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ABSTRACT

Nonlinear, residual dependent FWI sensitivities are the outgrowth of the observation
that certain direct nonlinear procedures, available in special case environments/schemes,
such as AVO inversion or 1D/1.5D direct nonlinear inverse scattering imaging and inver-
sion, have no FWI generalization – they cannot be found as special cases of any standard
FWI procedure. In order to derive general FWI schemes that reduce in this way, an ex-
tension of some kind is required to our ideas of FWI sensitivity. A proposal from 2014,
namely that the sensitivities be created by varying not the current model iteration, but the
forthcoming iteration, is pursued in this paper to confirm that this approach correctly re-
duces to an existing 1D normal incidence direct nonlinear imaging and inversion scheme,
previously derived from inverse scattering considerations.

INTRODUCTION

The purpose of this paper is to refine and expand on some ideas discussed in the 2014
CREWES report (Innanen, 2014b), on the extension of full waveform inversion sensitivi-
ties to incorporate nonlinearity. Specifically, extensions such that techniques available from
direct nonlinear inverse scattering (e.g., Weglein et al., 1981; Stolt and Jacobs, 1980; We-
glein et al., 2003; Shaw et al., 2004; Innanen, 2008; Zhang and Weglein, 2009a,b) can be
merged with the ideas and concepts of full waveform inversion.

The basic framework will be reviewed and refined in this paper, and we will add a
second case to the reflectivity examples incorporated previously. In the remainder of this
introduction, the problem that is solved with nonlinear sensitivities will be laid out in some
detail. Following this, the basic equations of scalar multidimensional FWI are discussed,
and the general nonlinear sensitivities idea is expressed first qualitatively, and second quan-
titatively. Then we treat two special cases, showing that FWI updates reduce in these spe-
cial cases to forms which have been shown elsewhere to incorporate nonlinearity in a way
which adds significant differential benefit.

This research is “blue sky” — it will become of importance when FWI overcomes cur-
rent hurdles in making multiparameter inversion computable and stable, in making algo-
rithms for which bandlimited data involving all surface and body waves, with all reflected,
refracted, and diving modes, are acceptable input. However, when that happens, and our in-
terests begin to extend to determination of, e.g., anisotropic parameters from backscattered
data and many incidence and azimuth angles, incorporating nonlinearity within updates
may become a necessity. Preparing techniques in advance of this need is an important task.
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“Missing” full waveform inversion procedures

The motivation for the work in this paper seems to be best expressed by pointing to
“missing” FWI procedures — ones which we wish existed, but don’t. The idea of a missing
FWI procedure is a corollary of the existence of FWI forms that agree with recognizable,
pre-existing inverse procedures in some simplified limit. An example, discussed by Innanen
(2014a), is the particular formulation of multiparameter FWI, which, in the special case of
reconstruction of a single interface from reflection data, was found to reduce to an iterative
type of standard linearized amplitude-variation-with-offset (AVO) inversion.

Having made this analysis, it is possible to say: “There exists a particular FWI pro-
cedure which generalizes iterative linear AVO inversion.” Now it will be convenient to
re-state this fact in a backward-sounding way: “Iterative linear AVO inversion has no miss-
ing FWI generalization.” In this paper we will be interested in cases in which there are
missing FWI procedures. That is, powerful formulations of inversion which exist in special
cases, but which have no FWI generalization.

Example: iterative nonlinear AVO inversion

An example can be found in the same single-interface/reflection environment in which
linearized AVO inversion is derived. Suppose surface reflection data were acquired some-
where above a single horizontal interface separating a scalar P-wave velocity of c0 =
1500m/s in the upper half-space from a velocity of c1 = 2200m/s in the lower half space.
From these data, the reflection coefficient R(θ) is extracted for a range of angles. The
problem is, given c0 and measurements of the coefficient R(θ), to determine c1.

The problem can be approached in the following way. Parameterizing in terms of
squared slowness, we let s = c−2. The jump from c0 to c1 across the boundary is ex-
pressible in these terms as (

∆s

s0

)
=
s1 − s0
s0

, (1)

and the reflection coefficient can be expressed as a series in orders of this perturbation and
sin2 θ as

R(θ) = −1

4

(
1 + sin2 θ + ...

)(∆s

s0

)
+

(
1

8
+

1

4
sin2 θ + ...

)(
∆s

s0

)2

− ...

≈ −1

4

(
1 + sin2 θ

)(∆s

s0

)
.

(2)

In the second line we have linearized R in both (∆s/s0) and sin2 θ. The linearization may
suffer from significant truncation error, in fact the roughly 50% jump in P-wave velocities
across the boundary was chosen to cause just such a problem. By comparing plots of the
exact reflection coefficient vs. the linearization (Figure 1) we confirm that the nonlinearity
of the medium property/wave field relationship, contained in the terms left out of the second
line of equation (2), will be significant here.
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FIG. 1. Comparison between the exact and linearized reflection coefficients for a 50% contrast.
The discrepancy is a strong indication that nonlinearity will be a factor in analyzing this reflectivity.
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FIG. 2. Iterative reconstruction of the boundary P-wave velocity variation. (a) Iterative linear; (b)
iterative nonlinear (second order). Iterations 1–4 included.

Solving the second line of equation (2) for (∆s/s0) in terms of R, i.e., direct linear
inversion, will likely not work too well, in light of what we see in Figure 1. However,
nonlinearity can be accommodated in an otherwise linear scheme through iteration. An
iterative linear AVO inversion procedure could be devised to determine c1 as follows. At
each angle θ where a datum R is available, the second line of equation (2) is used to
determine (∆s/s0). The ∆s in the numerator is added to s0 to update s1 = s0 + ∆s. This
updated guess is then used to generate a modelledR, which is subtracted from the observed
reflection coefficient to create a residual ∆R. The second line in equation (2) is again used
to determine ∆s, this time the change arising from a left hand side of ∆R. This updating is
then repeated. The result is displayed in Figure 2a: the first guess is the constant 1.5km/s,
plotted as a solid black line, then, iterating, we jump to the red line, then the blue line,
then the green line. So, in spite of the large linearization error, we observe a tendency to
converge towards the right answer of 2.2km/s (which is plotted as a dashed line), especially
at the lower angles.
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FIG. 3. Iterative reconstruction of the boundary P-wave velocity variation. (a) Iterative linear; (b)
iterative nonlinear (second order). Iterations 4–7 included.

A different way to accommodate nonlinearity is to do so directly, that is, by truncating
the series in the first line of equation (2) at some order higher than first, and then solving
for (∆s/s0) in terms of R. This can be done for instance via the technique of series rever-
sion (Abramowitz and Stegun, 1972), as used by Innanen (2011). The results coincide at
low order with those derived from direct nonlinear inverse scattering considerations in the
acoustic, single parameter limit (Zhang, 2006). Generally there will be remaining trunca-
tion error, but, this can be mitigated by iteration, same as in the linear case. The result of
doing so for an inverse series truncated after second order is illustrated in Figure 2b. Again,
the first iteration is the initial guess (the black line at 1.5km/s), and the iterations proceed
to the red, blue, and then green lines. Comparing the iterative second order procedure
against the iterative linear procedure (Figure 2b vs 2a), the former suggests a significant
improvement in convergence rate, and convergence over a larger angle range.

If we iterate further (Figure 3), it also appears that the low order nonlinear result is
more stable – by iteration 7 the iterative linear result (Figure 3a) has taken on a pathology
in which the lower angles are incorrectly low as convergence is sought at higher angles.
No such deviation is seen in the 2nd order iterative nonlinear scheme Figure 3b. So in at
least some idealized circumstances, an iterative nonlinear AVO inversion scheme shows
very significant differential benefit over iterative linear.

In order to take advantage of these features, but not be restricted to an AVO environ-
ment, a natural impulse is to seek whatever FWI scheme generalizes iterative nonlinear
AVO inversion. Such a procedure would presumably treat backscattered seismic ampli-
tudes with a similar recognition of the valuable role nonlinearity might play, but on the
more general backdrop of the full volume scattering wave physics model. Because direct
nonlinear inverse scattering (Weglein et al., 2003; Shaw et al., 2004; Zhang and Weglein,
2009a) generalizes this sort of direct nonlinear AVO inversion, but in a non-iterative man-
ner, the sought after FWI scheme could alternatively be thought of as providing an iterative
generalization of direct nonlinear inverse scattering formulations.

Unfortunately, the generalization of nonlinear iterated AVO inversion is an example of a
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missing FWI procedure. No variant of Newton update, which simultaneously maintains the
basic definition of its ingredients (e.g., sensitivities), and seeks to minimize the sum of the
squared differences between measured and predicted data, reduces in the “single horizontal
interface limit” to iterative nonlinear AVO inversion.

Options

If standard descent based theories cannot provide the generalization we seek, and we
are bent on finding such a generalization, we have several options:

1. Seek to minimize a more complex objective function;

2. Investigate global, as opposed to local, inversion methods; or,

3. Navigate the objective function with updates from an altered sensitivity calculation.

It is not clear which of these options is optimal. The approach we will pursue in this paper,
the third, in some respects seems like the worst of the three, because if we alter the basic
definitions of any well characterized theoretical framework, it is difficult to see what all
of the consequences will be, even if the immediate consequences are positive. We have
gone this route because of the familiar, though altered, quantities which arise, and our
ability to interpret them in the framework of seismic processing. Evidence of the validity
of the approach takes the form of analysis of two independent reduced cases. The first is a
recapitulation of the nonlinear AVO analysis presented in 2014; the second is an extension
of the idea to the case of direct nonlinear impedance inversion. In both cases, the same well
defined procedure for creating nonlinear sensitivities produces existing procedures.

Still, we must emphasize that the situation this theory is in right now is: a certain alter-
ation of the definition of the sensitivities solves some of the immediate problems detailed
above, but it is far from certain that other difficulties, so far invisible, will not appear.

WAVE EQUATIONS AND BASIC FWI QUANTITIES

Let us first set out the basic equations by which the standard and nonstandard FWI
procedures will be constructed.

Equations

The field P due to a point source at rs, and measured at point r, in the actual medium,
will be assumed to satisfy [

∇2 + ω2s(r)
]
P (r, rs) = δ(r− rs), (3)

where ω is the angular frequency, and where s = c−2 is the squared reciprocal of the actual
P-wave velocity. At any given iteration of FWI, the modeled field Gn(r, rs) = G(r, rs|sn)
will be assumed to be available analytically or through simulation, and to satisfy the same
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equation but in the presence of provisional model sn:[
∇2 + ω2sn(r)

]
G(r, rs|sn) = δ(r− rs). (4)

The field P will be available on a measurement surface remote from the regions of interest.

Objective function, gradient and approximate Hessian

Data are measurements of P at points r = rg on a measurement surface, and these
P (rg, rs) can be compared to the G(rg, rs|sn). The objective function, which involves the
residuals δP (rg, rs|sn) = P (rg, rs)−G(rg, rs|sn):

φ(sn) =
1

2

∑
s,g

∫
dω|δP (rg, rs|sn)|2, (5)

is minimized iteratively, during which a model iterate sn(r) is modified by the update
δsn(r) in order to determine sn+1(r) = sn(r) + δsn(r); unindexed δs(r) represents a
general variation in the medium. A Gauss-Newton update involving φ(sn) has the form

δsn(r) = −
∫
dr′H−1n (r, r′)gn(r′), (6)

where gn is the gradient and H−1n is an approximation to the inverse Hessian, respectively

gn(r) = −
∑
g,s

∫
dω
∂G(rg, rs|sn)

∂sn(r)
δP ∗(rg, rs|sn), and

Hn(r, r′) =
∑
g,s

∫
dω
∂G(rg, rs|sn)

∂sn(r)

∂G∗(rg, rs|sn)

∂sn(r′)
,

(7)

the former involving the complex conjugate of the residuals. The Fréchet derivatives
∂G/∂sn, also known as the sensitivities (the term we will use in this paper), provide the
weights needed to alter the direction in model space defined by the residuals such that it
points in the direction of steepest descent of φ. Our aim in this paper is to alter the sensi-
tivities, guided by nonlinear direct inverse scattering, in such a way that the resulting FWI
update accommodates one or more of a range of types of nonlinearity in the relationship
between medium properties and backscattered wave amplitudes.

GENERAL PROCEDURE FOR COMPUTING NONLINEAR SENSITIVITIES

The ideas behind the general procedure for computing sensitivities are unusual, but
they have an intuitive appeal, especially for those with some experience with scattering
diagrams (Clayton and Stolt, 1981; Weglein et al., 1997, 2003; Malcolm and de Hoop,
2005; Innanen, 2009). To develop the intuitive side of the derivations a bit, we start with a
partially qualitative discussion.
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δs 
FIG. 4. Illustration of the perturbation in the wave field caused by a local perturbation in the snth
medium.

Qualitative development

LetG(sn) represent the wave propagating in medium sn. If the medium is varied locally
by the amount δs, such that the field varies by the amount δG(sn), the sensitivity appears
as the coefficient A in the expansion

δG(sn) = Aδs+ ... . (8)

In Figure 4 the character of the perturbed field in the presence of the perturbed medium is
illustrated. The circle represents the seismic source, which causes a wave response in the
receivers, represented by triangles. A solid arrow represents the wave propagating in sn.
This is a convenient representation, but it gives the impression of a wave propagating in
a smoothly varying medium, which is not always the case. We emphasize that the arrows
represent all wave processes occurring between its ends, which may be quite a complex set
as iterations progress in FWI. In any case, the perturbation δs gives rise to a field variation
involving the single scattering interaction depicted in the Figure.

Variation in terms of the n+ 1th medium iterate

To formulate nonlinear sensitivities calculation, we make a single alteration to the def-
inition of the sensitivities, and then let that change play out. We vary not G(sn) but rather
the field G(sn+1), where sn+1(r) is the model iterate we are in the process of determining,
and setting as our revised sensitivities A′ where

δG(sn+1) = A′δs+ ... . (9)

This will produce a sensitivity which mediates propagation to and from the variation point
δs, but also introduce propagations between the source, receiver, variation point, and all
regions of the medium involving model residuals ∆sn(r) = sn+1(r) − sn(r). The quali-
tative picture is illustrated in Figure 5a. To construct the expansion in equation (13), we
construct two series, beginning with equations (3)–(4). The first series is the field in the
n+ 1th medium expanded about the field in the nth medium:

G(rg, rs|sn+1) = G(rg, rs|sn)− ω2

∫
dr′G(rg, r

′|sn)∆sn(r′)G(r′, rs|sn)

+ ω4

∫
dr′G(rg, r

′|sn)∆sn(r′)

∫
dr′′G(r′, r′′|sn)∆sn(r′′)G(r′′, rs|sn) + ...,

(10)
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FIG. 5. (a) The new sensitivity calculation is based on the standard variation point δs, but also the
influence of model residuals ∆sn. The framework allows us to retain or reject a broad range of
scattering processes between these quantities to form approximations to full nonlinear sensitivities:
(b) for instance we can include only model residuals corresponding to unreconstructed overburden
structures, or (c) we can include only model residuals coinciding spatially with the variation point
under study.
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where ∆sn(r) = sn+1(r)− sn(r) is the difference between the n+ 1th and the nth media.
To construct the second series, we add to sn+1 on the left a variation δs localized at the
position r, balancing the right side by adding the same quantity to each instance of ∆sn:

G(rg, rs|sn+1 + δs) = G(rg, rs|sn)

− ω2

∫
dr′G(rg, r

′|sn) [∆sn(r′) + δs(r)δ(r− r′)]G(r′, rs|sn)

+ ω4

∫
dr′G(rg, r

′|sn) [∆sn(r′) + δs(r)δ(r− r′)]

×
∫
dr′′G(r′, r′′|sn) [∆sn(r′′) + δs(r)δ(r− r′′)]G(r′′, rs|sn) + ...

(11)

The variation δG(sn+1) is the difference between these two series:

δG(rg, rs|sn+1) = [G′0 +G′11 +G′12 + ...] δs(r) + ..., (12)

where

G′0 = −ω2G(rg, r|sn)G(r, rs|sn)

G′11 = ω4

∫
dr′G(rg, r|sn)G(r, r′|sn)G(r′, rs|sn)∆sn(r′)

G′12 = ω4

∫
dr′G(rg, r

′|sn)G(r′, r|sn)G(r, rs|sn)∆sn(r′).

(13)

These terms are interpretable in terms of scattering processes as illustrated in Figure 6. ∆sn
and δs both represent deviations from sn, and so both act as scatterers. In the full series for
δG(sn+1), scattering processes, like G′0, G

′
11, and G′12, which involve one interaction with

δs (see Figures 6a-c) and multiple interactions with ∆sn, contribute to the sensitivities.

Exchanging ∆sn(r) for the nth residuals through direct nonlinear inverse scattering

Inverse scattering theory can be used to develop a series relationship between δP ∗(sn)
and ∆sn(r). The complex conjugate of the residuals can be expressed as

δP ∗(rg, rs|sn) =

∫
dr′G∗(rg, r

′|sn)∆sn(r′)G∗(r′, rs|sn) + ...

= G∗∆sn(r) + ...,

(14)

where in the second line the integral and Green’s functions have been collected into the
operator G∗. This series is reverted using standard inverse scattering series techniques
(Weglein et al., 2003), producing a series expression for ∆sn in orders of the residuals:

∆sn(r) = G∗−1δP ∗(sn) + ... . (15)

Substituting equation (15) for ∆sn in equation (13) generates sensitivities of the form:(
∂G(sn+1)

∂s(r)

)
=

(
∂G(sn+1)

∂s(r)

)
0

+

(
∂G(sn+1)

∂s(r)

)
1

+ ..., (16)
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FIG. 6. Scattering processes associated with nonlinear sensitivity calculation: (a) zeroth order in
∆sn; (b-c) first order in ∆sn. Propagation via G(sn) is indicated with a blue arrow.

where the index refers to the order of the term in the residuals δP ∗(sn). In the zeroth order
term standard FWI sensitivities are recovered:(

∂G(sn+1)

∂s(r)

)
0

=

(
∂G(sn)

∂s(r)

)
= −ω2G(rg, r|sn)G(r, rs|sn).

The first order term derives from G′11 and G′12:(
∂G(sn+1)

∂s(r)

)
1

=ω4

∫
dr′ [G(rg, r|sn)G(r, r′|sn)G(r′, rs|sn)

+G(rg, r
′|sn)G(r′, r|sn)G(r, rs|sn)]G∗−1δP ∗(sn).

(17)

Approximations are arrived at by truncating the series in equation (16).

CASE I (REVIEW): LARGE CONTRAST/ANGLE REFLECTIVITY

Let us next examine a special case of these nonlinear sensitivities, wherein the resulting
gradient (1) is second order in the residuals, and (2) simply incorporates nonlinear reflec-
tivity information. This is achieved by truncating equation (16) at order 1, and considering
only a portion of the the full difference ∆sn(r) between the nth and the n + 1th iterate, as
illustrated in Figure 5c.

Second order, collocated scattering approximation

The general scattering picture (see Figures 6a-c) is replaced with a ∆sn(r) that is lo-
calized and collocated with the variation point. This is obtained by setting ∆sn(r′) =
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∆sn(r)δ(r− r′) such that second term in equation (16) becomes(
∂G(sn+1)

∂s(r)

)
1

= 2ω4G(rg, r|sn)G(r, rs|sn)G(r, r|sn)G∗−1δP ∗(sn),

and the quantity G∗−1δP ∗(sn) reduces to

G∗−1δP ∗(sn) = − 1

ω2

δP ∗(rg, rs|sn)

G∗(rg, r|sn)G∗(r, rs|sn)
.

Putting the lowest two orders of the sensitivity together the following case of nonlinear
sensitivities is obtained:(

∂G(sn+1)

∂s(r)

)
≈ −ω2J3D(r|sn)

[
1 + 2

δP ∗(sn)

I3D(r|sn)

]
, (18)

where

I3D(r|sn) =
G∗(rg, r|sn)G∗(r, rs|sn)

G(r, r|sn)
, and

J3D(r|sn) = G(rg, r|sn)G(r, rs|sn).

(19)

G(r, r|sn) is singular, implying that in 3D a principle value for the gradient integral will be
required; in the 1.5D cases no poles appear.

1.5D form of equation (18)

In order to verify that they meaningfully incorporate nonlinear information, we consider
a 1.5D version of the sensitivity formula in equation (18). In 1.5D the medium varies in
depth only, and thus sensitivities are defined in terms of medium variations in z, but the
wave physics is 2D (coordinates x and z). Under this restriction, the associated 2nd order
sensitivity formula has the same essential form,(

∂G(sn+1)

∂s(z)

)
≈ −ω2J1D(z|sn)

[
1 + 2

δP ∗(kg, ω)

I1D(z|sn)

]
, (20)

but some slight differences in the weights:

J1D(z|sn) =

∫
dx′G(kg, 0, x

′, z|sn)G(x′, z, 0, 0|sn),

and

I1D(z|sn) =
J∗1D(z|sn)J1D(z|sn)∫

dx′
∫
dx′′G(kg, 0, x′, z|sn)G(x′, z, x′′, z|sn)G(x′′, z, 0, 0|sn)

.
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Nonlinear sensitivities for the first 1.5D FWI update

For the purposes of analysis we will consider FWI updates derived from residuals in the
(kg, ω) domain (i.e., one shot record of data Fourier transformed over geophone position
and time), holding kg fixed. This will allow us to distinguish between updating with high
angle (large kg) vs. low angle data. The objective function is modified to

φ(sn) =
1

2

∫
dω|δP (kg, ω)|2, (21)

and it is minimized with updates of Gauss-Newton form:

δs0(z) = −
∫
dz′H−10 (z, z′)g0(z

′), (22)

where the gradient is based on a version of the nonlinear sensitivities:

gn(z) = −
∫
dω

(
∂G(sn+1)

∂s(z)

)
δP ∗n(kg, ω), (23)

with n = 0; the Hessian is based on standard sensitivities:

Hn(z, z′) =

∫
dω
∂G(sn)

∂s(z)

∂G∗(sn)

∂s(z′)
, (24)

also with n = 0. If the initial medium is homogeneous, we can analyze this update us-
ing exact forms for the Green’s functions (Clayton and Stolt, 1981): G(kg, zg, x, z|s0) =
(i2qg)

−1e−ikgx+iqg |zg−z| andG(x, z, xs, zs|s0) = (2π)2
∫
dk′(i2q′)−1eik

′(x−xs)+iq′|z′−zs|, where
q2α = ω2s0 − k2α. Adjusting the shot record coordinate system such that zg = zs = xs = 0,
the I and J reduces

J1D(z|s0) =
ei2qgz

(i2qg)2
, I1D(z|s0) =

e−i2qgz

i2qg
, (25)

and the sensitivity itself becomes(
∂G(s1)

∂s(z)

)
= −ω2

[
ei2qgz

(i2qg)2

] [
1 + 2δP ∗(kg, ω)(i2qg)e

i2qgz
]
. (26)

Reconstruction of a single-interface model in is considered. The goal is the determina-
tion, from a constant initial medium s0, of the profile s(z) = s0+∆sS(z−z1), where S is a
step or Heaviside function. ∆s is the amplitude of the ideal update, taking us directly from
the initial model to the correct answer. The backscattered amplitude (i.e., the reflection
coefficient) can be expressed as a series in orders of this ∆s:

R(θ) = R1(θ) +R2(θ) + ..., where (27)

R1(θ) = −1

4

(
1 + sin2 θ

)(∆s

s0

)
, R2(θ) =

1

8

(
1 + 2 sin2 θ

)(∆s

s0

)2

,
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FIG. 7. (a) R(θ) for low angles but large contrasts; (b) R(θ) for small contrasts but large angles.

etc. In Figure 7a, we note by comparing exact, first order (R ≈ R1) and second order
(R ≈ R1 +R2) coefficient calculations that basic linearization error can arise at low angles
when contrasts are large, and (in Figure 7b) at high angle even when contrasts are low.
We also note that corrections out to as low as second order can lead to significant error
reduction, however. With analyzable formulas for R in hand, we can then analytically
express the complex conjugate of the (kg, ω) domain residuals at the first iteration (Innanen,
2014a):

δP ∗0 (kg, ω) = −R(θ)
e−i2qgz1

i2qg
. (28)

Response of 2nd-order sensitivities to backscattered data

With all the ingredients for the sensitivities now available in analytic form, we may
analyze the first iteration in the reconstruction of Figure ??a. The gradient now has two
terms, one 1st order in δP ∗ and the other 2nd, that is, g0(z) = g

(1)
0 (z) + g

(1)
0 (z), where

g
(1)
0 (z) =

c20
4
R(θ)

∫
dω

(
ω2/c20
q2g

)
ei2qg(z−z1)

i2qg
, and

g
(2)
0 (z) = −c

2
0

2
R2(θ)

∫
dω

(
ω2/c20
q2g

)
ei2qg(2z−2z1)

i2qg
.

(29)

Noting that (Innanen, 2014a) dω = d2qg(c0/2 cos θ) and qg = (ω/c0) cos θ, we can evaluate
these integrals and reassemble the gradient, obtaining

g0(z) =
c30π

4 cos3 θ
[R(θ)− 2R2(θ)]S(z − z1). (30)

The Hessian, which we have given a standard Gauss-Newton approximate form (e.g.,
Virieux and Operto, 2009), evaluates in this simple environment (Innanen, 2014a) to

H0(z, z
′) = c50π(16 cos5 θ)−1δ(z − z′), (31)
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and so, via equation (22), the update is of the form

δs0(z) = −4 cos2 θ

c20

[
R(θ)− 2R2(θ)

]
S(z − z1). (32)

Comparison of 2nd order vs. standard Gauss-Newton update

We characterized the ideal update as ∆s(z) = ∆sS(z − z1) and related it to the reflec-
tion coefficient through equation (15). To analyze the relative accuracy of the first order and
second order FWI iterations, we will substitute two truncations of the series for R(θ) into
equation (32). The standard Gauss-Newton update is recovered by neglecting R2; noting
also that to leading order in sin2 θ we may replace 1/ cos2 θ with (1 + sin2 θ), we obtain(

δs0(z)

s0

)
1

≈ −
(

4

1 + sin2 θ

)
R(θ)S(z − z1). (33)

The nonlinear Gauss-Newton-like update, based on second order collocated sensitivities, is(
δs0(z)

s0

)
2

= −
(

4

1 + sin2 θ

)[
R(θ)− 2R2(θ)

]
S(z − z1). (34)

Let us first verify that a standard linear Gauss-Newton update is equivalent to the ideal up-
date to 1st order. If contrasts and angles are low, 2nd order contributions to R are neligible,
and the reflection coefficient is

R(θ) ≈ R1(θ) = −1

4

(
1 + sin2 θ

)(∆s

s0

)
; (35)

substituting this into equation (33) we obtain(
δs0(z)

s0

)
1

≈
(

∆s

s0

)
S(z − z1), (36)

demonstrating the equivalence of δs0(z) and the ideal ∆s(z). However, if the angle or
contrast is such that second order contributions to R(θ) are non-negligible, referring to
equation (15) we must instead substitute

R(θ) ≈ −1

4

(
1 + sin2 θ

)(∆s

s0

)
+

1

8

(
1 + 2 sin2 θ

)(∆s

s0

)2

, (37)

and this produces a discrepancy at second order between the Gauss-Newton update δs0(z)
and the ideal update ∆s(z):(

δs0(z)

s0

)
1

≈

[(
∆s

s0

)
− 1

2
(1 + sin2 θ)

(
∆s

s0

)2
]
S(z − z1). (38)

Let us compare this with the update generated using the second order sensitivity expression.
Substituting the reflection coefficient in equation (37) into equation (34), a corrective term
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FIG. 8. Exact (black), first order (red), vs. second order (blue) updates at each angle of incidence.

is introduced at second order, exactly suppressing the second order discrepancy corrupting
equation (38), such that the resulting update lapses back to(

δs0(z)

s0

)
2

≈
(

∆s

s0

)
S(z − z1); (39)

here the consistency of the candidate and ideal updates extends to second order, rather than
just first. In Figure 8 the difference between 2nd order sensitivities and (standard) 1st order
sensitivities is illustrated. Because we consider a fixed kg, we can examine the accuracy
angle by angle; a full inversion would sum over kg and thus average over these angles. In
Figure 8a the interface is large contrast, going from c0 = (s0)

−1/2 = 1500m/s in the upper
halfspace to c1 = (s1)

−1/2 = 1800m/s in the lower; especially in the range θ = 0◦-30◦

the difference between the standard Gauss-Newton update and that based on second order
sensitivities is significant. Meanwhile in Figure 8b the interface represents a small contrast,
with c0 = 1500m/s, c1 = 1600m/s, but is examined over a wider range of angles. Here the
second order update “sticks to” the exact update to roughly θ = 60◦, in contrast to the
standard update which deviates significantly at θ = 30◦.

CASE II: LARGE/EXTENDED MODEL RESIDUALS

In Case I, we took the general sensitivity in equation (16) and specified it in three ways:
the dimensionality was reduced to 1.5D, the maximum order of scattering was limited to
two, and the scattering between the variation point (δs) and the portions of the model be-
ing constructed (∆s and/or δP ) was restricted to that for which the two were collocated in
space. This is seen to suffice for problems involving nonlinear treatment of reflection am-
plitudes. In this second situation, we relax the restrictions somewhat (see Figure 5b). Now,
scattering will be permitted to occur between variation points and model update points sep-
arated in space. Furthermore, an infinite number of these interactions will be included, a
subset of the entire range of possible scattering processes.
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Forming a gradient sensitive to the unreconstructed overburden

We will restrict the discussion to a fully 1D environment, in which the sensitivity ex-
pression has the general form(

∂G(zg, zs)

∂s(z)

)
=

(
∂G(zg, zs)

∂s(z)

)
0

+

(
∂G(zg, zs)

∂s(z)

)
1

+

(
∂G(zg, zs)

∂s(z)

)
2

+ ..., (40)

with the zero’th order term being the standard(
∂G(zg, zs)

∂s(z)

)
0

=− ω2Gn(zg, z)Gn(z, zs). (41)

The general first and second order terms are then(
∂G(zg, zs)

∂s(z)

)
1

=ω4

[∫
dz′Gn(zg, z

′)∆sn(z′)Gn(z′, z)

]
Gn(z, zs)

+ ω4Gn(zg, z)

[∫
dz′Gn(z, z′)∆sn(z′)Gn(z′, zs)

]
,

(42)

at first order, and(
∂G(zg, zs)

∂s(z)

)
2

=

(
∂G(zg, zs)

∂s(z)

)1

2

+

(
∂G(zg, zs)

∂s(z)

)2

2

+

(
∂G(zg, zs)

∂s(z)

)3

2

, (43)

at second order, where(
∂G(zg, zs)

∂s(z)

)1

2

= −ω6

[∫
dz′Gn(zg, z

′)∆sn(z′)

∫
dz′′Gn(z′, z′′)∆sn(z′′)Gn(z′′, z)

]
Gn(z, zs),

and(
∂G(zg, zs)

∂s(z)

)2

2

= −ω6

[∫
dz′Gn(zg, z

′)∆sn(z′)Gn(z′, z)

] [∫
dz′′Gn(z, z′′)∆sn(z′′)Gn(z′′, zs)

]
,

and(
∂G(zg, zs)

∂s(z)

)1

2

= −ω6G(zg, z)

[∫
dz′Gn(z, z′)∆sn(z′)

∫
dz′′Gn(z′, z′′)∆sn(z′′)Gn(z′′, zs)

]
.

The flexibility of this approach lies in our ability to associate certain scattering geometries
with each of these terms. The terms as they stand in equations (42) and (43) are divided
up based on where, in the 2 or 3 scattering interactions, the variational perturbation in the
model occurs, relative to the update perturbation. See Figure 10.

We do not want to include the entire range of nonlinearity within the sensitivity, but,
instead, investigate it for its ability to allow us to include this or that feature of the full
nonlinearity. Let us use, for the sake of experimentation, only those terms corresponding
with the sensitivity of the update to unreconstructed model variations in the overburden,
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(a) 

(b) 

FIG. 9. Scattering processes involved in the first and second order 1D sensitivity calculation. (a)
Left to right respectively, the first and second sensitivity components in equation (42) respectively.
(b) Left to right, components (1), (2) and (3) in equation (43).

that is, in model regions above the current variation point. Mathematically, this means
including scattering between δs(z) and ∆s0(z

′) when z > z′, but rejecting contributions
when z′ > z.

To make a straightforwardly analyzable example, let us consider the problem of con-
structing the first FWI update on a homogeneous background. Using the Green’s function
G(zg, zs) = (i2ω/c0)

−1 exp i2ω|zg − zs|/c0, the zeroth order term evaluates to(
∂G(zg, zs)

∂s(z)

)
0

=
c0
4
ei2kz, (44)

and the first order term likewise evaluates to(
∂G(zg, zs)

∂s(z)

)
1

=
i

4
ωc30e

i2kz

∫ z

−∞
dz′∆s0(z

′)

+
i

4
ωc30

∫ ∞
z

dz′ei2kz
′
∆s0(z

′).

(45)

The two terms in equation (45) can be interpreted in the lower-vs-higher terms required
to apply the accept/reject strategy above. Inspection of the the integrals indicates that the
first term counts up contributions from the ∆s0(z

′) perturbation at depths shallower than
the output point z, and the second term counts up contributions from ∆s0(z

′) values below
the output point z. The output point is the point at which the sensitivity is being evaluated.
Thus, the first term has the scattering diagram illustrated in Figure 10a, and the second has
the scattering diagram illustrated in Figure 10b.

Third order terms can be evaluated and analyzed similarly. In fact, comparing the
zeroth, first, and second order terms fulfilling our condition that only ∆s0 contributions
from above the variation point are accepted (i.e., Figure 10a but not b), a mathematical
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FIG. 10. Ordering in depth of second order scattering. (a) Sensitivity to structures above the current
variation point, i.e., the as yet unreconstructed overburden (dark grey region). (b) Sensitivity to
structures below the current variation point, i.e., the as yet unreconstructed underburden (dark grey
region).

pattern appears whose form is predictable for the nth order term. Selecting only these terms
would amount to a calculation of the sensitivity to the as-yet unreconstructed overburden.
Retaining all terms obeying this restriction on scattering geometry, we obtain an overburden
sensitivity we will label with a + sign:(
∂G(zg, zs)

∂s(z)

)
+

=
c20
4
ei2kz

{
1 + iωc0

∫ z

0

dz′∆s0(z
′)− ω2c20

1

2

[∫ z

0

dz′∆s0(z
′)

]2
+ ...

}
,

or, more simply,(
∂G(zg, zs)

∂s(z)

)
+

=
1

4s0
exp

{
iωs

1/2
0

[
z +

1

2

∫ z

0

dz′
∆s0(z

′)

s0

]}
. (46)

In the last line we have recognized the sensitivity calculation as the Taylor’s series for a
complex exponential, and replaced all velocities with the counterpart model parameter s0.
So, in this simple case study, a closed-form is obtainable, and thus we can consider the
implicit effect of an infinite number of contributions of ∆s0(z

′), all overlying the variation
point, to the sensitivity.

Substitution of ∆s0(z) with the residuals using direct nonlinear inverse scattering

As we discussed in the general approach, the result is interesting but not yet of direct
value, because during the first iteration we do not yet know what ∆s0(z) is. We will view
it as an opportunity to involve the residuals, and techniques of direction nonlinear inverse
scattering simultaneously. For instance, Innanen (2008) showed that a large, extended
overburden perturbation can be related through a straightforwardly computable series to the
scattered field. The relationship between the residuals and the update under construction is
almost identical to this series, and so we may write:(

∆s(z)

s0

)
=

1

0!
{4δP0(z)} − 1

1!

{
8
d

dz

[
δP0(z)

∫ z

0

dz′δP0(z
′)

]}
+

1

2!

{
16

d2

dz2

[
δP0(z)

(∫ z

0

dz′δP0(z
′)

)2
]}
− ...,

(47)
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where z = c0t/2 is a pseudodepth, and we have constructed δP (z) by inverse Fourier
transforming δP (ω) over frequency and changed variables from time t to z using the pseu-
dodepth definition. We may then use this formula to replace ∆s0(z) in the nonlinear sensi-
tivity with, in principle, any desired order of the series in equation (46). To leading order,
for instance, we produce(

∂G(zg, zs)

∂s(z)

)
+

=
c20
4

exp

{
i2ωs

1/2
0

[
z + 2

∫ z

0

dz′δP0(z
′)

]}
. (48)

Notice that in the limit δP0(z) → 0, this sensitivity lapses to the standard FWI sensitivity
form (see, e.g., equation 44)

lim
δP→0

(
∂G(zg, zs)

∂s(z)

)
+

=
c20
4

exp
(
i2ωs

1/2
0 z

)
. (49)

Nonlinear gradient

This means our extended gradient becomes

g0(z) = −
∫
dω

(
∂G(zg, zs)

∂s(z)

)
+

δP ∗0 (ω)

=
c20
4

∫
dω exp

{
i2ωs

1/2
0

[
z + 2

∫ z

0

dz′δP0(z
′)

]}
δP ∗0 (ω).

(50)

The change imparted to the normal, linear sensitivity in this new extended form is primarily
in the locations of the interfaces in the update, as dictated by the residuals, which will be
altered with the integral term in the argument of the exponential. It can be shown that the
lower interfaces, which are placed at depths consistent with wave propagation at the initial
medium velocity, are incorrect by a factor of cave/c0×overburden thickness. Because at
depths greater than z1,

2

∫ z

0

dz′δP0(z
′) = 2R1(z − z1), (51)

the placement of a deeper interface z2 is altered by a shift proportional to 2R1× the con-
tributing depth below z1. Now, since the error ratio cave/c0 is equal to (1 + 2R1) to leading
order in R1, the effect is to place the deeper reflector in such a way that the error associated
with overlying model residuals is countered to a high degree of precision. So, the result of
extending the FWI sensitivities to accommodate the overburden we are in the process of
constructing, leads to a first update that has brought us much closer to the final result than
the standard update would have.

CONCLUSIONS

Nonlinear, residual dependent FWI sensitivities are the outgrowth of the observation
that certain direct nonlinear procedures, available in special case environments/schemes,
such as AVO inversion or 1D/1.5D direct nonlinear inverse scattering imaging and inver-
sion, have no FWI generalization – they cannot be found as special cases of any standard

CREWES Research Report — Volume 27 (2015) 19



Innanen

FWI procedure. In order to derive general FWI schemes that reduce in this way, an ex-
tension of some kind is required to our ideas of FWI sensitivity. A proposal from 2014,
namely that the sensitivities be created by varying not the current model iteration, but the
forthcoming iteration, is pursued in this paper to confirm that this approach correctly re-
duces to an existing 1D normal incidence direct nonlinear imaging and inversion scheme,
previously derived from inverse scattering considerations.

ACKNOWLEDGEMENTS

We thank the sponsors of CREWES for continued support. This work was funded by
CREWES and NSERC (Natural Science and Engineering Research Council of Canada)
through the grant CRDPJ 379744-08.

REFERENCES

Abramowitz, M., and Stegun, I. A., 1972, Handbook of mathematical functions: Dover, 9th edn.

Clayton, R. W., and Stolt, R. H., 1981, A Born-WKBJ inversion method for acoustic reflection data: Geo-
physics, 46, No. 11, 1559–1567.

Innanen, K. A., 2008, A direct non-linear inversion of primary wave data reflecting from extended, heteroge-
neous media: Inverse Problems, , No. 24, 035,021.

Innanen, K. A., 2009, Born series forward modeling of seismic primary and multiple reflections: an inverse
scattering shortcut: Geophys. J. Int., 177, No. 3, 1197–1204.

Innanen, K. A., 2011, Inversion of the seismic AVF/AVA signatures of highly attenuative targets: Geophysics,
76, No. 1, R1–R11.

Innanen, K. A., 2014a, Seismic AVO and the inverse Hessian in precritical reflection full waveform inversion:
Geophysical Journal International, 199, 717–734.

Innanen, K. A., 2014b, Seismic full waveform inversion with nonlinear sensitivities: CREWES Annual Re-
port, 26.

Malcolm, A., and de Hoop, M. V., 2005, A method for inverse scattering based on the generalized bremmer
coupling series: Inverse Problems, 21, 1137–1167.

Shaw, S. A., Weglein, A. B., Foster, D. J., Matson, K. H., and Keys, R. G., 2004, Isolation of a leading
order depth imaging series and analysis of its convergence properties: Journal of Seismic Exploration, 2,
157–195.

Stolt, R. H., and Jacobs, B., 1980, An approach to the inverse seismic problem: Stanford Exploration Project,
25.

Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics: Geo-
physics, 74, No. 6, WCC1.

Weglein, A. B., Araújo, F. V., Carvalho, P. M., Stolt, R. H., Matson, K. H., Coates, R. T., Corrigan, D.,
Foster, D. J., Shaw, S. A., and Zhang, H., 2003, Inverse scattering series and seismic exploration: Inverse
Problems, , No. 19, R27–R83.

Weglein, A. B., Boyce, W. E., and Anderson, J. E., 1981, Obtaining three-dimensional velocity information
directly from reflection seismic data: An inverse scattering formalism: Geophysics, 46, No. 8, 1116–1120.

Weglein, A. B., Gasparotto, F. A., Carvalho, P. M., and Stolt, R. H., 1997, An inverse-scattering series method
for attenuating multiples in seismic reflection data: Geophysics, 62, No. 6, 1975–1989.

20 CREWES Research Report — Volume 27 (2015)



Residual dependent FWI sensitivities

Zhang, H., 2006, Direct non-linear acoustic and elastic inversion: towards fundamentally new comprehensive
and realistic target identification: Ph.D. thesis, University of Houston.

Zhang, H., and Weglein, A. B., 2009a, Direct nonlinear inversion of multiparameter 1D acoustic media using
inverse scattering subseries: Geophysics, 74, No. 6, WCD29–WCD39.

Zhang, H., and Weglein, A. B., 2009b, Direct nonlinear inversion of multiparameter 1D elastic media using
the inverse scattering series: Geophysics, 74, No. 6, WCD15–WCD27.

CREWES Research Report — Volume 27 (2015) 21


