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ABSTRACT

In this report we obtained the radiation patterns associated with the scattering of seis-
mic waves from five viscoelastic inclusions; density, P- and S-wave velocities and quality
factors for P- and S-waves. We show that the polarization and slowness of viscoelastic
waves are complex. Basically the radiation patterns from elastic and anelastic inclusions
are given by the scattering potentials which are the amplitude of the spherical scattered
waves from scatter points. We show that the scattering potentials are complex functions of
averages in phase and attenuation angles.

INTRODUCTION

Stolt and Weglein (2012) have introduced a formal theory for the description of the mul-
tidimensional scattering of seismic waves based on an isotropic-elastic model. We identify
as a research priority the adaptation of this approach to incorporate other, more complete
pictures of seismic wave propagation. Amongst these, the extension to include anelasticity
and/or viscoelasticity , which brings to the wave model the capacity to transform elastic
energy into heat, ranks very high. Anelasticity is generally held to be a key contributor
to seismic attenuation, or “seismic Q”, which has received several decades worth of care-
ful attention in the literature (Aki and Richards, 2002; Futterman, 1967). Development of
methods for analysis (Tonn, 1991), processing (Bickel and Natarajan, 1985; Hargreaves
and Calvert, 1991; Wang, 2006; Zhang and Ulrych, 2007; Innanen and Lira, 2010), and
inversion (Dahl and Ursin, 1992; Ribodetti and Virieux, 1998; Causse et al., 1999; Hicks
and Pratt, 2001; Innanen and Weglein, 2007) of wave data exhibiting the attenuation and
dispersion of seismic Q remains a very active research area.

Borcherdt (2009) has presented a complete theory for seismic waves propagating in
layered anelastic media, assuming a viscoelastic model to hold. Borcherdt’s formulation is
particularly powerful in that it predicts a range of transverse, inhomogeneous wave types
unique to viscoelastic media (Type I and II S waves), and develops rules for conversion of
one type to another during interactions with planar boundaries.

Generalizing this approach to allow for viscoelastic waves of the type described by
Borcherdt has several positive outcomes. First, and foremost, it provides an analytical
framework for the examination of processes of scattering of viscoelastic waves from arbi-
trary three-dimensional heterogeneities, as opposed to layered media. Second, it provides
a foundation for direct linear and nonlinear inversion methods for reflection seismic data,
which go well beyond existing an-acoustic results (Innanen and Weglein, 2007; Innanen
and Lira, 2010). And third, it provides a means to compute and analyze the gradient and
Hessian quantities used in iterative seismic inversion (see the review by Virieux and Operto,
2009).

In this report we introduce the scattering potentials for of viscoelastic waves using
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the Born approximation based on the scattering theory. These scattering potentials repre-
sent the radiation patterns generated by elastic and anelastic inclusions in a viscoelastic
background. The object of this report is the generalization of the viscoelastic scattering
potentials obtained in low-loss medium to a medium with general attenuation properties.

EXACT FORM OF RAY PARAMETER AND SLOWNESS VECTORS

The most important feature of the waves in a viscoelastic medium is that the wavenum-
ber vector is a complex number, which it’s imaginary part refers to the amplitude damp-
ing. As a result, slowness and polarization vectors are complex numbers. The complex
wavevector is given by

K=P +iA, (1)

where, propagation vector P is perpendicular to the wavefront and attenuation vector A is
perpendicular to the plane of constant amplitudes and specified the direction of the maxi-
mum attenuation medium. The angle between these two vectors is called attenuation angle,
0, which is always less that 90°. In the case that the attenuation and propagation vectors are
parallel the wave is called homogenous. Otherwise it is inhomogeneous. Wave speed for a
homogeneous P and S-wave may be written as

2 2
Vit = Viy | < fiH )

xo=v1+Q7 3)

with quality factor (). Complex wave-number is defined as
K:\/K.K:%, &)

where complex velocity V' and V' are defined by

-
V= %7 5)

1= Z1+XH

where

In the case of low-loss viscoelastic media as Q! < 1, we have
7
Vg~ Vg, VaVg (1 + §QH1) : (6)

In above we used the low-loss viscoelastic medium approximation where Q! < 1. From
study of complex vectors we know that they display the elliptical motion for a dynamic
problem. Therefore we expect that displacement vectors for P- and S-waves with complex
polarization vectors, describe an elliptical motion for particles. We assume that wavenum-
ber vector is in the xz-plane, so the propagation and attenuation vectors are

w 1
= — X (xsinf + zcos6),
VeV 1+xnm
(7
w =1+

=V T +X§(xsin(9 — ) +zcos(f —9)),
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FIG. 1. Digram illustrating the ray parameter versus phase angle in complex plane for different
values of attenuation angle §. Solid line refers to the general attenuation and dash line refers to the
low-loss attenuation.

with
X =V1+Q Zsec?s. ®)

The slowness vector is given by

K
k:;:px—i-qz, ©)

where complex ray parameter and vertical slowness respectively are

1

_ 1 P, —iA (11)

Explicit forms of ray parameter and vertical slowness vectors are

11 -1 -1
p X {sin@(l—z’Q >+iQ Cos@‘cané},

:VH 1+ xn 1+ x 1+ x (12)
1 [ 1+x Q! Q7
qQ= cosf(1—1 — 19 sinftand p .
Ve V 14+ xnu 1+y 1+x

In Fig. 1, we plot the ray parameter in complex plane versus phase angle for various
values of attenuation angle. Diagram displays that the ray parameter is a an ellipse whose
eccentricity decline as attenuation angle gets smaller. We also observe a higher deviation
between general viscoelastic medium and low-loss attenuation medium for higher values
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of attenuation angle. The same interpretation is valid for polarization and slowness vectors.
It is easy to show that ray parameter and vertical slowness vectors satisfy in

p’+q’ = —. (13)

To calculate the scattering potential we need the explicit form of the polarization and slow-
ness vectors. Based on the complex wave number vector for viscoelastic waves, the polar-
ization vectors for P- and S-waves are given by

&p = VpKp = Vp(Pp —iAp),

(14)
Cp=VsKp xy=Vs(Pg—iAg) Xy,
also the slowness vectors are defined as
K K
kp = -2 kg = —2. (15)
w w

Consider to the case that polarization vectors for incident and reflected waves are in Xx-z
plane

= z cos Op; + X sin0p;),
Vip 1+XHP( r Pi)

1 :
Ap, = w T Xpi (Z COS(GPZ' — 513@) + XSiH(@pi - 6Pi))a
Vap V. 1+ xup (16)
P r = ‘9 r 9 T/
P VHP1/]-+XHP(XSIH pr — 2COS0p,)
Ap, = 1/_1+Xpr(xsin(0 —dpr) — zcos(Op, — dpy))
Pr — VHP 1+ YEP Pr Pr Pr Pr)),

wheredp, and dp, are the attenuation angles for incident and reflected P-waves. Homoge-
neous P-wave velocity, Vpy is the same for incident and reflected waves as they propagate
in the reference medium.

SCATTERING POTENTIAL AND BORN APPROXIMATION

The elements of scattering theory can be found in many standard text book. The main
idea in this theory is that, the actual medium that wave propagates in it can be considered as
a reference medium with known physical parameters plus perturbations in properties which
are unknown. The perturbations are proportional to the differences in elastic and anelastic
properties between the reference and actual medium. Scattered wave can be regarded as
a summation of the all possible single scattering from, one, two ....scatter points. Since
the scattered wave from the first scatter point is weak comparing to the incident wave,
practically scattering form two, three and more scatter points is negligible. This is called
the Born approximation. The scattering potential in the first order Born approximation is
given by (Beylkin and Burridge, 1990)

V=¥ V. ¥l (17)
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In above equation ¥, is the Green’s function or propagator in reference medium given by
U~ w e k) (18)

where £ is the polarization vector and k is the slowness vector. Scattering operator V is
a kind of operator that contains the left and right partial derivatives respect to the space
coordinate. It is a scattering tensor, which is the difference between the wave operator in
actual and reference medium given as (Stolt and Weglein, 2012)

V = Lyg — Lvro, (19)

where L, is the wave operator given by (Moradi and Innanen, 2015)
— —= — — — — —=

(Lve)y = p?S+ 04(pVE) B 5+, 01(pV2) B~ 20,(0V2) T, + 0,(pV2) T, (20)
for ¢, 7, k = x,y, z with a sum rule notation on index k. The left(right) arrow on the partial
derivatives indicates the operation on the left (right) hand side function. We define the
fractional perturbations as a difference of the property in actual and reference media. For
example the fractional perturbation in physical parameter z is given by

Az x—x

Ap=—= : 21

T T

where 7 is the property in the reference medium. So that we can obtain the physical
property in the actual medium in terms of it’s value in reference medium and the fractional
perturbation

r=x0(1+ Ay). (22)

Since the wave operator is complex in both actual and reference media, the scattering op-
erator contains the perturbations in complex P- and S-wave velocities. We note that the
perturbations are in the real quantities. Let us express the perturbation in complex number
2z = x + 1y in terms of perturbations in the real and imaginary parts. In this case we have

z=xo(l1+A,;) +iyo(1+ A,), (23)

So perturbation in complex number z can be expressed as

Az 1 )
_ 22 L A inA,). (24)

A, = -
z To + 1Yo

In the first attempt to calculate the scattering potential, we obtain the scattering operator.
Fractional perturbations in density, P- and S-wave velocities and quality factors are easy
to calculate. However the fractional perturbations in complex P- and S-wave velocities are
more complicated. First consider to the first order approximation of factor y g

Q72
XH ~ XHo (1 - TOAQ> , (25)
HO

Inserting in the definitions of the velocities in the first order approximation we arrive at

Vo (P
AV:]_—V:AVE—EQ 1AQ,
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where we defined the analogous quality factor QQ as
~ 20, [ Ve 0’
@ 1_ QO { 0 <1_ QO ) ’LQO (2+XHO)}~
1+ xu0 ( VHo Xro(1l + Xmo) 2x%0

In the case of low-loss media Q! < 1, we have Q — Q. Next we write the scattering
matrix element in frequency-independent form (Stolt and Weglein, 2012). Since the differ-
ential operators are sandwiched between unperturbed wave functions, we replace the left
derivatives with ¢ multiplied by the reflected wavenumber vector K, and right derivative
with ¢ multiplied by the incident wavenumber vector K;. After replacing the left and right
derivatives by the appropriate wavenumber vectors, the frequency independent parts of the
scattering operator are

(Vig)
(V\‘?F}:ZE Y = =2V kiki,
(VR = =2V (Suaky, iy — 2ki K] + ki kL) , (26)
)
)

k= 0w — Viokik] — Vi (Omki ki, — 2kik) + k[ k},)

(Vgg w = 1Qp Viokiki,
(V) = iQ5 'V Okl ke, — 2kpki + Ky kL) .
The frequency-independent components of the scattering potential are defined as

VVE

pow?

= Vyg = VipA, + ViR Avy + Vi Avg + ViEAge + Vg Aos. 27

Now to obtain the scattering matrix we sandwich the above expressions with the proper
polarization vectors. We use the vectors R and I to indicate the reflected and incident
polarization vectors, respectively. For perturbation terms we will write

RV Rga {%gﬂ%
{ng = —5@131 LV} = (1Qp") RGve, (28)
T o
e = -0 (Wi} = (105" ks,
where we have defined
RWF=R-1,
RGa = Vio(R - k) (I- k), (29)
2G5 = Vi {(R-D(k, - ki) —2(R -k, )(I- k;) + (I- k,)(R - k;) } .

To determine the explicit form of each component of the scattering potential, we need to
calculate ]-"IR, }—,{Qa and }{gﬁ. To derive the scattering potential we use the polarizations and
slowness vectors labeled by subscripts refers to the incident and scattered waves. The scat-
tering potential should be expressed as a function of the parameters in reference medium
and perturbations. Without loss of generality we assume that the change in the attenuation
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angle is very small Adp = dp, — dp; < 1, so we can write the fractional perturbation in
attenuation angle as

dpr — Opi
As, =2——— 30
6}3 5Pz _|_ 5PTJ ( )
so that AS
5Pr = 5]:’ + _Pv
2
Ad
Opi = dp — =5+,

where ¢ is the average in attenuation angle or reference medium attenuation angle. As a
result

secdp; = secdp (1 — tan dp sin ASP) ,

MP) . (31)

Since the above expressions multiplied by a fractional perturbation, in the first order in

perturbation we have
V1+xp &1+ xpi = /14 xp.

secdp, = secdp (1 + tan dp sin

In a similar manner
tandp, ~ tandp; =~ tandp,

P-to-P scattering potential

Let us consider to the case that the inhomogeneous P-wave with attenuation angle dp;
scattered to an inhomogeneous P-wave with attenuation angle dp,. In this case equations
(29) reduce to

E]: - €Pr ’ me
bGv, = Vio(€p, - kpy) (€p; - kpi),

G5 = Vo {(€p, - €pi) (ke - ki) — 2(Ep, - ko) (€p; - ki) + (€p; - ker) (€p, - kpi)(}_%é)
The detail of the dot product of various polarization and slowness vectors can be find in
appendix A. The above expressions are the functions of the average phase and attenuation
angles for incident and reflected P-waves. For low-loss media the analytical expressions can
be found in (Moradi and Innanen, 2015). Below is the interpretation of the each component
of the scattering potential for scattering of P-wave to P-wave

e LV{y # 0: component related to the scattering from density inclusion
° EV&% # (0 component related to the scattering from P-wave velocity inclusion

° EV\‘;SE # 0 component related to the scattering from S-wave velocity inclusion
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FIG. 2. Digram illustrating the real and imaginary of density and S-wave velocity part of P-to-P
scattering potential for Qp = 5 and Qs = 4 and attenuation angles jp = ds = 70°. The solid line
refers to the arbitrary attenuation and dash line refers to the low-loss case.

° EV%Q # 0 component related to the scattering from P-wave quality factor inclusion

° EV@E # (0 component related to the scattering from S-wave quality factor inclusion

Consequently, any inclusion in elastic and anelastic properties can scatter the P-wave to
P-wave. The first three components of the scttering potentials related to the density, P and
S-wave velocity are complex functions with real and imaginary parts. In low-loss media
the real part is equal to the elastic scattering potential, however for a general viscoelastic
medium there is an extra term that is negligible in the low-loss limit. The components re-
lated to the inclusions in quality factors are pure imaginary terms. In Fig 2 we plot the real
and imaginary parts of the P-to-P scattering potential for low-loss versus general viscoelas-
tic medium. We can see the differences between the scattering potentials for medium with
general anelastic properties and a medium with low-loss anelastic properties.
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FIG. 3. Digram illustrating the real and imaginary of density and S-wave velocity part of P-to-SlI
scattering potential for Qp = 5 and Qs = 4 and attenuation angles jp = ds = 70°. The solid line
refers to the arbitrary attenuation and dash line refers to the low-loss case.

P-SI scattering potential

In this case the reflected wave is of type SI, R = (,., and the incident wave is a P-wave,
I = &p,. In this case equations (29) reduce to

P
siF = Cgr - &p;

P 2

si9ve = Vpo(Cs, - ksr) (€p; - kpi)

P 2

si9vs = Vio {(Csy - €pi) (Ksr - kpi) — 2(Cs, - ksr ) (Epi - kpi) + (€pi - ksr ) (Csy - ki) -

(33)

The detail of the the calculations can be found in the appendix. In this case the scatter-
ing potential component related to the change in P-wave velocity is zero. It means that
inclusion in P-wave velocity can not convert the P-wave to SI-wave. The similar situation
is satisfied for the scattering of elastic case, where the P-wave velocity inclusion can not
convert the elastic P-wave to the SV-wave. Consequently, the P-wave quality factor com-
ponent vanishes also means that P-wave can not be converted to SI-wave due to interaction
with the P-wave quality factor inclusion. In Fig 3 we plot the real and imaginary parts of
the P-to-SI scattering potential for low-loss versus general viscoelastic medium.
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FIG. 4. Digram illustrating the real and imaginary of density and S-wave velocity part of Sl-to-SlI
scattering potential for Qp = 5 and Qs = 4 and attenuation angles jp = ds = 70°. The solid line
refers to the arbitrary attenuation and dash line refers to the low-loss case.

SI-SI scattering potential

In this case the reflected wave is of type SI, R = (g,, and the incident wave is a
SI-wave, I = (. In this case equations (29) reduce to

g%‘/—_. = CST ) CSZ’?
St 2 (34)
519vs = Vo {(Csr - Csi) (ksr - ksi) + (Cs; - ksr) (s, - ksi) } -

Similar to the scattering potential for P-to-SI, the non zero components are, density, S-wave
velocity and S-wave quality factor. No contributions from change in P-wave velocity and
quality factor in scattering of SI-wave to SI-wave. In Fig 4 we plot the real and imaginary
parts of the SI-to-SI scattering potential for low-loss versus general viscoelastic medium.
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SUMMARY AND CONCLUSION

The scattering potential associated with the scattering in low-loss viscoelastic medium
recently have been derived (Moradi and Innanen, 2015). In this paper we removed the
low-loss assumption and derived the explicit forms of the scattering potential for a general
viscoelastic medium. We used the Born approximation to obtain the scattering potentials.

In scattering theory approach, a low contrast medium can be simulated by couples of
scatter points in a background medium. Mathematically scatter points are the perturba-
tions that are added to an unperturbed medium to construct an actual perturbed medium.
Compared to the low-contrast model, when waves travel through the medium including the
scatter points, small portions of the wave interact with the scatter points. In this case only a
small portion of the incidence wave is scattered from the scattering points and the majority
of the incidence wave passes near through the scatter points without interacting with them.
This non-interacting wave can be regarded as a transmitted wave compared to the case of
a low-contrast medium. Scattered waves can themselves hit the scatter points again, but
the resulted doubly-scattered wave would be very weak compared to the singly-scattered
wave. Practically we can ignore all except the first order scattered waves. This is called the
Born-approximation which deals only with the first order scattering.

In vescoelastic medium there are five parameters, density, P- and S-wave velocities
and corresponding quality factors. To derive the scattering potential, first we calculate
the scattering operator, which is the difference between the wave operator in actual and
reference mediums. Second, the scattering operator is sandwiched between the polarization
vectors. Polarization are complex vectors which displays a elliptical motions for P- and
SI-waves. The scattering operator that we obtained is a complex function as a sum of
perturbations in elastic and anelastic properties weighted by the the opening angle between
the incident and reflected waves. In contrast to the exact form of the reflection coefficients,
scattering potential is not a function of the incident reflected angles but it is function of the
background material properties and opening angle.
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APPENDIX A: COMPLEX POLARIZATION-SLOWNESS VECTORS ALGEBRA

Propagation and attenuation vectors for incident P-wave are

1 i .
Pp, = — \/ X (z cos Op; + xsin fp;),
Viap V 1+ xup (35)
w [—=14xpi -
Ap; = v/ Opi — Op Opi — opi)),
P Vap V 1+ xup (= cos(fp ei) + xein(fe vi)
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reflected P-wave

PPr

APr

incident S-wave
Pg;
Ag

reflected S-wave

PSr

ASr

1
d 1/ T XPr (xsinfp, — z cos Op,),
Vap V 1+ xup (36)
W _1+XPr .
0 r—5 r) — 0 r_5 r))s
Vip V 1+ xup (esin{Pec — dex) = = c03(0pr = b))
1 i .
_ v v/ tXs (z cos Os; + x sin bg;),
Vs 1‘|‘XHS (37)
w —1 4 xsi .
— \/ z cos(fg; — dgi) + xsin(fg; — dsi)),
Vs 1+XHS( s 1) (s )
1
Y + Xsr (x sin fs, — z cos Os, ),
Vis V 1+ xus (38)
w

_1+XSr .
\/ O, — 0gp) — Og, — Ogy)).
TV (x sin(fs sr) — z cos(0s sr))

Inner product of incident and reflected propagation and attenuation vectors for P-waves

Ppi - Pp, = —
Pp;- Ap, = —
Pp, - Api =
Ap; - Ap, =

2 1 i 1 T
W \/( +XP)< +XP)COS(9Pi+0Pr>7

Vﬁp 1+ xup
2 1 (=1 r
w2 \/( + Xp )( +Xxp ) COS(HPi + epr - 5Pr)7
Vi 1+ xup (39)
2 1 (=1 i
B w2 V(L xer) (=1 + xri) cos(fpi + Opr — Opi)-
Vido 1+ xup
2 \/ 1+XP1 1+XP1“)
0 i 0 r o i 0 v/
Vﬁp 1+ xup conlln e s o)

Inner product of incident and reflected propagation and attenuation vectors for P-waves and

S-waves
Py Py, — — VH:;HS \/ ((11 - é{ppggl iicéis) cos(0p: + Os.),
Pri- As = VHPVHs \/((11111;2; 11—:_)();8;)) 05O+ bsr — ).
Pro - Asi = VHPVHS \/((114—1_-1113{2)( 11++X>1flssi)) cos{fpe + i = bs1), (0
¢ R s
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Using the above expressions we obtain the inner product of wave number vector for incident
and reflected P-waves

Kpi - Kp, = Pp;i - Pp, — Ap; - Ap, — iPp; - Ap, — tAp; - Pp,
_ W VI xe) (Lt xer)

Vgp 14 xup
|:COS(9P1 + Qpr) — COS(@pi + epr — (6Pi + 5pr))

_i—QP Secop cos(Op; + Op, — dp;) — im cos(0p; + Opr — 5Pi)}

X

Q;Q sec Op; sec Opy
(1 + xpi) (1 + xpr)

1+XPr 1+XP1

~ W VA xe) (L F xe)
Vgp 1+ xup

X

Q;Q sec Op; sec Opy
(L4 xpi) (1 + xpr)
Qp" sec Op,
T XPr
w? /(1 + xpi) (1 + xpy)
o Vgp I+ xup
Qp’

14 xpi)(1+ xpr)
—1 -1

[cos Opp — cos(opp — (0p;i + Opy))

Z,QIZ Lsec dp;

cos(opp — Opy) — Ty
Pi

os(opp — 5Pi):|

X

[cos opp — ( [cos opp(1 — tan dp, tan dp;) + sin opp(tan dp, + tan ip;)]

. P . . P .
—q cOS opp -+ sin opp tan dp,| — ¢ cos opp + sin opp tan dp;
1+XPr[ PP PP Pr) 1+XPi[ PP PP Pi)

(41)
Finally
Kp; - Kp, = — w? /(14 xpi) (1 + xpr) "
1 ' Vgp I+ xup
—1 -1 -2
[cos opP (1 —1 ©o { @o Cr )
L+xpe  1+xp (T4 xpi)(1+ xpr)

-2
— (1 n XP?)P()l n XPr) [sin opp (tan 5Pr + tan 5Pi) — COS Opp (tan (spr tan 5pi)]

~1 1
t N t i
—1 SiIlO'pp |:QP an5P + QP anl 5P :|:| .
14 xpr 14 xpi
(42)
Also
Kpi - Kpi = Pp; - Pp; — Ap; - Ap; — 2iPp; - Ap;
w? {1+XP1 —1 4 xpi A4+ xp =1+ xp
=— — — 24 cOS Op;
Vitp |1 +xup 1+ xup 1+ xup 1+ xup (43)

w? 1—iQp"  Ww?

Vizo 1+xup  VE
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14

The inner product of wave number vector for incident P-wave and reflected S-waves

2

1 (1 r
Kp; - Kg, = d \/(( + xpi)(L+ Xsr) X

Vi Vas | (1+ xup) (1 + xus)
1 1 11
{cos ops <1 —i s i @r @p Qs )
I+ xsr T+ xp (T4 xpi)(1+ xsr)
Qp' Q5"

T oL+ xa) [sin opg(tan ds, + tan dp;) — cos opg(tan dg, tan Jp;)]
Pi T

-1 -1
tan dg; tan op;
—18in opg (QS an s + @p_ tandp )] .

1+ XSr 1+ XPi
(44)
2 1 i 1 T
KSi'KSr:_WQ \/( +XS)( +XS)X
-1 -1 -2
[cos Oss (1 —1 Cs —1 Cs Cs >
I+xse  LI4xsi (T+xs)(1+ xs)
Qs” .
sin ogg(tan dg, + tan dg;) — cos ogg(tan ds, tan dg;
(L4 xsi) (L + xsr) | ( ) ( )
-1 -1
tan dg, tan dg;
—18in ogg |:QS anos + QS At os :|:| .
L+ xsr L+ xsi
(45)
In lIow-loss case we have
WQ . 1 7 1 .
Kp; - Kp; = ——5— |cosopp(l —iQp") — Qp sinopp [tan dp, + tan ip;
VEpo 2
w2 1 1 1 .-
KSi . KSr =19 COS Uss(l — ’LQg ) — —Qg S1N 0ss [tan 5Sr + tan (531]
Viso 2
W2 -1 Q5! ;
Kpi . KSr = ———— | COS Ops -1+ Z—S + Z—P + —sin OPS (le tan 6Sr + QEI tan 51)1)
VeroVEso 2 2 2
(46)
Now consider to the cross product of the vectors
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Pe. x Ppi — w? (1 + xpi)(1 + xsr) y
' " VapVas (1 + xmp)(1 + xaus)

(x sin s, — z cos bs,) X (zcos Op; + x sin Op;)

2 _1 r _1 i
Ag X Ap; = w \/(( + Xs ‘|‘XP)X

=

)
Vs Vip 1+ xus) (1 + xup)
(x sin(fs, — ds;) — z cos(fs, — ds;)) X (zcos(Op; — Op;) + xsin(fp; — Ip;))
)
(
(

2 1 1+ xpi
Asr >< PPi — w ( + XSI‘ ( + XPI) X
VasVar \| (1 + xus) (1 + xup)
(x sin(fs, — dsy) — zcos(fs, — ds;)) X (z cos Op; + x sin Op;)
(47)
w? ( 1—|—Xsr)( 1+XP1)

ArXAi— sin@r—l—ei—&r—i—éi
i g VHSVHP\/ (14 xnus)(1 + xup) (6s P = (0 )
1+XP1 1+XSr) .

Pg, x Pp; = — sin(fs; + Op;
§ i VHPVHS\/(1+XHP )(1 4 xns) (6 Pi)
(48)
(=14 xse) (L + xpi) .
Ag. X Ppi = — sin(fg, + Op; — dg;
5 : VHSVHP\/(1+XHS)(1+XHP) (6s : st)
(14 xso)(=1+ xpi) .
Pg X Api = — sin(fg, + Op; — Op;
S P VHSVHP\/(1+XHS) (1 + xup) (6s g Pi)
so we have
K, x Kpi = Pg; X Pp; — Ag, X Ap; — 1Ag, X Ppj — iPg, X Ap;
w2 ( +XP1)( +XSr>
— sin (6 r+0 i
yVHPVHs\/(1+XHP)(1+XHS) (6 )
w? (=14 xs0)(—1 4 xpi)
—I— sin0r+91—5r+5i
yVHSVHP\/ (14 xnus)(1+ xup) (6 Pi = (% 7)) (49)
(=14 xs:)(1 + xpi) .
+1 Os, + Op; — Ogr
yVHSVHP\/(1+XHS)(1+XHP) n(fs o )
(1+XSr( 1+XP1)
+1 sin(fs, + Op; — Op;
yVHSVHP\/(1+XHS) (1 + xup) (6s i = Or)
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2

w \/ (L+xe)(L+xs1)
(

B yVHPVHS 1+ xup)(1 + xus)
lele sec Op; sec Ogy . (50)
— (dgr + Op;
(1 + Xsr)(l + ij) SID(GPS ( S P ))

,le secdg, . ,Q;l secop; .
1—=>—————sin(opg — dg;) + i————— sin(opg — Op;

— sinopg +

w2 \/ (L+xe)(1+xs)
(

B yVHPVHs 1+ xup)(1 + xus)

. Q51 Q5! .
—sin opg + sinopg(1 — tan ds, tan dp;) — cos opg(tan ds, + tan dp;
S T a1y s e tan i) = cosaps! :

Q5 o
+ Zl +str [sin opg — cos opg tan dg;| + ¢ o [sin opg — cos opg tan dp;]
(51
2 1 ) i
Ke x Kp; = y—o (1 + xpi)( ‘|‘Xs)><
ViapVas | (1 + xup) (1 + xus)

‘ ‘ le ‘ ngl lestl )
sin o -1+ +1 +
s ( L+xsr  14xe (T4 xs)(1+ xpi)

Qp'Qs" .
— sin o pg tan dg, tan dp; + cos opg(tan dg, + tan dp;
(T xs) (LT o) ( )
(52)
. le le :|
—3COSO tan dg, + tan op;
e |:1+XSr T g
2 1 (1 + xsr
KSj % KSr =y w2 \/( + Xs )( Xs )
Viis (1 + xms)
' . Q;l . le Q;Z )
sin o -1+ +1 + (53)
% ( I+ xse  14xsi (T4 xs)(I+ xsi)
Qs” . . . . :
— sin ogg sin dg, sin dg; + €os ogg(sin dg, + sin dg;
(14 xse) (1 + xsi) | ( )
-1 le
— t ) r t 0 i
1 COS 053 L o an 0gy + 1+ s an s}
In low-loss case
w? . Qs | .Qp i —1 —1
Kg X Kpj =y———— |sinopg | -1 +1—— +1—— | — = cosopg [QS tandg, + Qp tan 5pi]
Vero VEso 2 2 2
2 .
Kg x Kg, = waT {sin oss (1 —1Qg") + %cos ossQg ' [tan ds, + tan dg;]
ESO
(54)
16
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Radiation patterns associated with the scattering from viscoelastic inclusions

Consider to the P-to-P scattering potential

p Vio
P]: = Epr : fpi = FKPi : KPr;

V4
b0y = Vi (€p, - kpy) (€p; - kpy) = —22 (KP1 Kpi)(Kp: - Kp;),

pGvs = Vi {(&p, - &py) (kp, - kp;) — (SPT -kp,)(&p; - kpi) + (&p; - kpr ) (&p, - kpi) }
2
= 21 P (K Kp)? — (K- Kor) (Ko Kr)}

2 V50 {VP%KPI Kp,)? —1)}

Vp%
(55)
Let us consider to the low-loss media
4
(Kpi - Kp,)? = vcil [cos? opp (1 — 2iQp") — iQp'" sinapp cos opp [tan dp; + tan dpi]]
EP0
so we have
)
pF =&p, - &p; = —cosopp + §Q1;1 sin opp [tan dpr + tan opi]
ggVP = 17
V2
pOvs = — VEzso {2sin’ opp(1 +iQg" — iQp") +iQp" sin 20pp [tan dp, + tan dp;] }
EPO
(56)
we have I I I
RYVE = RF = RGVer — RGVes:
L% — L0 (17 = (107) kv 7
WV = L5 V) = (105)) ke,
SO

V 2 V 2
RVVE— 1—c0sapp_|_2( ESO> sin20pp—|—2i< ESO) "

VEPo VEPo
v 2 (58)
{sin2 opp(QS_1 - le) + Q;l (sm 20pp + — (VEPO) sin 0pp> tan 5p}
ESO
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llzvg%lE - _2<ggVEP) = -2

Viso \~ .
EWSEE = _2<ggVES) =4 (VESO> sin’ opp
EPO

2
oy (5E80> {sin® opp(Q5" — Qp") + Qp sin 20pp tan dp } (59)
EPO

LV = (iQp") kGve = 1Q5",

. o Veso )
llzvgls«] = (ZQsl) thES = —22@81 <VESO) sin? opp.

EPO

Let us consider to the scattering of P-to-SI wave. We have

51-7: = Csr ’ £Pi
SPIQVP = VIgO(CSr ) kST’)(EPi ) sz‘)
gIng = V520 {(Cs,r ’ EPi)(kST ) kPi) - Z(CST ) kST)(EPi ’ kPi) + <€Pi ’ kSr)(Cs,r ’ kPi)}-

(60)
First we have
Vp Vs
Cor &pi =&pi - (¥ X &g,) =¥ - (&g X &py) = ZQSY - (Ksr x Kp;)
CSr'kSr :kSr' (y X €Sr> =Y (£ST‘ X kS?") =0
Vs (61)
Cor " kpi = kpi - (y X &5,) =¥ - (&5, X kpi) = Y5 (Ksr x Kp;)
Vi
Ep; ks = — Kpi - K,
w
finally
Ve Vs
gIF = CR y - (Ksr x Kpy)
si9vp = 0 (62)
Vp Vs
§Gvs = 2V {y - (Ksr x Kpi) (Kpi - Ks,)}
so we have
1831]_— = —sinopg — % COS 0pg [le tan dg; + Q;l tan 5pi}
1% . T, _
SPIng = % {Sln 20ps (1 + 5(@51 - QPI)) ©3)

+1 cos 20pg (le tan dg, + Q;l tan 5pi)]
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Radiation patterns associated with the scattering from viscoelastic inclusions

finally
v
SPIVP = —sinopg — 50 gin 20ps
EPO
. VESO . -1 -1
— 2 —
Z2VEPO [sm ops(Qg Qp)
Vi
+ (2 cos 20pg + BP0 cos O'Ps) (le tan dg, + le tan 6pi)
VEso
Vi .
SIVVS = 2 B0 qn 20pg
EPO
Vi
_ ;B0 [Sin 20ps (le — le) + 2 cos 20pg (le tan dg, + le tan 5pi)}
EPO
v
SPIVQ? = z'Qle V]ji?) sin 20pg
(64)
Consider to the scattering SI-to-SI
s1 Vs
sif = Csr - Csi = &gp g = FKSi K, 65)
s19vs = Vo {(Csr - Csi) (Ksr - ksi) + (Csi - ksr) (€, - Ksi) }
where
Vs
Csiksr = ks - (y ¥ €gi) =¥ - (€si X ksy) =y —5 - (Ksi x Ksy)
Ve (66)
Csr - ksi = kg; - (y X 587") =Y (€s7~ x kg;) = —YE - (Kg; x Ksr)
as a result
% o
aGv, = ﬁ {(Ksi - Kg:)* — [Kgi x Kg: [’} = (1+2iQg ") x (67)
[Cos2 0ss (1 — 2iQ§1) — 4 sin ogg cos angs_l (tan dg, + tan 551)] (68)
— [sin2 09s (1 — QiQS_l) + i sin ogg cos 055 Qg ' [tan ds, + tan (551]] , (69)
finally
a1Gv, = cos 2095 — iQg " sin 20sg [tan Js, + tan dg;] . (70)
In low-loss media
S}]—“ = —cosog + %le sin ogg (tan ds; + tan dg;) , (71)
as a result
g%V'D = — coSog — Cos 20gg + ngl (sinogs + 2sin 20gg) , tan dg
aVYS = —2cos 205 + 4iQg " sin 20gg tan Jg, (72)

g}VQS = iQs_l cos 204g.
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