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ABSTRACT

In this report we obtained the radiation patterns associated with the scattering of seis-
mic waves from five viscoelastic inclusions; density, P- and S-wave velocities and quality
factors for P- and S-waves. We show that the polarization and slowness of viscoelastic
waves are complex. Basically the radiation patterns from elastic and anelastic inclusions
are given by the scattering potentials which are the amplitude of the spherical scattered
waves from scatter points. We show that the scattering potentials are complex functions of
averages in phase and attenuation angles.

INTRODUCTION

Stolt and Weglein (2012) have introduced a formal theory for the description of the mul-
tidimensional scattering of seismic waves based on an isotropic-elastic model. We identify
as a research priority the adaptation of this approach to incorporate other, more complete
pictures of seismic wave propagation. Amongst these, the extension to include anelasticity
and/or viscoelasticity , which brings to the wave model the capacity to transform elastic
energy into heat, ranks very high. Anelasticity is generally held to be a key contributor
to seismic attenuation, or “seismic Q”, which has received several decades worth of care-
ful attention in the literature (Aki and Richards, 2002; Futterman, 1967). Development of
methods for analysis (Tonn, 1991), processing (Bickel and Natarajan, 1985; Hargreaves
and Calvert, 1991; Wang, 2006; Zhang and Ulrych, 2007; Innanen and Lira, 2010), and
inversion (Dahl and Ursin, 1992; Ribodetti and Virieux, 1998; Causse et al., 1999; Hicks
and Pratt, 2001; Innanen and Weglein, 2007) of wave data exhibiting the attenuation and
dispersion of seismic Q remains a very active research area.

Borcherdt (2009) has presented a complete theory for seismic waves propagating in
layered anelastic media, assuming a viscoelastic model to hold. Borcherdt’s formulation is
particularly powerful in that it predicts a range of transverse, inhomogeneous wave types
unique to viscoelastic media (Type I and II S waves), and develops rules for conversion of
one type to another during interactions with planar boundaries.

Generalizing this approach to allow for viscoelastic waves of the type described by
Borcherdt has several positive outcomes. First, and foremost, it provides an analytical
framework for the examination of processes of scattering of viscoelastic waves from arbi-
trary three-dimensional heterogeneities, as opposed to layered media. Second, it provides
a foundation for direct linear and nonlinear inversion methods for reflection seismic data,
which go well beyond existing an-acoustic results (Innanen and Weglein, 2007; Innanen
and Lira, 2010). And third, it provides a means to compute and analyze the gradient and
Hessian quantities used in iterative seismic inversion (see the review by Virieux and Operto,
2009).

In this report we introduce the scattering potentials for of viscoelastic waves using
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the Born approximation based on the scattering theory. These scattering potentials repre-
sent the radiation patterns generated by elastic and anelastic inclusions in a viscoelastic
background. The object of this report is the generalization of the viscoelastic scattering
potentials obtained in low-loss medium to a medium with general attenuation properties.

EXACT FORM OF RAY PARAMETER AND SLOWNESS VECTORS

The most important feature of the waves in a viscoelastic medium is that the wavenum-
ber vector is a complex number, which it’s imaginary part refers to the amplitude damp-
ing. As a result, slowness and polarization vectors are complex numbers. The complex
wavevector is given by

K = P + iA, (1)

where, propagation vector P is perpendicular to the wavefront and attenuation vector A is
perpendicular to the plane of constant amplitudes and specified the direction of the maxi-
mum attenuation medium. The angle between these two vectors is called attenuation angle,
δ, which is always less that 90◦. In the case that the attenuation and propagation vectors are
parallel the wave is called homogenous. Otherwise it is inhomogeneous. Wave speed for a
homogeneous P and S-wave may be written as

VH = VE

√
2χ2

H

1 + χH

, (2)

where
χH =

√
1 +Q−2, (3)

with quality factor Q. Complex wave-number is defined as

K =
√

K ·K =
ω

V
, (4)

where complex velocity V and V are defined by

V =
VH

1− i Q−1

1+χH

, (5)

In the case of low-loss viscoelastic media as Q−1 � 1, we have

VH ≈ VE, V ≈ VE

(
1 +

i

2
Q−1
H

)
. (6)

In above we used the low-loss viscoelastic medium approximation where Q−1 � 1. From
study of complex vectors we know that they display the elliptical motion for a dynamic
problem. Therefore we expect that displacement vectors for P- and S-waves with complex
polarization vectors, describe an elliptical motion for particles. We assume that wavenum-
ber vector is in the xz-plane, so the propagation and attenuation vectors are

P =
ω

VH

√
1 + χ

1 + χH
(x sin θ + z cos θ),

A =
ω

VH

√
−1 + χ

1 + χH
(x sin(θ − δ) + z cos(θ − δ)),

(7)
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FIG. 1. Digram illustrating the ray parameter versus phase angle in complex plane for different
values of attenuation angle δ. Solid line refers to the general attenuation and dash line refers to the
low-loss attenuation.

with
χ =

√
1 +Q−2 sec2 δ. (8)

The slowness vector is given by

k =
K

ω
= px + qz, (9)

where complex ray parameter and vertical slowness respectively are

p =
1

ω
(Px − iAx), (10)

q =
1

ω
(Pz − iAz). (11)

Explicit forms of ray parameter and vertical slowness vectors are

p =
1

VH

√
1 + χ

1 + χH

{
sin θ

(
1− i Q

−1

1 + χ

)
+ i

Q−1

1 + χ
cos θ tan δ

}
,

q =
1

VH

√
1 + χ

1 + χH

{
cos θ

(
1− i Q

−1

1 + χ

)
− i Q

−1

1 + χ
sin θ tan δ

}
.

(12)

In Fig. 1, we plot the ray parameter in complex plane versus phase angle for various
values of attenuation angle. Diagram displays that the ray parameter is a an ellipse whose
eccentricity decline as attenuation angle gets smaller. We also observe a higher deviation
between general viscoelastic medium and low-loss attenuation medium for higher values
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of attenuation angle. The same interpretation is valid for polarization and slowness vectors.
It is easy to show that ray parameter and vertical slowness vectors satisfy in

p2 + q2 =
1

V 2
. (13)

To calculate the scattering potential we need the explicit form of the polarization and slow-
ness vectors. Based on the complex wave number vector for viscoelastic waves, the polar-
ization vectors for P- and S-waves are given by

ξP = VPKP = VP (PP − iAP ),

ζP = VSKP × y = VS(PS − iAS)× y,

(14)

also the slowness vectors are defined as

kP =
KP

ω
, kS =

KS

ω
. (15)

Consider to the case that polarization vectors for incident and reflected waves are in x-z
plane

PPi =
ω

VHP

√
1 + χPi
1 + χHP

(z cos θPi + x sin θPi),

APi =
ω

VHP

√
−1 + χPi
1 + χHP

(z cos(θPi − δPi) + x sin(θPi − δPi)),

PPr =
ω

VHP

√
1 + χPr
1 + χHP

(x sin θPr − z cos θPr),

APr =
ω

VHP

√
−1 + χPr
1 + χHP

(x sin(θPr − δPr)− z cos(θPr − δPr)),

(16)

whereδPi
and δPr are the attenuation angles for incident and reflected P-waves. Homoge-

neous P-wave velocity, VPH is the same for incident and reflected waves as they propagate
in the reference medium.

SCATTERING POTENTIAL AND BORN APPROXIMATION

The elements of scattering theory can be found in many standard text book. The main
idea in this theory is that, the actual medium that wave propagates in it can be considered as
a reference medium with known physical parameters plus perturbations in properties which
are unknown. The perturbations are proportional to the differences in elastic and anelastic
properties between the reference and actual medium. Scattered wave can be regarded as
a summation of the all possible single scattering from, one, two ....scatter points. Since
the scattered wave from the first scatter point is weak comparing to the incident wave,
practically scattering form two, three and more scatter points is negligible. This is called
the Born approximation. The scattering potential in the first order Born approximation is
given by (Beylkin and Burridge, 1990)

V = ΨI
0 ·V ·ΨR

0 . (17)
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In above equation Ψ0, is the Green’s function or propagator in reference medium given by

Ψ0 ≈ ω−1ξeiω(k·r), (18)

where ξ is the polarization vector and k is the slowness vector. Scattering operator V is
a kind of operator that contains the left and right partial derivatives respect to the space
coordinate. It is a scattering tensor, which is the difference between the wave operator in
actual and reference medium given as (Stolt and Weglein, 2012)

V = LVE − LVE0, (19)

where L, is the wave operator given by (Moradi and Innanen, 2015)

(LVE)ij = ρω2δij +
←−
∂ i(ρV

2
P )
−→
∂ j +δij

←−
∂ k(ρV

2
S )
−→
∂ k−2

←−
∂ i(ρV

2
S )
−→
∂ j +

←−
∂ j(ρV

2
S )
−→
∂ i, (20)

for i, j, k = x, y, z with a sum rule notation on index k. The left(right) arrow on the partial
derivatives indicates the operation on the left (right) hand side function. We define the
fractional perturbations as a difference of the property in actual and reference media. For
example the fractional perturbation in physical parameter x is given by

Ax =
∆x

x
=
x− x0
x

, (21)

where x0 is the property in the reference medium. So that we can obtain the physical
property in the actual medium in terms of it’s value in reference medium and the fractional
perturbation

x = x0(1 + Ax). (22)

Since the wave operator is complex in both actual and reference media, the scattering op-
erator contains the perturbations in complex P- and S-wave velocities. We note that the
perturbations are in the real quantities. Let us express the perturbation in complex number
z = x+ iy in terms of perturbations in the real and imaginary parts. In this case we have

z = x0(1 + Ax) + iy0(1 + Ay), (23)

So perturbation in complex number z can be expressed as

Az =
∆z

z
=

1

x0 + iy0
(x0Ax + iy0Ay). (24)

In the first attempt to calculate the scattering potential, we obtain the scattering operator.
Fractional perturbations in density, P- and S-wave velocities and quality factors are easy
to calculate. However the fractional perturbations in complex P- and S-wave velocities are
more complicated. First consider to the first order approximation of factor χH

χH ≈ χH0

(
1− Q−2

0

χ2
H0

AQ

)
. (25)

Inserting in the definitions of the velocities in the first order approximation we arrive at

AV = 1− V0
V

= AVE −
i

2
Q−1AQ,
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where we defined the analogous quality factor Q as

Q−1 =
2Q−1

0

1 + χH0

{
V0
VH0

(
1− Q−2

0

χH0(1 + χH0)

)
− i Q

−1
0

2χ2
H0

(2 + χH0)

}
.

In the case of low-loss media Q−1 � 1, we have Q→ Q0. Next we write the scattering
matrix element in frequency-independent form (Stolt and Weglein, 2012). Since the differ-
ential operators are sandwiched between unperturbed wave functions, we replace the left
derivatives with i multiplied by the reflected wavenumber vector Kr and right derivative
with i multiplied by the incident wavenumber vector Ki. After replacing the left and right
derivatives by the appropriate wavenumber vectors, the frequency independent parts of the
scattering operator are

(Vρ
VE)kl = δkl − V 2

P0k
r
kk

i
l − V 2

S0

(
δklk

r
mk

i
m − 2krkk

i
l + krl k

i
k

)
,

(VVPE
VE )kl = −2V 2

Pk
r
kk

i
l ,

(VVSE
VE )kl = −2V 2

S0

(
δklk

r
mk

i
m − 2krkk

i
l + krl k

i
k

)
,

(VQP

VE)kl = iQ−1
P V 2

P0k
r
kk

i
l ,

(VQS

VE)kl = iQ−1
S V 2

S0

(
δklk

r
mk

i
m − 2krkk

i
l + krl k

i
k

)
.

(26)

The frequency-independent components of the scattering potential are defined as

VVE

ρ0ω2
= VVE = Vρ

VEAρ + VVPE
VE AVPE

+ VVSE
VE AVSE + VQP

VEAQP
+ VQS

VEAQS
. (27)

Now to obtain the scattering matrix we sandwich the above expressions with the proper
polarization vectors. We use the vectors R and I to indicate the reflected and incident
polarization vectors, respectively. For perturbation terms we will write

I
RV

ρ
VE = I

RF − I
RGα − I

RGβ,
I
RV

QP

VE = − i
2
Q−1
P

{
I
RV

VPE
VE

}
=
(
iQ−1

P

)
I
RGVP ,

I
RV

QS

VE = − i
2
Q−1
S

{
I
RV

βE
VE

}
=
(
iQ−1

S

)
I
RGβ,

(28)

where we have defined

I
RF = R · I,
I
RGα = V 2

P0(R · kr)(I · ki),
I
RGβ = V 2

S0 {(R · I)(kr · ki)− 2(R · kr)(I · ki) + (I · kr)(R · ki)} .
(29)

To determine the explicit form of each component of the scattering potential, we need to
calculate FR

I , I
RGα and I

RGβ . To derive the scattering potential we use the polarizations and
slowness vectors labeled by subscripts refers to the incident and scattered waves. The scat-
tering potential should be expressed as a function of the parameters in reference medium
and perturbations. Without loss of generality we assume that the change in the attenuation
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angle is very small ∆δP = δPr − δPi � 1, so we can write the fractional perturbation in
attenuation angle as

AδP = 2
δPr − δPi
δPi + δPr

, (30)

so that
δPr = δP +

∆δP
2
,

δPi = δP −
∆δP

2
,

where δ is the average in attenuation angle or reference medium attenuation angle. As a
result

sec δPi = sec δP

(
1− tan δP sin

∆δP
2

)
,

sec δPr = sec δP

(
1 + tan δP sin

∆δP
2

)
. (31)

Since the above expressions multiplied by a fractional perturbation, in the first order in
perturbation we have √

1 + χPr ≈
√

1 + χPi ≈
√

1 + χP .

In a similar manner
tan δPr ≈ tan δPi ≈ tan δP ,

P-to-P scattering potential

Let us consider to the case that the inhomogeneous P-wave with attenuation angle δPi
scattered to an inhomogeneous P-wave with attenuation angle δPr. In this case equations
(29) reduce to

P
PF = ξPr · ξPi,

P
PGVP = V 2

P0(ξPr · kPr)(ξPi · kPi),
P
PGβ = V 2

S0 {(ξPr · ξPi)(kPr · kPi)− 2(ξPr · kPr)(ξPi · kPi) + (ξPi · kPr)(ξPr · kPi)} .
(32)

The detail of the dot product of various polarization and slowness vectors can be find in
appendix A. The above expressions are the functions of the average phase and attenuation
angles for incident and reflected P-waves. For low-loss media the analytical expressions can
be found in (Moradi and Innanen, 2015). Below is the interpretation of the each component
of the scattering potential for scattering of P-wave to P-wave

• P
PV

ρ
VE 6= 0: component related to the scattering from density inclusion

• P
PV

VP
VE 6= 0 component related to the scattering from P-wave velocity inclusion

• P
PV

VS
VE 6= 0 component related to the scattering from S-wave velocity inclusion
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FIG. 2. Digram illustrating the real and imaginary of density and S-wave velocity part of P-to-P
scattering potential for QP = 5 and QS = 4 and attenuation angles δP = δS = 70◦. The solid line
refers to the arbitrary attenuation and dash line refers to the low-loss case.

• P
PV

QP

VE 6= 0 component related to the scattering from P-wave quality factor inclusion

• P
PV

QS

VE 6= 0 component related to the scattering from S-wave quality factor inclusion

Consequently, any inclusion in elastic and anelastic properties can scatter the P-wave to
P-wave. The first three components of the scttering potentials related to the density, P and
S-wave velocity are complex functions with real and imaginary parts. In low-loss media
the real part is equal to the elastic scattering potential, however for a general viscoelastic
medium there is an extra term that is negligible in the low-loss limit. The components re-
lated to the inclusions in quality factors are pure imaginary terms. In Fig 2 we plot the real
and imaginary parts of the P-to-P scattering potential for low-loss versus general viscoelas-
tic medium. We can see the differences between the scattering potentials for medium with
general anelastic properties and a medium with low-loss anelastic properties.
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FIG. 3. Digram illustrating the real and imaginary of density and S-wave velocity part of P-to-SI
scattering potential for QP = 5 and QS = 4 and attenuation angles δP = δS = 70◦. The solid line
refers to the arbitrary attenuation and dash line refers to the low-loss case.

P-SI scattering potential

In this case the reflected wave is of type SI, R = ζSr, and the incident wave is a P-wave,
I = ξPi. In this case equations (29) reduce to

P
SIF = ζSr · ξPi

P
SIGVP = V 2

P0(ζSr · kSr)(ξPi · kPi)
P
SIGVS = V 2

S0 {(ζSr · ξPi)(kSr · kPi)− 2(ζSr · kSr)(ξPi · kPi) + (ξPi · kSr)(ζSr · kPi)} .
(33)

The detail of the the calculations can be found in the appendix. In this case the scatter-
ing potential component related to the change in P-wave velocity is zero. It means that
inclusion in P-wave velocity can not convert the P-wave to SI-wave. The similar situation
is satisfied for the scattering of elastic case, where the P-wave velocity inclusion can not
convert the elastic P-wave to the SV-wave. Consequently, the P-wave quality factor com-
ponent vanishes also means that P-wave can not be converted to SI-wave due to interaction
with the P-wave quality factor inclusion. In Fig 3 we plot the real and imaginary parts of
the P-to-SI scattering potential for low-loss versus general viscoelastic medium.
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FIG. 4. Digram illustrating the real and imaginary of density and S-wave velocity part of SI-to-SI
scattering potential for QP = 5 and QS = 4 and attenuation angles δP = δS = 70◦. The solid line
refers to the arbitrary attenuation and dash line refers to the low-loss case.

SI-SI scattering potential

In this case the reflected wave is of type SI, R = ζSr, and the incident wave is a
SI-wave, I = ζSi. In this case equations (29) reduce to

SI
SIF = ζSr · ζSi,

SI
SIGVS = V 2

S0 {(ζSr · ζSi)(kSr · kSi) + (ζSi · kSr)(ζSr · kSi)} .
(34)

Similar to the scattering potential for P-to-SI, the non zero components are, density, S-wave
velocity and S-wave quality factor. No contributions from change in P-wave velocity and
quality factor in scattering of SI-wave to SI-wave. In Fig 4 we plot the real and imaginary
parts of the SI-to-SI scattering potential for low-loss versus general viscoelastic medium.
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SUMMARY AND CONCLUSION

The scattering potential associated with the scattering in low-loss viscoelastic medium
recently have been derived (Moradi and Innanen, 2015). In this paper we removed the
low-loss assumption and derived the explicit forms of the scattering potential for a general
viscoelastic medium. We used the Born approximation to obtain the scattering potentials.

In scattering theory approach, a low contrast medium can be simulated by couples of
scatter points in a background medium. Mathematically scatter points are the perturba-
tions that are added to an unperturbed medium to construct an actual perturbed medium.
Compared to the low-contrast model, when waves travel through the medium including the
scatter points, small portions of the wave interact with the scatter points. In this case only a
small portion of the incidence wave is scattered from the scattering points and the majority
of the incidence wave passes near through the scatter points without interacting with them.
This non-interacting wave can be regarded as a transmitted wave compared to the case of
a low-contrast medium. Scattered waves can themselves hit the scatter points again, but
the resulted doubly-scattered wave would be very weak compared to the singly-scattered
wave. Practically we can ignore all except the first order scattered waves. This is called the
Born-approximation which deals only with the first order scattering.

In vescoelastic medium there are five parameters, density, P- and S-wave velocities
and corresponding quality factors. To derive the scattering potential, first we calculate
the scattering operator, which is the difference between the wave operator in actual and
reference mediums. Second, the scattering operator is sandwiched between the polarization
vectors. Polarization are complex vectors which displays a elliptical motions for P- and
SI-waves. The scattering operator that we obtained is a complex function as a sum of
perturbations in elastic and anelastic properties weighted by the the opening angle between
the incident and reflected waves. In contrast to the exact form of the reflection coefficients,
scattering potential is not a function of the incident reflected angles but it is function of the
background material properties and opening angle.
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APPENDIX A: COMPLEX POLARIZATION-SLOWNESS VECTORS ALGEBRA

Propagation and attenuation vectors for incident P-wave are

PPi =
ω

VHP

√
1 + χPi

1 + χHP

(z cos θPi + x sin θPi),

APi =
ω

VHP

√
−1 + χPi

1 + χHP

(z cos(θPi − δPi) + x sin(θPi − δPi)),
(35)
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reflected P-wave

PPr =
ω

VHP

√
1 + χPr

1 + χHP

(x sin θPr − z cos θPr),

APr =
ω

VHP

√
−1 + χPr

1 + χHP

(x sin(θPr − δPr)− z cos(θPr − δPr)),
(36)

incident S-wave

PSi =
ω

VHS

√
1 + χSi

1 + χHS

(z cos θSi + x sin θSi),

ASi =
ω

VHS

√
−1 + χSi

1 + χHS

(z cos(θSi − δSi) + x sin(θSi − δSi)),
(37)

reflected S-wave

PSr =
ω

VHS

√
1 + χSr

1 + χHS

(x sin θSr − z cos θSr),

ASr =
ω

VHS

√
−1 + χSr

1 + χHS

(x sin(θSr − δSr)− z cos(θSr − δSr)).
(38)

Inner product of incident and reflected propagation and attenuation vectors for P-waves

PPi ·PPr = − ω2

V 2
HP

√
(1 + χPi)(1 + χPr)

1 + χHP

cos(θPi + θPr),

PPi ·APr = − ω2

V 2
HP

√
(1 + χPi)(−1 + χPr)

1 + χHP

cos(θPi + θPr − δPr),

PPr ·APi = − ω2

V 2
HP

√
(1 + χPr)(−1 + χPi)

1 + χHP

cos(θPi + θPr − δPi).

APi ·APr = − ω2

V 2
HP

√
(−1 + χPi)(−1 + χPr)

1 + χHP

cos(θPi + θPr − (δPi + δPr)).

(39)

Inner product of incident and reflected propagation and attenuation vectors for P-waves and
S-waves

PPi ·PSr = − ω2

VHPVHS

√
(1 + χPi)(1 + χSr)

(1 + χHP)(1 + χHS)
cos(θPi + θSr),

PPi ·ASr = − ω2

VHPVHS

√
(1 + χPi)(−1 + χSr)

(1 + χHP)(1 + χHS)
cos(θPi + θSr − δSr),

PPr ·ASi = − ω2

VHPVHS

√
(1 + χPr)(−1 + χSi)

(1 + χHP)(1 + χHS)
cos(θPr + θSi − δSi),

APi ·ASr = − ω2

VHPVHS

√
(−1 + χPi)(−1 + χSr)

(1 + χHP)(1 + χHS)
cos(θPi + θSr − (δPi + δSr)),

ASi ·APr = − ω2

VHPVHS

√
(−1 + χSi)(−1 + χPr)

(1 + χHP)(1 + χHS)
cos(θSi + θPr − (δSi + δPr)).

(40)
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Using the above expressions we obtain the inner product of wave number vector for incident
and reflected P-waves

KPi ·KPr = PPi ·PPr −APi ·APr − iPPi ·APr − iAPi ·PPr

= − ω2

V 2
HP

√
(1 + χPi)(1 + χPr)

1 + χHP

×[
cos(θPi + θPr)−

Q−2
P sec δPi sec δPr

(1 + χPi)(1 + χPr)
cos(θPi + θPr − (δPi + δPr))

−iQ
−1
P sec δPr
1 + χPr

cos(θPi + θPr − δPr)− i
Q−1

P sec δPi
1 + χPi

cos(θPi + θPr − δPi)
]

= − ω2

V 2
HP

√
(1 + χPi)(1 + χPr)

1 + χHP

×[
cosσPP −

Q−2
P sec δPi sec δPr

(1 + χPi)(1 + χPr)
cos(σPP − (δPi + δPr))

−iQ
−1
P sec δPr
1 + χPr

cos(σPP − δPr)− i
Q−1

P sec δPi
1 + χPi

cos(σPP − δPi)
]

= − ω2

V 2
HP

√
(1 + χPi)(1 + χPr)

1 + χHP

×[
cosσPP −

Q−2
P

(1 + χPi)(1 + χPr)
[cosσPP(1− tan δPr tan δPi) + sin σPP(tan δPr + tan δPi)]

−i Q−1
P

1 + χPr

[cosσPP + sinσPP tan δPr]− i
Q−1

P

1 + χPi

[cosσPP + sinσPP tan δPi]

]
.

(41)
Finally

KPi ·KPr = − ω2

V 2
HP

√
(1 + χPi)(1 + χPr)

1 + χHP

×[
cosσPP

(
1− i Q−1

P

1 + χPr

− i Q−1
P

1 + χPi

− Q−2
P

(1 + χPi)(1 + χPr)

)
− Q−2

P

(1 + χPi)(1 + χPr)
[sinσPP(tan δPr + tan δPi)− cosσPP(tan δPr tan δPi)]

−i sinσPP

[
Q−1

P tan δPr
1 + χPr

+
Q−1

P tan δPi
1 + χPi

]]
.

(42)
Also

KPi ·KPi = PPi ·PPi −APi ·APi − 2iPPi ·APi

=
ω2

V 2
HP

[
1 + χPi

1 + χHP

− −1 + χPi

1 + χHP

− 2i
1 + χPi

1 + χHP

−1 + χPi

1 + χHP

cos δPi

]
= 2

ω2

V 2
HP

1− iQ−1
P

1 + χHP

=
ω2

V 2
P

.

(43)
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The inner product of wave number vector for incident P-wave and reflected S-waves

KPi ·KSr = − ω2

VHPVHS

√
(1 + χPi)(1 + χSr)

(1 + χHP)(1 + χHS)
×[

cosσPS

(
1− i Q−1

S

1 + χSr

− i Q−1
P

1 + χPi

− Q−1
P Q−1

S

(1 + χPi)(1 + χSr)

)
− Q−1

P Q−1
S

(1 + χPi)(1 + χSr)
[sinσPS(tan δSr + tan δPi)− cosσPS(tan δSr tan δPi)]

−i sinσPS

(
Q−1

S tan δSr
1 + χSr

+
Q−1

P tan δPi
1 + χPi

)]
.

(44)

KSi ·KSr = − ω2

V 2
HS

√
(1 + χSi)(1 + χSr)

1 + χHS

×[
cosσSS

(
1− i Q−1

S

1 + χSr

− i Q−1
S

1 + χSi

− Q−2
S

(1 + χSi)(1 + χSr)

)
− Q−2

S

(1 + χSi)(1 + χSr)
[sinσSS(tan δSr + tan δSi)− cosσSS(tan δSr tan δSi)]

−i sinσSS

[
Q−1

S tan δSr
1 + χSr

+
Q−1

S tan δSi
1 + χSi

]]
.

(45)
In low-loss case we have

KPi ·KPr = − ω2

V 2
EP0

[
cosσPP(1− iQ−1

P )− i

2
Q−1

P sinσPP [tan δPr + tan δPi]

]
KSi ·KSr = − ω2

V 2
ES0

[
cosσSS(1− iQ−1

S )− i

2
Q−1

S sinσSS [tan δSr + tan δSi]

]
KPi ·KSr =

ω2

VEP0VES0

[
cosσPS

(
−1 + i

Q−1
S

2
+ i

Q−1
P

2

)
+
i

2
sinσPS

(
Q−1

S tan δSr +Q−1
P tan δPi

)]
(46)

Now consider to the cross product of the vectors
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PSr ×PPi =
ω2

VHPVHS

√
(1 + χPi)(1 + χSr)

(1 + χHP)(1 + χHS)
×

(x sin θSr − z cos θSr)× (z cos θPi + x sin θPi)

ASr ×APi =
ω2

VHSVHP

√
(−1 + χSr)(−1 + χPi)

(1 + χHS)(1 + χHP)
×

(x sin(θSr − δSr)− z cos(θSr − δSr))× (z cos(θPi − δPi) + x sin(θPi − δPi))

ASr ×PPi =
ω2

VHSVHP

√
(−1 + χSr)(1 + χPi)

(1 + χHS)(1 + χHP)
×

(x sin(θSr − δSr)− z cos(θSr − δSr))× (z cos θPi + x sin θPi)
(47)

ASr ×APi = −y
ω2

VHSVHP

√
(−1 + χSr)(−1 + χPi)

(1 + χHS)(1 + χHP)
sin(θSr + θPi − (δSr + δPi))

PSr ×PPi = −y
ω2

VHPVHS

√
(1 + χPi)(1 + χSr)

(1 + χHP)(1 + χHS)
sin(θSr + θPi)

ASr ×PPi = −y
ω2

VHSVHP

√
(−1 + χSr)(1 + χPi)

(1 + χHS)(1 + χHP)
sin(θSr + θPi − δSr)

PSr ×APi = −y
ω2

VHSVHP

√
(1 + χSr)(−1 + χPi)

(1 + χHS)(1 + χHP)
sin(θSr + θPi − δPi)

(48)

so we have

KSr ×KPi = PSr ×PPi −ASr ×APi − iASr ×PPi − iPSr ×APi

= −y
ω2

VHPVHS

√
(1 + χPi)(1 + χSr)

(1 + χHP)(1 + χHS)
sin(θSr + θPi)

+ y
ω2

VHSVHP

√
(−1 + χSr)(−1 + χPi)

(1 + χHS)(1 + χHP)
sin(θSr + θPi − (δSr + δPi))

+ iy
ω2

VHSVHP

√
(−1 + χSr)(1 + χPi)

(1 + χHS)(1 + χHP)
sin(θSr + θPi − δSr)

+ iy
ω2

VHSVHP

√
(1 + χSr)(−1 + χPi)

(1 + χHS)(1 + χHP)
sin(θSr + θPi − δPi)

(49)
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= y
ω2

VHPVHS

√
(1 + χPi)(1 + χSr)

(1 + χHP)(1 + χHS)
×

− sinσPS +
Q−1

P Q−1
S sec δPi sec δSr

(1 + χSr)(1 + χPi)
sin(σPS − (δSr + δPi))

+ i
Q−1

S sec δSr
(1 + χSr)

sin(σPS − δSr) + i
Q−1

P sec δPi
(1 + χPi)

sin(σPS − δPi)

(50)

= y
ω2

VHPVHS

√
(1 + χPi)(1 + χSr)

(1 + χHP)(1 + χHS)
×

− sinσPS +
Q−1

P Q−1
S

(1 + χSr)(1 + χPi)
[sinσPS(1− tan δSr tan δPi)− cosσPS(tan δSr + tan δPi)]

+ i
Q−1

S

1 + χSr

[sinσPS − cosσPS tan δSr] + i
Q−1

P

1 + χPi

[sinσPS − cosσPS tan δPi]

(51)

KSr ×KPi = y
ω2

VHPVHS

√
(1 + χPi)(1 + χSr)

(1 + χHP)(1 + χHS)
×

sinσPS

(
−1 + i

Q−1
S

1 + χSr

+ i
Q−1

P

1 + χPi

+
Q−1

P Q−1
S

(1 + χSr)(1 + χPi)

)
− Q−1

P Q−1
S

(1 + χSr)(1 + χPi)
[sinσPS tan δSr tan δPi + cosσPS(tan δSr + tan δPi)]

(52)

− i cosσPS

[
Q−1

S

1 + χSr

tan δSr +
Q−1

P

1 + χPi

tan δPi

]
KSi ×KSr = −y

ω2

V 2
HS

√
(1 + χSi)(1 + χSr)

(1 + χHS)
×

sinσSS

(
−1 + i

Q−1
S

1 + χSr

+ i
Q−1

S

1 + χSi

+
Q−2

S

(1 + χSr)(1 + χSi)

)
− Q−2

S

(1 + χSr)(1 + χSi)
[sinσSS sin δSr sin δSi + cosσSS(sin δSr + sin δSi)]

− i cosσSS

[
Q−1

S

1 + χSr

tan δSr +
Q−1

S

1 + χSi

tan δSi

]
(53)

In low-loss case

KSr ×KPi = y
ω2

VEP0VES0

[
sinσPS

(
−1 + i

Q−1
S

2
+ i

Q−1
P

2

)
− i

2
cosσPS

[
Q−1

S tan δSr +Q−1
P tan δPi

]]
KSi ×KSr = y

ω2

V 2
ES0

[
sinσSS

(
1− iQ−1

S

)
+
i

2
cosσSSQ

−1
S [tan δSr + tan δSi]

]
(54)
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Consider to the P-to-P scattering potential

P
PF = ξPr · ξPi =

V 2
P0

ω2
KPi ·KPr,

P
PGVP = V 2

P0(ξPr · kPr)(ξPi · kPi) =
V 4
P0

ω4
(KPi ·KPi)(KPr ·KPr),

P
PGVS = V 2

S0 {(ξPr · ξPi)(kPr · kPi)− 2(ξPr · kPr)(ξPi · kPi) + (ξPi · kPr)(ξPr · kPi)}

= 2V 2
S0

V 2
P0

ω4

{
(KPi ·KPr)

2 − (KPi ·KPi)(KPr ·KPr)
}

= 2
V 2
S0

V 2
P0

{
V 4
P0

ω4
(KPi ·KPr)

2 − 1)

}
(55)

Let us consider to the low-loss media

(KPi ·KPr)
2 =

ω4

V 4
EP0

[
cos2 σPP(1− 2iQ−1

P )− iQ−1
P sinσPP cosσPP [tan δPr + tan δPi]

]
so we have

P
PF = ξPr · ξPi = − cosσPP +

i

2
Q−1

P sinσPP [tan δPr + tan δPi]

P
PGVP = 1,

P
PGVS = −V

2
ES0

V 2
EP0

{
2 sin2 σPP(1 + iQ−1

S − iQ
−1
P ) + iQ−1

P sin 2σPP [tan δPr + tan δPi]
}
(56)

we have
I
RV

ρ
VE = I

RF − I
RGVEP

− I
RGVES

,

I
RV

QP

VE = − i
2
Q−1
P

{
I
RV

VPE
VE

}
=
(
iQ−1

P

)
I
RGVEP

,

I
RV

QS

VE = − i
2
Q−1
S

{
I
RV

VES
VE

}
=
(
iQ−1

S

)
I
RGVES

,

(57)

so

I
RV

ρ
VE = −1− cosσPP + 2

(
VES0
VEP0

)2

sin2 σPP + 2i

(
VES0
VEP0

)2

×{
sin2 σPP(Q−1

S −Q
−1
P ) +Q−1

P

(
sin 2σPP +

1

2

(
VEP0
VES0

)2

sinσPP

)
tan δP

} (58)
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P
PV

VPE
VE = −2(PPGVEP

) = −2

P
PV

VSE
VE = −2(PPGVES

) = 4

(
VES0
VEP0

)2

sin2 σPP

+ 4i

(
VES0
VEP0

)2 {
sin2 σPP(Q−1

S −Q
−1
P ) +Q−1

P sin 2σPP tan δP
}

P
PV

QP

VE =
(
iQ−1

P

)
I
RGVEP

= iQ−1
P ,

P
PV

QS

VE =
(
iQ−1

S

)
I
RGVES

= −2iQ−1
S

(
VES0
VEP0

)2

sin2 σPP.

(59)

Let us consider to the scattering of P-to-SI wave. We have

P
SIF = ζSr · ξPi

P
SIGVP = V 2

P0(ζSr · kSr)(ξPi · kPi)
P
SIGVS = V 2

S0 {(ζSr · ξPi)(kSr · kPi)− 2(ζSr · kSr)(ξPi · kPi) + (ξPi · kSr)(ζSr · kPi)} .
(60)

First we have

ζSr · ξPi = ξPi · (y × ξSr) = y · (ξSr × ξPi) =
VPVS
ω2

y · (KSr ×KPi)

ζSr · kSr = kSr · (y × ξSr) = y · (ξSr × kSr) = 0

ζSr · kPi = kPi · (y × ξSr) = y · (ξSr × kPi) = y
VS
ω2
· (KSr ×KPi)

ξPi · kSr =
VP
ω2

KPi ·KSr

(61)

finally
P
SIF =

VPVS
ω2

y · (KSr ×KPi)

P
SIGVP = 0

P
SIGVS = 2V 2

S0

VPVS
ω4
{y · (KSr ×KPi)(KPi ·KSr)} .

(62)

so we have

P
SIF = − sinσPS −

i

2
cosσPS

[
Q−1

S tan δSr +Q−1
P tan δPi

]
P
SIGVS =

VES0
VEP0

[
sin 2σPS

(
1 +

i

2
(Q−1

S −Q
−1
P )

)
+i cos 2σPS

(
Q−1

S tan δSr +Q−1
P tan δPi

)] (63)

18 CREWES Research Report — Volume 27 (2015)



Radiation patterns associated with the scattering from viscoelastic inclusions

finally

P
SIVρ = − sinσPS −

VES0
VEP0

sin 2σPS

− i VES0
2VEP0

[
sin 2σPS(Q−1

S −Q
−1
P )

+

(
2 cos 2σPS +

VEP0
VES0

cosσPS

)(
Q−1

S tan δSr +Q−1
P tan δPi

)]
P
SIVVS = −2

VES0
VEP0

sin 2σPS

− i VES0
VEP0

[
sin 2σPS

(
Q−1

S −Q
−1
P

)
+ 2 cos 2σPS

(
Q−1

S tan δSr +Q−1
P tan δPi

)]
P
SIVQ−1

S
= iQ−1

S

VES0
VEP0

sin 2σPS

(64)
Consider to the scattering SI-to-SI

SI
SIF = ζSr · ζSi = ξSr · ξSi =

V 2
S0

ω2
KSi ·KSr,

SI
SIGVS = V 2

S0 {(ζSr · ζSi)(kSr · kSi) + (ζSi · kSr)(ζSr · kSi)} ,
(65)

where

ζSi · kSr = kSr · (y × ξSi) = y · (ξSi × kSr) = y
VS
ω2
· (KSi ×KSr)

ζSr · kSi = kSi · (y × ξSr) = y · (ξSr × kSi) = −y
VS
ω2
· (KSi ×KSr)

(66)

as a result

SI
SIGVS =

V 4
S0

ω4

{
(KSi ·KSr)

2 − |KSi ×KSr|2
}

= (1 + 2iQ−1
S )× (67)[

cos2 σSS
(
1− 2iQ−1

S

)
− i sinσSS cosσSSQ

−1
S (tan δSr + tan δSi)

]
(68)

−
[
sin2 σSS

(
1− 2iQ−1

S

)
+ i sinσSS cosσSSQ

−1
S [tan δSr + tan δSi]

]
, (69)

finally
SI
SIGVS = cos 2σSS − iQ−1

S sin 2σSS [tan δSr + tan δSi] . (70)

In low-loss media

SI
SIF = − cosσS +

i

2
Q−1

S sinσSS (tan δSr + tan δSi) , (71)

as a result

SI
SIVρ = − cosσS − cos 2σSS + iQ−1

S (sinσSS + 2 sin 2σSS) , tan δS
SI
SIVVS = −2 cos 2σSS + 4iQ−1

S sin 2σSS tan δS,
SI
SIVQS = iQ−1

S cos 2σSS.

(72)
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