s k
x z    is the kth data 

model for the same. (Margrave et al, 2010). 

The scalar (step length) can be calculated using a line search algorithm or if there is well 

control, a method based on well information. 

The scalar calculated from well compares the current velocity model to that of the known 

velocity at the well location. We define an objective function   which is the L2 norm of 

the difference between the model update calculated from migrating the data residuals and 

the known velocity at the well and the background velocity model expressed by,  
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where kG is the migration of the data residuals stacked over all shots at the well location,

wellV  is the known velocity at the well location, BGV  is the background velocity ( or the 

migration velocity) at the well location, and the L2 norm is taken over all the samples in 

the well. (With real data it is necessary to resample the well information to the same sample 

density as the velocity model). 

The scalar   is obtained by minimizing the objective function   in Equation 3 with respect 

to . Making   the subject of the expression gives 
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where  j well BG j
V V V    and j  indicates sample number.  

Conjugate gradient (CG) method based on Magnus R. Hestenes and Eduard Stiefel 

The history and theory of conjugate gradient methods can be found in several literatures, 

however, we will just present one of the conjugate gradient algorithm described by 

Hestenes and Stiefel, 1952. We notice that this conjugate gradient algorithm in geophysical 

papers is often credited to Polak and Ribiere, and is known as the Polak-Ribiere method. 

However, we found the same algorithm in Hestenes and Stiefel 1952 paper which predates 

Polak and Ribiere’s 1969 paper. The conjugate gradient is an iterative method that starts 

with an initial estimate of the solution, and one determines successively new estimates of 

the solution, each estimate being closer to the true solution (Hestenes and Stiefel, 1952). 

The algorithm can be summarised thus: 

given a linear system (we try to keep the notations consistent throughout this paper),

Av  , that we wish to solve using the conjugate gradient method, where A  (in the case 

of a seismic inverse problem) can be considered as the forward modelling operator or an 

operator that maps from the model space to the data space, v  is the model vector, in this 

case the p-wave velocity, and   is the data vector. The solution to the inverse problem can 

be obtained iteratively by the Hestenes and Stiefel CG algorithm given below 
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Figure 1. Hestenes and Stiefel CG algorithm 
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where    and kp are the gradient of the objective function and the conjugate direction 

respectively. k  is designed to guarantee that  kp  and 1kp   are conjugate, k  is the iteration 

number, while 1k   acts to scale the conjugate direction 1kp  . 

Hestenes in 1990 introduced a scale factor of (1+ k )-1 applied to the conjugate direction 

of the algorithm given above. The modified algorithm takes the form  
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Figure 2. Hestenes modified algorithm 

Incorporating well information into Hestenes and Stiefel CG method 

In this study, we incorporate well information into Hestenes and Stiefel CG algorithm by 

replacing 1k   in the algorithm above with the value of  from Equation 4, calculated at 

every iteration. Hence, the algorithm used in this study takes the form 
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Figure 3. The algorithm used in this study 

We test this algorithm on synthetic datasets generated from the three sonic logs from 

Hussar. By interpolating between the logs we obtain a 2-D velocity model that is used to 

generate synthetic datasets. The interpolation between the logs was guided by the formation 

tops. The datasets is generated using an acoustic finite difference forward modelling code 

form Acceleware. We test the algorithm using different starting models for the inversion: 

a linear v(z) velocity model, and a slightly smooth version of the true model.  
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Modelling and Migration (inversion) 

Figure 4 below is the 2-D velocity model obtained from the interpolation of the three 

logs from Hussar. Wells 14-35, 14-27, and 12-27 are superimposed on the velocity model. 

One can observe the fine stratigraphy and notice that the interpolation was guided by the 

formation tops as evident on the character of the logs. The 2-D velocity model is about 

4km wide and 2Km deep, described by approximately 1.3 x 106 discrete parameters. A total 

of 61 shots is generated with the acoustic finite-difference code, with a shot spacing of 

about 67 meters, receiver spacing is 2.5 meters, sampling interval is 2ms, and a total of 

1600 receivers. The source wavelet is minimum wavelet with a dominant frequency of 50 

hertz.  All boundaries for both the modelling and migration are absorbing except at the 

ground-air interface. 

For the migration, we use a reverse time migration (RTM) algorithm provided by 

Acceleware. The RTM algorithm produces a cross correlation Imaging Condition (IC) 

reflectivity image, and the source illumination. With a proper pre-conditioning, the source 

illumination can be used to produce a reflectivity image that would have been obtained 

using a deconvolution imaging condition. Margrave et al, in their papers (2010, and 2011a) 

show a mathematical formulation of the deconvolution IC. However in this paper we use 

the cross correlation reflectivity image normalised by the source illumination for the 

gradient calculation. Since the FWI algorithm in this study is formulated in the time 

domain, a bandpass filter is applied to the data residuals prior to migration. The band pass 

filter is designed such that at every iteration, the lowpass corners of the filter is fixed but 

the highpass corners of the filter increases progressively at every iteration. We call this 

type of filtering the ‘fixed frequency window’. We imagine that there are several ways of 

implementing the filters, however we believe that since we are incorporating well 

information into the inversion, this is the best way to implement the filter. 

 

  

Figure 4. Hussar 2D velocity model interpolated from the three well logs shown in black. 
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Hussar 2D velocity model 

In this subsection we will show results of using a linear v(z) velocity model and a 

smooth version of the true model as the initial model for the inversion. However a slight 

modification is made in the case of the linear v(z) velocity model. In order that the turning 

rays as observed in the observed data can be re-modelled correctly, the top of the true 

velocity model down to about a depth of 200 meters is left unaltered in the linear v(z) 

velocity model. From 200 meters to the bottom of the model is a linear velocity function.  

Another way around this would be to use an F-K filter to get rid of the turning waves on 

the observed data prior to inversion.  

In the case of the using a smooth velocity model of the true model as initial model, the 

true velocity model is smoothed with a Gaussian smoother to obtain the starting model. In 

both cases, well 14-35 was used in the algorithm, the other two wells were ignored. 

Using a linear velocity function as the initial model. 

The initial velocity model is shown in the Figure 5 below. The inverted velocity after 9 

iterations is also shown. The inversion was stopped after 9 iterations because there was no 

appreciable change in the model and also in the norm of the data misfit function. 

The frequency strategy for the inversion is presented in Table 1. 

 

Figure 5. Initial velocity model (linear velocity function). 

 

Figure 6. Inverted velocity model after 9 iterations. 



Full waveform inversion of Hussar synthetics 

 CREWES Research Report — Volume 27 (2015) 7 

 

              Figure 7. True velocity model. 

The inverted model after 9 iterations using a linear v(z) velocity function as the starting 

model reveals the thin beds in the stratigraphy between depths 1Km and 1.5Km. The area 

of interest for this study lies above the basement rock between 1.4Km and 1.5Km. We also 

observe that the area of interest has been resolved in the inverted model, although with 

little resolution. However, we can still make reasonable interpretation in terms of structure 

and stratigraphy.  

Table 1. Bandpass strategy used in the inversion 

 

Iteration 1    [4Hz, 6Hz, 8Hz, 15Hz] 

Iteration 2    [4Hz, 6Hz, 13Hz, 20Hz] 

Iteration 3    [4Hz, 6Hz, 18Hz, 25Hz] 

Iteration 4    [4Hz, 6Hz, 23Hz, 30Hz] 

Iteration 5    [4Hz, 6Hz, 28Hz, 35Hz] 

Iteration 6    [4Hz, 6Hz, 33Hz, 40Hz] 

Iteration 7    [4Hz, 6Hz, 38Hz, 45Hz] 

Iteration 8    [4Hz, 6Hz, 43Hz, 50Hz] 

Iteration 9    [4Hz, 6Hz, 48Hz, 55Hz] 

 

 

Using a smooth version of the true model as the initial model. 

The initial velocity model is shown in the Figure below. The inverted velocity after 8 

iterations is also shown. Just like the case above, the inversion was stopped after 8 iterations 

because there was no appreciable change in the model and also in the norm of the data 

misfit function. 
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Figure 8. Initial velocity model (smooth velocity function). 

 

Figure 9. Inverted velocity model after 8 iterations 

 

Figure 10. True velocity model 

The inverted model after 8 iterations using a smooth version of the true velocity model also 

reveals the thin beds in the stratigraphy between depths 1Km and 1.5Km. We observe that 

the area of interest has been resolved in the inverted model, with much better resolution. 

This doesn’t come as a surprise because the starting model is a good one. The frequency 

strategy in this case is the same as Table 1, except that convergence was at the 8th iteration. 
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Figure 11 shows a vertical profile of the true, starting and inverted models at the well 

location at well 14-35. This is the well that was included in the inversion. Figure 12 and 

Figures 13 is a vertical profile similar to Figure 11, but from wells 14-27 and 12-27 

respectively. In all three figures, we observe a good match between the true and inverted 

model. 

 

Figure 11. Vertical velocity profile at well 14-35. True velocity profile (red), smooth velocity profile 
(black), inverted velocity profile after 8 iterations (blue). 

 

Figure 12. Vertical velocity profile at well 14-27. True velocity profile (red), smooth velocity profile 
(black), inverted velocity profile after 8 iterations (blue). 
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Figure 13. Vertical velocity profile at well 12-27. True velocity profile (red), smooth velocity profile 
(black), inverted velocity profile after 8 iterations (blue).  

CONCLUSIONS  

We have been able to incorporate well information into FWI using a conjugate gradient 

optimization algorithm developed by Hestenes and Stiefel. The algorithm works well and 

we have been able to bring down the number of iterations needed for convergence. In the 

case of using a linear v(z) velocity function, we were able to reach convergence in 9 

iterations. A linear v(z) velocity function may not be the best starting model for FWI, 

however, we observe that the algorithm was able to resolve the thin beds and also resolve 

the area of interest just above the basement rock. 

In the case of using a smooth version of the velocity model as the starting model, we 

obtain a high resolution inverted model after 8 iterations. The thin beds are resolved, and 

the area of interest can be clearly seen.  

The algorithm will be tested on some more synthetic models and real data in the future. 
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