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Post-stack iterative modeling migration and inversion (IMMI) 

Gary F. Margrave  
SUMMARY 

The possibility of a post-stack process resembling full-waveform inversion (FWI) is 
investigated.  As generalized by the IMMI concept, this implies an iterative process of 
modeling, migration, and inversion all done in the post-stack domain.  To test this idea, a 
detailed stratigraphic p-wave velocity model was created by interpolating between 3 
sonic logs from the Hussar dataset.  The overburden (upper 200m) was created with 
smooth lateral and vertical gradients, and the underburden (1.55km to 2km depth) has 
similar smooth gradients while the detailed stratigraphy is contained in the 200m-1.55km 
interval.  The wells were placed at 1km, 2km, and 3km distances along the line, the 
interpolation was guided by picked formation tops, and the resulting velocity model was 
created on a 2.5m square grid (2D).  Using acoustic finite-difference modeling, 60 shot 
records were created at even intervals along the 4km line.  The data were then processed 
with gain, f-k filter, normal-moveout removal, and stack to create a conventional CMP 
stack.  Then, an IMMI process of exploding reflector modeling, post-stack migration, and 
matching to known impedance at a presumed well was employed.  The exploding 
reflector modeling was chosen for its simplicity compared to the modeling and 
processing of all 60 shots in each iteration.  The migration was a post stack depth 
migration, and the matching to well control was conducted using a single simulated well 
at coordinate 1000m.  It was assumed that the overburden (upper 200m) velocity was 
known through tomography or refraction statics and it was further assumed that the 
velocity was known in detail at the well from 200m to 1.55km depth.  The starting model 
contained the true overburden and then a simple linear gradient from the base of the 
overburden to a presumed-known basement velocity of 4500m/s.  Shown below is the 
result after 11 iterations during which the maximum frequency allowed into the process 
was gradually increased from 10 to 60 Hz.  At each step in the iteration, the depth 
migration at the well was scaled to approximately match the well velocity and this scaling 
was then applied to the entire migration.  While a better result is desired, the process 
appears to be both feasible and worthwhile. 
 

INTRODUCTION AND BACKGROUND 
Recent experience with FWI (full-waveform inversion) has shown that it can be 

generalized to a process called iterative modelling, migration, and inversion or IMMI.  
Both FWI and IMMI are designed to estimate an earth model from seismic data and both 
involve an iteration loop that produces progressively refined models.  Additionally, they 
both require a starting model that is smooth and ‘close’ to the true model.  Using the 
starting model, the iteration loop starts by predicting synthetic data that is compared to 
the real seismic data.  The data residual, meaning the subtraction of the synthetic data 
from the real data, is then migrated which associates the data residual with subsurface 
locations.  The processes differ in the nature of the migration algorithm that is used.  FWI 
theory (e.g. Tarantola 1984, Pratt 1999, Virieux and Operto 2009, and others) indicates 
that a particular formulation of RTM (reverse-time migration) is preferred.  Unlike 
migration in data processing, this formulation estimates a model perturbation (typically 
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impedance or, if density is assumed constant, velocity) and makes no overt correction for 
wavefront spreading.  In contrast, a data processing migration estimates reflectivity 
(roughly the derivative of a model perturbation) and always compensates for wavefront 
spreading.  The migrated data residual is called the gradient in FWI parlance because it 
arises as the gradient of the objective function which is the sum of squares (L2 norm 
squared) of the data residual.  Therefore, it follows that the objective function can be 
decreased by stepping the direction opposite to the gradient, however the size of the step 
is not immediately prescribed.  In other words, the gradient needs to be scaled by a value 
called the step length and then added to the starting model to predict the model to be used 
in the next iteration.  This description is called a steepest descent algorithm and often 
requires a great many iterations.  The slow convergence is often attributed to the poor 
scaling of the gradient (i.e. the lack of wavefront spreading corrections mentioned 
previously, see Shin et al, 2001) and methods exist to improve this called Newton or 
Gauss-Newton methods.  In theory, the gradient needs a correction operator called the 
inverse Hessian to account for the poor scaling and a Newton method uses the exact 
inverse Hessian while a Gauss-Newton method uses an approximation.  These methods 
should converge in fewer steps than steepest descent but not necessarily in less time 
because the inverse Hessian is notoriously difficult to compute. 

In contrast to FWI, IMMI proposes to use a standard industry depth migration to 
migrate the data residual thus estimating a reflectivity perturbation.  The conversion of 
reflectivity to impedance (or velocity) is a familiar process in data processing and known 
as matching-to-wells plus impedance inversion.  IMMI suggests that the model update be 
calculated according to common practice when well logs are available for matching.  The 
potential advantages here are strong.  Using any well-crafted migration allows the use of 
tools that have been tweaked and polished over many years.  Moreover, while RTM has 
its advantages, other migration approaches such as depth-stepping often produce sharper 
results in less time.  Since industry migration codes always incorporate wavefront 
spreading corrections, gradient estimates using these codes should be comparable to FWI 
using an approximate inverse Hessian and hence should converge more rapidly. 

Confining our attention to steepest descent methods, following the estimation of the 
gradient by migration of the data residual, the estimation of the step length is the final 
problem in an iteration.  Assuming for the moment that the gradient represents a velocity 
perturbation (i.e. constant density) and not reflectivity, in FWI the step length is a scalar, 
𝑎𝑎, such that the objective function decreases meaning 

 ∑ [𝜓𝜓(𝑠𝑠, 𝑟𝑟) − 𝜓𝜓𝑛𝑛+1(𝑠𝑠, 𝑟𝑟)]2 = 𝜑𝜑𝑛𝑛+1 <𝑠𝑠,𝑔𝑔 𝜑𝜑𝑛𝑛, (1) 

where 𝜓𝜓(𝑠𝑠, 𝑟𝑟) is the real recorded data for source 𝑠𝑠 and receiver 𝑟𝑟, 𝜓𝜓𝑛𝑛+1(𝑠𝑠, 𝑟𝑟) is the 
estimated synthetic data from velocity model 𝑣𝑣𝑛𝑛+1(𝑥𝑥,𝑦𝑦, 𝑧𝑧), and 𝜑𝜑𝑛𝑛 is the objective 
function for velocity model 𝑣𝑣𝑛𝑛(𝑥𝑥,𝑦𝑦, 𝑧𝑧).  Furthermore, it is assumed that 

 𝑣𝑣𝑛𝑛+1(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑣𝑣𝑛𝑛(𝑥𝑥,𝑦𝑦, 𝑧𝑧) + 𝑎𝑎𝐺𝐺𝑛𝑛(𝑥𝑥, 𝑦𝑦, 𝑧𝑧), (2) 

where 𝐺𝐺𝑛𝑛(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is the 𝑛𝑛th gradient estimate.  So, a is a number such that when used to 
scale the gradient and added to the current velocity model a better velocity model is 
produced in the sense that the predicted data better matches the real data.  Thus the 
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velocity model is validated by matching the data and so this is called data validation.  In 
a typical FWI, the actual value of the step length 𝑎𝑎 is found by a so-called line search.  
This is a 1-D search over possible values of 𝑎𝑎 where for each tested value a trial updated 
velocity model is created, used to predict synthetic data, and a new objective function is 
computed.  At least 3 values of 𝑎𝑎 must be tested, one too large, one too small, and one 
near the expected optimum.  The optimum is then estimated by quadratic interpolation. 

While not rejecting data validation, IMMI proposes an alternative validation at well 
control (Margrave et al, 2012).  Called well validation, the step length 𝑎𝑎 is chosen such 
that 

 ∑ [𝑣𝑣𝑤𝑤(𝑧𝑧) − 𝑣𝑣𝑛𝑛(𝑥𝑥𝑤𝑤, 𝑦𝑦𝑤𝑤, 𝑧𝑧) − 𝑎𝑎𝐺𝐺𝑛𝑛(𝑥𝑥𝑤𝑤, 𝑦𝑦𝑤𝑤, 𝑧𝑧)]2 = 𝑚𝑚𝑚𝑚𝑛𝑛𝑧𝑧 , (3) 

where 𝑣𝑣𝑤𝑤(𝑧𝑧) is the observed velocity in the well, 𝑥𝑥𝑤𝑤,𝑦𝑦𝑤𝑤 are the map coordinates of the 
well (assumed vertical), and the sum is take over all depths where velocity was measured 
in the well.  An explicit solution for the step length is 

 𝑎𝑎 =  ∑ 𝛿𝛿𝛿𝛿(𝑧𝑧)𝐺𝐺𝑛𝑛(𝑧𝑧)𝑧𝑧
∑ 𝐺𝐺𝑛𝑛2(𝑧𝑧)𝑧𝑧

, (4) 

where 𝛿𝛿𝑣𝑣(𝑧𝑧) = 𝑣𝑣𝑤𝑤(𝑧𝑧) − 𝑣𝑣𝑛𝑛(𝑥𝑥𝑤𝑤 ,𝑦𝑦𝑤𝑤, 𝑧𝑧).  This expression assumes that the gradient 
estimates a velocity perturbation not reflectivity.  Since most industry migrations estimate 
reflectivity, a relationship between velocity and reflectivity at constant density is  

 𝑟𝑟𝑘𝑘 = 𝛿𝛿𝑘𝑘+1−𝛿𝛿𝑘𝑘
𝛿𝛿𝑘𝑘+1+𝛿𝛿𝑘𝑘

~ ∆𝛿𝛿𝑘𝑘
2𝛿𝛿𝑘𝑘

, (5) 

where the subscript 𝑘𝑘 denotes a subsurface layer, 𝑟𝑟𝑘𝑘 is the reflection coefficient between 
layers 𝑘𝑘 and 𝑘𝑘 + 1, and in the second expression ∆𝑣𝑣𝑘𝑘 =  𝑣𝑣𝑘𝑘+1 − 𝑣𝑣𝑘𝑘 and 𝑣𝑣𝑘𝑘+1 + 𝑣𝑣𝑘𝑘~ 2𝑣𝑣𝑘𝑘.  
Now, assume something similar to equation 5 applies at the 𝑛𝑛thiteration and write 

 ∆𝑣𝑣𝑛𝑛 = 2𝑣𝑣𝑛𝑛𝑟𝑟𝑛𝑛 (6) 

where 𝑟𝑟𝑛𝑛 is now the reflectivity estimate produced by migrating the data residual, 𝑣𝑣𝑛𝑛 is 
the migration velocity model, and then ∆𝑣𝑣𝑛𝑛 is the predicted update to the velocity model.  
Of course, we must allow for the migrated data residual to require at least an 
undetermined scalar to approximate a reflection coefficient, and we determine this scalar 
at a well.  So, in direct analogy to equation 3, we pose the least-squares problem 

 ∑ [𝑣𝑣𝑤𝑤(𝑧𝑧) − 𝑣𝑣𝑛𝑛(𝑥𝑥𝑤𝑤, 𝑦𝑦𝑤𝑤, 𝑧𝑧) − 2𝑎𝑎𝐺𝐺𝑛𝑛(𝑥𝑥𝑤𝑤,𝑦𝑦𝑤𝑤, 𝑧𝑧)𝑣𝑣𝑛𝑛(𝑥𝑥𝑤𝑤,𝑦𝑦𝑤𝑤 , 𝑧𝑧)]2 = 𝑚𝑚𝑚𝑚𝑛𝑛𝑧𝑧 . (7) 

Thus the updated velocity model will be 𝑣𝑣𝑛𝑛+1 = 𝑣𝑣𝑛𝑛(1 + 2𝑎𝑎𝐺𝐺𝑛𝑛) whereas in equation 3 it 
was 𝑣𝑣𝑛𝑛+1 = 𝑣𝑣𝑛𝑛 + 𝑎𝑎𝐺𝐺𝑛𝑛.  If the migration method used is calibrated to estimate reflectivity 
as most are, then equation 7 should be better suited.  The analytic solution to equation 7 
is 

 𝑎𝑎 =  ∑ 𝛿𝛿𝛿𝛿(𝑧𝑧)𝛿𝛿𝑛𝑛(𝑧𝑧)𝐺𝐺𝑛𝑛(𝑧𝑧)𝑧𝑧
2∑ 𝛿𝛿𝑛𝑛2(𝑧𝑧)𝐺𝐺𝑛𝑛2(𝑧𝑧)𝑧𝑧

. (8) 

So there are two alternative methods of estimating the step length.  Equation 1, when 
solved using a line search, is the usual method in FWI and is referred to as data validation 
because the optimal 𝑎𝑎 is chosen to minimize the sum-squared data residual.  The 
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alternative well validation is proposed by IMMI and is essentially routinely practised in 
modern data processing.  In well validation, the estimated reflectivity, a.k.a. the migrated 
data residual, is matched to that observed in wells and then converted to velocity (or 
impedance).  The suggestion made here of finding a multiplicative scalar is perhaps the 
simplest possible form of matching to a well, and there are many more possible 
adjustments including phase rotation, gain adjustment, match filtering, wavelet estimation 
and deconvolution, dynamic time warping, and more.  Most of these methods are 
routinely used in industry and most are time-domain methods while the gradient is 
typically estimated in depth.  Thus a depth to time conversion may be useful for optimal 
matching. 

It is very likely that methods using both data validation and well validation will prove 
superior.  The two forms of validation have different properties and sensitivities and these 
can be exploited.   

A major difficulty with both FWI and IMMI is the computational burden involved.  
Each iteration involves both a data simulation (forward modelling) and a depth migration.  
For a modern seismic dataset containing many thousands of source gathers, even a single 
iteration can be computationally formidable and typical FWI experiences involve tens or 
hundreds of iterations.  Therefore, ideas that might reduce the number of iterations or the 
cost of any iteration are of great interest.  IMMI using well validation can reduce the 
number of iterations dramatically.  In this paper, the possibility of reducing the per-
iteration effort is investigated by examining a post-stack implementation of IMMI.  This 
can reduce cost in several ways.  First, a post-stack depth migration is much less 
computation than the corresponding prestack process.  Second, the process of CMP 
(common midpoint) stacking with all of the associated machinery is designed to suppress 
wavetypes like Rayleigh waves and shear waves that require elastic physics and fine 
spatial sampling to model or migrate.  Third, it is possible to simulate a CMP stacked 
section directly without first modelling the individual source records thereby greatly 
reducing the simulation effort.  The most obvious way to do this is to exploit the 
exploding reflector concept (Loewenthal et al, 1977).  This paper investigates this 
possibility. 

The next section describes the synthetic data constructed for this test.  This data is 
acoustic constant-density finite difference created using a velocity model created from 
spatially interpolated well logs and therefore containing much stratigraphic detail.  After 
simulation, the created shot records were processed and stacked.  Using a finite-
difference implementation of the exploding reflector model, an exploding reflector 
section is also simulated and compared to the CMP stack and to a theoretical seismogram 
at a simulated well.  Then the post-stack IMMI process is discussed and results are shown 
for several different frequency-dependent iterations. 

THE SYNTHETIC DATASET 
If FWI or IMMI are to become practical processes, then perhaps the most appropriate 

setting would be a stratigraphic play with minimal structural complexity.  With this in 
mind, a stratigraphic dataset was simulated using well logs available from the Hussar 
project (Margrave et al, 2011).  Figure 1 shows a log section that was spatially 
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interpolated from three wells at Hussar (14-35, 14-27, and 12-27) which all have very 
long sonic logs available.  The three well logs all start near 200m depth and extend to 
about 1550m depth.  The spatial positions of the wells are chosen for convenience and do 
not represent their actual positions along the Hussar line.  Formation tops (there are more 
than shown in the figure) guided the interpolation so that thicking or thinning formations 
resulted in stretched or squeezed logs.  Between two wells, interpolated logs are an 
inverse distance weighted combination of samples from the two wells.  The logs shown 
are p-wave velocity and the low-velocity anomaly at the bottom of 14-27 is artificial. 

 
Figure 1: An illustration of a section of well logs that were spatially interpolated from three wells 
(black) available from the Hussar project.  The interpolated logs (red) were interpolated along the 
formation tops (blue lines) with stretching or squeezing done to accommodate thicking or thinning 
of formations.  The logs shown are p-wave velocity and the anomaly indicated on 14-27 was 
artificially introduced.  The structure shown on the right-hand-side is mostly a reflection of a 
topographic high at well 12-27 that was not modelled. 

In Figure 1, interpolated logs are shown every 100m but to create the data used here, 
interpolated logs were created every 2.5m.  The vertical sampling of the interpolated logs 
was 0.5m so after interpolation the logs were downsampled using Backus averaging to 
create a section of well-log velocity values sampled on a 2.5m square grid.  For the 
overburden (the upper 200m) a linear gradient was attached that trended from the value at 
the log top to a value of 1000m/s at the surface.  Since the value at log top changes for 
each interpolated log, this resulted in lateral and vertical gradients in the overburden.  
Similarly, for the underburden (from log bottom to 2000m depth) a linear gradient was 
attached that trended from the value at log bottom to 4500m/s at 2000m depth.  The 
resulting model is shown in Figure 2.  Also shown in Figure 3 is the normal incidence 
reflectivity section computed from the velocity model and displayed in time.  This is used 
in exploding reflector modelling.  
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Figure 2: The interpolated velocity log section created for this study.  Velocity logs were created 
every 2.5m (distance) and are sampled every 2.5m (depth).  Colors indicate velocity in m/s.  
Considerable stratigraphic detail has been preserved and not the low velocity anomaly at the 
bottom of well 14-27. 

 
Figure 4:  The reflectivity section computed from the velocity model of Figure 3.  The section is 
displayed in time not depth and the apparent traveltime glitch at distance of 3000m is caused by 
an interpolation irregularity in the overburden. 

Using the finite-difference modelling software in the CREWES Matlab toolbox 
(specifically afd_shotrec_alt), a set of 61 shot records were created with source positions 
at regular intervals along the distance axis.  The source spacing is 66.7m, the receiver 
spacing is 2.5m, the time step size is 0.00025s, and the output time sample interval is 
0.002s.  The source wavelet had a dominant frequency of 50Hz and was minimum phase.  
An example of one of the shot records is shown in Figure 5.  Immediately apparent is the 
very strong coherent noise that is associated with the free surface.  While not a Rayleigh 
wave (elastic modelling is required for that) this noise plays a similar role in that it 
interferes with our ability to work with the underlying reflection data.  Fortunately, as can 
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be seen in Figure 5, the source noise is well separated from the reflection data in the 
(𝑘𝑘𝑥𝑥, 𝑓𝑓) domain and can be removed with an f-k fan filter. 

 
Figure 5:  The center shot form the set of 61 that were created using the model of Figure 3 with 
the acoustic finite difference tools in the CREWES Matlab library.  On the left is the shot in the 
(𝑥𝑥, 𝑡𝑡) domain while on the right is the (𝑘𝑘𝑥𝑥, 𝑓𝑓) domain. 

 
Figure 6: a) The shot record of Figure 5 before f-k fan filtering and b) after f-k fan filtering.  The 
coherent noise from the source and associated with the free surface has been almost entirely 
removed. 
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Figure 7:  The CMP stack resulting from processing the 61 shot records simulated from the model 
of Figure 2.  Compare with Figure 8. 

 
Figure 8: An exploding reflector simulation from the velocity model of Figure 2.  Compared with 
the CMP stack in Figure 7, note the overall lower bandwidth and higher multiple content of the 
exploding reflector section.  Every event below about 1.1 seconds is a multiple. 

After f-k filtering, gain recovery, and normal moveout removal (using the exact RMS 
velocity model) the 61 shot records were stacked to produce the result shown in Figure 7.  
The very course shot spacing (66.7M) compared to the receiver spacing (2.5m) resulted 
in some footprint and this was suppressed using a time-variant trace mix that was 21 
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traces wide at 0.2s and 5 traces wide at 0.9s.  Figure 8 shows a corresponding exploding 
reflector section.  This was created using afd_explode.  The finite-difference time 
stepping engine was identical for the shot records and the exploding reflector section and 
is second order in time and fourth order in space.  However, the source function for the 
exploding reflector section is the reflectivity of Figure 4 but in depth and the velocities 
are all halved to get the same traveltimes as the CMP stack.  Comparing Figures 7 and 8 
shows two main differences between the sections.  First, the exploding reflector section 
have much stronger multiples because the CMP stack has suppressed them.  Second, the 
bandwidth of the exploding reflector section is lower than the stack even though the same 
wavelet was used.  The reason for the second difference is not currently known. 

Despite the differences in the two sections of Figures 7 and 8, it is still possible to 
consider the exploding reflector section as a simulation of the stack if these differences 
can be accounted for with simple processing.  In the IMMI process, it is assumed that a 
well log is available at one or more locations.  Choosing the location x=800m as the 
simulated well, we assume the reflectivity is known at this position from 200m depth to 
1550m depth.  This allows a primaries-only synthetic seismogram to be constructed at 
this location using a 40Hz zero phase wavelet.  Then minimum-phase least-squares match 
filters can be determined at the well location to match each section to the synthetic 
seismogram.  These filters where chosen to be 0.2s long and ones determine were applied 
to the entire section.  Figure 9 shows the resulting well tie of both the CMP stack and the 
exploding reflector section and it is apparent that both tie very well, although the stack 
ties slightly better.  This gives confidence that the stack can be simulated in a post-stack 
IMMI process using the exploding reflector model provided that both are tied to the well. 

 
Figure 9: a) A portion of the stacked section after being match filtered to a synthetic seismogram 
created at the well which is at 800m.  b) A portion of the exploding reflector section after being 
match filtered to the same synthetic seismogram.  In both panels the traces marked ‘well’ are the 
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synthetic seismogram and are identical.  The numbers annotated above the panels are (cc(1)) the 
maximum crosscorrelation of the panel with the well, and (cc(2)) the lag at which this maximum 
occurs.  Also annotated is the apparent constant phase rotation between the panel and the 
seismogram. 

POST-STACK IMMI 
The process examined here consists first of creating an initial velocity model and 

simulating the exploding reflector response of this model.  Then after creating a synthetic 
seismogram at the well, the seismogram and the two sections (stack and exploding 
reflector) are all send through the same bandpass filter to select the frequency band of 
emphasis in this iteration.  Following Pratt (1999), the lowest frequencies are migrated 
first and the higher frequencies are gradually included as the iteration proceeds.  To form 
the data residual, the two filtered sections are first matched to the filtered seismogram 
and then subtracted.  The result is passed into PSPI (phase shift plus interpolation, 
Gazdag and Squazzero 1984) depth migration to create the estimated gradient.  Finally 
the gradient is matched to the velocity in the well using either process of equation 3 or 
equation 7.  Since the estimated gradient is a reflectivity estimate, we expect better 
performance from equation 7. This process is illustrated in Figure 10. 

 
Figure 10:  The post-stack IMMI process as implemented in this paper is illustrated for a single 
iteration.  Two matching processes are involved: first in the time domain at A) the exploding 
reflector section and the stack are both matched to the synthetic seismogram, and second in the 
depth domain at B) the gradient (migrated data residual) is matched to the velocity residual at the 
well.  Well information (brown) is used in both matching processes and in creating the starting 
model. 

Figure 10 depicts a single iteration and it is anticipated that each iteration may 
possibly use a different set of frequencies.  Since the exploding reflector modelling is a 
time-domain finite difference process, it is the same cost regardless of the frequency band 
that will be emphasize.  The frequencies are selected by a bandpass filter which is 
implemented as a zero phase Butterworth filter.  The iteration involves 3 distinct seismic 
datasets, the stack, the exploding reflector section, and the synthetic seismogram at the 
well.  All three are passed through the same filter.  After filtering, the two seismic 
sections are matched (denoted by A in Figure 10) to the synthetic seismogram using a 
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least-squares match filter.  This is essential to get a meaningful data residual by simple 
subtraction.  The data residual is then depth migrated to estimate the gradient.  Here a 
post-stack implementation of PSPI is chosen but any post-stack depth migration could be 
used. 

The depth migration must then be converted to a velocity perturbation.  Since this is a 
depth domain matching, a convolutional match filter might not be appropriate.  Theory 
suggests a scaling using equation 3 or equation 7 should be sufficient but it was found 
that this resulted in very slow improvement.  Analysis suggested that the prestack gain 
recovery was not sufficient and that there was a slight decay with depth of reflection 
strength that did not match the well.  Therefore, a linear with depth gain was applied, 
before computation of the scalar 𝑎𝑎, and described by 

 𝑠𝑠𝑔𝑔(𝑧𝑧) = 𝑠𝑠(𝑧𝑧) � 𝑧𝑧
𝑧𝑧0
�
𝑛𝑛

 (9) 

where 𝑠𝑠(𝑧𝑧) is the depth trace at the well, 𝑠𝑠𝑔𝑔(𝑧𝑧) is the gained trace, and 𝑧𝑧0 is the mean 
depth of the logged interval (200m to 1550m), and the optimal value of 𝑛𝑛 was determined 
by direct search over the range -1 to 2 in increments of 0.2.  For each value of 𝑛𝑛, a scalar 
𝑎𝑎 was computed and the squared error, ∑ �𝑎𝑎𝑠𝑠𝑔𝑔(𝑧𝑧) − ∆𝑣𝑣𝑤𝑤(𝑧𝑧)�2𝑧𝑧  if using equation 3 or 
∑ �2𝑎𝑎𝑠𝑠𝑔𝑔(𝑧𝑧)𝑣𝑣𝑛𝑛(𝑧𝑧) − ∆𝑣𝑣𝑤𝑤(𝑧𝑧)�2𝑧𝑧  if using equation 7, was also evaluated.  In both of these 
expressions ∆𝑣𝑣𝑤𝑤 = 𝑣𝑣𝑤𝑤 − 𝑣𝑣𝑛𝑛 is the residual velocity at the well where 𝑣𝑣𝑤𝑤 is the logged 
velocity in the well and 𝑣𝑣𝑛𝑛 is the velocity model at the well for iteration 𝑛𝑛.  The optimal 𝑛𝑛 
and 𝑎𝑎 are then chosen at the minimum squared error.  Once determined they are applied 
to all traces in the gradient. 

In preparing the background model, the usual approach of smoothing the exact model 
with a convolutional smoother was avoided as impractical.  Instead, it was assumed that 
the overburden (the upper 200m) could be deduced from tomographic analysis of the 
diving waves apparent in Figure 5 and so this was taken as given.  Then a linear function 
of depth was prescribed that graded from the overburden value at 200m depth to 4500m/s 
at 2000m depth.  Figure 11 compares this initial model to the actual velocities in the true 
model at the locations of the three original wells of Figure 1.  Clearly this model has very 
little of stratigraphic information in it and could conceivably be deduced in practice. 

Figures 12 and 13 show two initial inversion results using an IMMI iteration in which 
the frequency bandwidth was expanded from 0-10Hz in the first iteration to 0-15Hz in the 
second and so on incrementing the maximum frequency by 5 Hz each time until 0-60Hz 
was reached in the 11th iteration.  This will be called an expanding bandwidth iteration.  
The difference between these Figures is that Figure 12 was created using the inversion 
condition of equation 7 while Figure 13 used that of equation 3.  As expected, equation 7 
gives a clearly superior result and equation 3 was not further investigated.  Note that the 
velocity anomaly at x=2000 and z=1450 has not been clearly resolved although more 
shallow features have been. 
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Figure 11: The initial model used the exact overburden (above 200m) and a simple linear trend 
from the base of the overburden to 4500m/s at 2000m depth.  This figure shows how the initial 
model compares to the exact velocity at the 3 initial well locations of Figure 1. 

 
Figure 12:  The result of an IMMI iteration using the inversion condition of equation 7 (called 
icond=1).  There were 11 iterations during which the minimum frequency was always zero and 
the maximum frequency was 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 Hz.  The correspondence 
between color and velocity in indicated on the left hand side of the starting model. 



Post-stack IMMI 

 CREWES Research Report — Volume 27 (2015) 13 

 
Figure 13: Similar to Figure 12 except that the inversion condition was that of equation 3 (denoted 
icond=2).  Comparing to Figure 12, it is clear that this result has much less detail and is generally 
inferior. 

 
Figure 14: A conventional band-limited impedance inversion computed in time on a depth 
migrated section using the background model.  The result is clearly different and more ’ringy’ than 
that of Figure 12. 
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For comparison, Figure 14 shows a conventional band-limited impedance inversion of 
the stacked section. This was done by first depth migration the stack with the starting 
model, then converting to time and running impedance inversion using the CREWES 
blimp algorithm (Ferguson and Margrave, 1996), and then converting back to depth. 
While comparable to the result in Figure 12, it appears more ‘ringy’.  The velocity 
anomaly is resolved here more clearly than in Figure 12. 

Many other frequency variations with iteration are possible and it is not clear what 
might be optimal.  The result in Figure 12 is perhaps the best achieved so far.  Figure 15 
shows the result of 11 iterations of a 15Hz wide moving band.  This means that each 
iteration used a 15Hz band width that began with 0-15Hz in iteration 1, moved to 5-20Hz 
in iteration 2, and finished at 50-65 Hz in iteration 11. 

 
Figure 15:  The result of 11 iterations using a 15 Hz wide moving frequency band.  The first 
iteration used the 0-15Hz band, the second used 5-20Hz, and so on until the 11th used 50-65Hz.  
Compare with Figure 12. 

Figures 16, 17, and 18 illustrate the convergence (or lack thereof) at three different 
locations: x=800, 2000, and 3000.  The first location is that of the supposed well and the 
second is where the low velocity anomaly exists in the model.  As these figures 
demonstrate convergence is best at the well and the latter half of the 11 iterations  shows 
little change.  Figure 19 shows 6 snapshots that are the velocity model at the end of every 
odd numbered iteration.  Again it is apparent that there is little change after the 5th 
iteration.  Moreover, it seems that the higher frequencies are having little effect on the 
result.  This strongly suggests that there is much room for improvement in this process. 
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Figure 16:  For the result of Figure 12, the convergence at the supposed well location (x=800m) is 
illustrated.  It appears that these is very little evolution after iteration 5. 

 
Figure 17: Similar to Figure 16 except for location x=2000m where there is a low velocity anomaly 
at z=1450m that is not resolved. 
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Figure 18: Similar to Figures 16 and 17 except for location x=300m. 

 
Figure 19:  For the result of Figure 12, the evolution of the velocity model is illustrated.  It is 
apparent that there is little change in the latter half of the iteration. 
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DISCUSSION AND CONCLUSIONS 
It appears that a post-stack IMMI process is very possible and offers an interesting 

alternative to conventional impedance inversion.  The stacked section can be effectively 
modelled by an exploding reflector algorithm.  When one or more well logs are available 
they can be used to improve both the stack and the exploding reflector model by match 
filtering to a theoretical seismogram.  The resulting data residual can then be depth 
migrated to compute an analog to the FWI gradient.  Calibration of the gradient can be 
done using an impedance condition designed to convert reflectivity to an impedance 
perturbation.  The resulting inversions show interesting features and details and are 
limited, in this case, by the nearly featureless starting model used.  A more detailed 
starting model would produce better results.  It also appears that the high frequencies are 
having little effect on the inversion and that the process described here could be greatly 
improved. 
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